## **Supporting Information**

## A computational study on the photophysics of methylpheophorbide a

Hernán Rueda Bueno<sup>a</sup>, Julio R. Pinzón<sup>b</sup>, Martha C. Daza<sup>a</sup>, Markus Doerr<sup>\* a</sup>

<sup>a</sup>Grupo de Bioquímica Teórica, Universidad Industrial de Santander, Carrera 27, Calle 9, Bucaramanga, Colombia

<sup>b</sup>Laboratorio de Síntesis Orgánica, Universidad Industrial de Santander, Carrera 27, Calle 9, Bucaramanga, Colombia

\* Corresponding author

### **Table of Contents**

| 1. | Excited state properties                                                                               | 2    |
|----|--------------------------------------------------------------------------------------------------------|------|
|    | 1.1 Excited state dipole moments                                                                       | 2    |
|    | 1.2 Difference densities                                                                               | 2    |
|    | 1.3 Geometries of the ground and excited state minima                                                  | 2    |
| 2. | Choice of the computational parameters                                                                 | 4    |
|    | 2.1 Effect of the density functional and the Tamm-Dancoff approximation on the VEEs                    | 4    |
|    | 2.2 Effect of the basis set and the Tamm-Dancoff approximation on the VEEs                             | 4    |
|    | 2.3 Effect of the functional and basis sets on the calculated Q band in toluene                        | 5    |
|    | 2.4 Effect of the number of points of the correlation function on the absorption and fluorescence      |      |
|    | spectrum                                                                                               | 6    |
|    | 2.5 Effect of discarding vibrational modes on the absorption and fluorescence spectra                  | 7    |
| 3. | Absorption and fluorescence processes                                                                  | .10  |
|    | 3.1 Effect of the level of theory on the adiabatic energy differences of the low-lying singlet states. | .10  |
|    | 3.2 Effect of the level of theory on the fluorescence rate constants                                   | .11  |
|    | 3.3 Effect of different parameters on the calculated fluorescence spectra                              | .11  |
| 4. | Intersystem crossing                                                                                   | .12  |
|    | 4.1 Adiabatic energy difference between the lowest singlet excited state and the low-lying triplet     |      |
|    | states                                                                                                 | . 12 |
|    | 4.2 Effect of discarding vibrational modes on the ISC rate constants                                   | .12  |
|    | 4.3 Derivatives of the SOCMEs with respect to the corresponding vibrational modes                      | .13  |
|    | 4.4 Effect of the Gaussian linewidth on the ISC rate constants                                         | .21  |
|    | 4.5 Effect of the level of theory, FC and FCHT approximations on the k <sub>ISC</sub>                  | .22  |
|    | 4.6 The five largest coupling vibrational normal modes                                                 | .22  |

### 1. Excited state properties

#### **1.1 Excited state dipole moments**



**Fig. S1.** Negative dipole moments of the lowest singlet  $S_0$ - $S_3$  and triplet  $T_1$ - $T_4$  excited states in MPh, calculated at the CAM-B3LYP/def2-SVP excited state geometries. The magnitudes of the dipole moments are given in Debye.

#### **1.2 Difference densities**



**Fig. S2**. Difference densities (cutoff 0.0005) of the excited states at the  $S_0$  geometry in toluene. Regions with decreased electron density compared to the electronic ground state are shown in red, regions with increased electron density are shown in blue.

### 1.3 Geometries of the ground and excited state minima

The optimized structures of  $S_0$ - $S_2$  and  $T_1$ - $T_3$  are shown in Fig. S3. The optimization of the  $T_2$  excited state was a challenging task. TDA-DFT geometry optimizations of the  $T_2$  state starting at the  $S_0$ , and  $S_1$  minima were unsuccessful. However, a TD-DFT geometry optimization of the  $T_2$  state from the  $S_0$  without the Tamm-Dancoff approximation succeeded in finding a minimum of the  $T_2$  state.

Due to the rigid structure of the molecule, the geometric differences between the excited state geometries are small. The main differences include the C-C methine bridge distances, the C-C

distances of the first pyrrole ring and the C–N distances of the deprotonated pyrrole rings, which are also characteristic of porphyrin.

In the S<sub>1</sub> state, the elongation of the C<sub>2</sub>–C<sub>3</sub>, C<sub>6</sub>–C<sub>7</sub>, C<sub>6</sub>–N<sub>22</sub>, C<sub>9</sub>–C<sub>10</sub>, C<sub>11</sub>–C<sub>12</sub> and C<sub>15</sub>–C<sub>16</sub> distances amounts to 2 pm. While the C<sub>4</sub>–C<sub>5</sub> distance is elongated by 3 pm, the C<sub>5</sub>–C<sub>6</sub> distance is shortened by the same value. Moreover, the C<sub>19</sub>–C<sub>20</sub>–C<sub>1</sub> methine bridge exhibits an asymmetric stretching pattern. In the S<sub>2</sub> state, the C<sub>3</sub>–C<sub>4</sub>, C<sub>5</sub>–C<sub>6</sub>, C<sub>19</sub>–C<sub>20</sub> and C<sub>16</sub>–N<sub>24</sub> distances are shortened by 2 pm; the C<sub>2</sub>–C<sub>3</sub>, C<sub>4</sub>–C<sub>5</sub> and C<sub>19</sub>–N<sub>24</sub> distances are elongated by 3 pm. The main difference of this state is the elongation of the C<sub>1</sub>–C<sub>20</sub> distance which amounts to 4 pm. In the S<sub>3</sub> state, the most significant structural changes are elongations of the C<sub>9</sub>–C<sub>10</sub>, C<sub>11</sub>–C<sub>12</sub>, C<sub>2</sub>–C<sub>3</sub>, C<sub>4</sub>–C<sub>5</sub>. C<sub>6</sub>–N<sub>22</sub>, C<sub>15</sub>–C<sub>16</sub>, C<sub>19</sub>–C<sub>24</sub>, C<sub>20</sub>–C<sub>1</sub> distances by 3, 3, 2, 2, 2, 2, 2 pm and shortening of the C<sub>9</sub>–N<sub>22</sub>, C<sub>10</sub>–C<sub>11</sub> and C<sub>16</sub>–N<sub>24</sub> by 2 pm. In the T<sub>1</sub> state, the C<sub>4</sub>–C<sub>5</sub> distance are extended by 6 pm and shortened by 5 pm, respectively. The C<sub>3</sub>–C<sub>4</sub>, C<sub>9</sub>–N<sub>22</sub> distances are shortened by 4 pm and the C<sub>6</sub>–N<sub>22</sub> distance is elongated by 4 pm. The T<sub>2</sub> state is mainly characterized by the shortening of the C<sub>9</sub>–C<sub>10</sub>, C<sub>11</sub>–C<sub>16</sub>, C<sub>19</sub>–C<sub>10</sub>, C<sub>10</sub>–C<sub>11</sub> and C<sub>16</sub>–N<sub>24</sub> and C<sub>19</sub>-C<sub>20</sub> distances, which amount to 4, 3 and 3 pm, and the elongation of the C<sub>4</sub>–C<sub>5</sub>, C<sub>19</sub>-N<sub>24</sub>, C<sub>15</sub>-C<sub>16</sub>, C<sub>20</sub>–C<sub>1</sub>, C<sub>6</sub>-C<sub>7</sub> and C<sub>8</sub>-C<sub>9</sub> distances by 5, 4, 3, 3, 3 and 3 pm. In the T<sub>3</sub> state, the principal variations are the C<sub>9</sub>–C<sub>10</sub>, C<sub>11</sub>–C<sub>12</sub> distance elongation of 4 pm and the C<sub>10</sub>–C<sub>11</sub> distance shortening of 3 pm.



**Fig. S3**. Selected bond lengths (in pm) of the ground state, and differences relative to the ground state structure. Only non-zero values are given.

### 2. Choice of the computational parameters

# **2.1** Effect of the density functional and the Tamm-Dancoff approximation on the VEEs

In order to test the effect of the Tamm-Dancoff approximation on the calculated VEE, we calculated the VEEs with and without TDA (Fig. S4). The effect of the TDA is a blue-shift of up to 0.16 eV with respect to the calculated TD-DFT energies, resulting in deviations of the calculated VEE of up to 0.49 eV from the experimental band maxima. Similar blue shifts have been observed using this functional in a recent study of the absorption spectra of phthalocyanins.<sup>1</sup>



**Fig. S4.** Effect of the density functional and the TDA approximation on the vertical excitation energies (eV) associated with the first ( $S_1$ ) and second ( $S_2$ ) singlet excited states computed at the ground state geometry.

## **2.2** Effect of the basis set and the Tamm-Dancoff approximation on the VEEs

The effect of the basis set on the calculated absorption spectrum of MPh was also investigated (Fig. S5). The effect of the smaller def2-SVP basis set under TDA or full TD-DFT on the absorption spectrum is blue shift of the excitation energies of  $\approx 0.04$  eV. Since the effect of the basis set is small and the basis set def2-TZVP is computationally more expensive (particularly for the numerical computation of the vibrational frequencies of the excited states) than the def2-SVP basis set, the latter was chosen. The CAM-B3LYP/def2-SVP VEE is about 0.5 eV higher than the experimental band maximum, for the S<sub>2</sub> transition the difference is about 0.3 eV. It should be noted that the band maximum and the vertical excitation energy do not coincide and that the VEE is more than 0.1 eV higher than the calculated band maximum.<sup>2</sup>

![](_page_4_Figure_0.jpeg)

**Fig. S5.** Effect of the basis set and the TDA approximation on the vertical excitation energies (eV) associated with the first  $(S_1)$  and second  $(S_2)$  singlet excited states computed at the ground state geometry. All calculations were performed using the CAM-B3LYP/def2-SVP optimized structure.

# **2.3** Effect of the functional and basis sets on the calculated Q band in toluene

To investigate the effect of the level of theory on the absorption properties of MPh, we used the CAM-B3LYP/def2-SVP optimized geometries and performed single point calculations with the density functionals CAM-B3LYP,  $\omega$ B97X, PBE0 and the basis sets def2-SVP, def2-TZVP (see Table S1). The calculated VEEs for S<sub>1</sub> are found to be very similar with the three functionals, with differences of  $\leq 0.1$  eV. Larger differences between the three functionals are observed for the S<sub>2</sub> state. The utilization of the smaller, less computationally demanding def2-SVP basis has a minimal impact on the VEEs, with blue shifts of less than 0.05 eV observed for the S<sub>1</sub> and S<sub>2</sub> transitions with the CAM-B3LYP functional.

| Transition    | Exp. (eV) <sup>a</sup> |            | de       | f2-SVP |                   | def2-TZVP |        |               |  |
|---------------|------------------------|------------|----------|--------|-------------------|-----------|--------|---------------|--|
| Transition    |                        | Functional | VEE (eV) | λ (nm) | f <sub>osc.</sub> | VEE (eV)  | λ (nm) | $f_{ m osc.}$ |  |
|               |                        | CAM-B3LYP  | 2.343    | 529.1  | 0.3302            | 2.300     | 539.1  | 0.3639        |  |
| $S_0 \to S_1$ | 1.85                   | ωB97X      | 2.390    | 518.8  | 0.2945            | 2.346     | 528.4  | 0.3190        |  |
|               |                        | PBE0       | 2.290    | 541.4  | 0.3258            | 2.251     | 550.7  | 0.3613        |  |
|               |                        | CAM-B3LYP  | 2.653    | 467.4  | 0.0610            | 2.621     | 473.0  | 0.0634        |  |
| $S_0 \to S_2$ | 2.31                   | ωB97X      | 2.826    | 438.8  | 0.1420            | 2.801     | 442.6  | 0.1574        |  |
|               |                        | PBE0       | 2.511    | 493.8  | 0.0427            | 2.479     | 500.2  | 0.0399        |  |

**Table S1**. TD-DFT spectroscopic parameters for the Q band calculated in toluene with different density functionals and bases and using the CAM-B3LYP/def2-SVP optimized structure.

<sup>a</sup>Ref.<sup>3</sup> maximum of the absorption band in toluene.

# 2.4 Effect of the number of points of the correlation function on the absorption and fluorescence spectrum

When all vibrational modes are included in the calculation of the absorption and fluorescence spectrum, the bands have an unrealistic shape (see Figs. S6 and S7). In order to test whether a larger number of grid points of the correlation function results in more realistic spectra, we performed the calculations with higher number of grid points. As can be seen, increasing the number of points in the correlation function for absorption and fluorescence did not result in better spectra.

![](_page_5_Figure_2.jpeg)

**Fig. S6.** Effect of the number of grid points used in the integration of the correlation function on the *Q*-band region of the absorption spectrum employing the adiabatic Hessian model, and including Franck-Condon and Herzberg-Teller (FCHT) terms at 298.15K. The Gaussian bandwidth was set to 150 cm<sup>-1</sup> and all vibrational modes were included.

![](_page_6_Figure_0.jpeg)

**Fig. S7.** Effect of the number of grid points used in the integration of the correlation function on the fluorescence spectrum employing the adiabatic Hessian model, and including Franck-Condon and Herzberg-Teller (FCHT) terms at 298.15K. The Gaussian bandwidth was set to 150 cm<sup>-1</sup> and all vibrational modes were included.

# 2.5 Effect of discarding vibrational modes on the absorption and fluorescence spectra

The effect of discarding vibrational modes on the absorption and fluorescence spectra is shown in Figs. S8 and S9. Increasing the threshold for discarding vibrational modes to more than 300 cm<sup>-1</sup> has only small effects on the band shape and the fluorescence rate (Fig. S10). Discarding only vibrational modes below 100 cm<sup>-1</sup> results in unrealistic spectra.

![](_page_7_Figure_0.jpeg)

**Fig. S8.** Effect of discarding vibrational modes on the absorption spectrum, employing the adiabatic Hessian model, and including Franck-Condon and Herzberg-Teller (FCHT) terms at 298.15 K. The Gaussian bandwidth was set to 150 cm<sup>-1</sup>. The default value of 262144 was used for the number of points of the correlation functions. All calculated spectra were shifted by 0.32 eV to align with the experimental band maximum.

![](_page_7_Figure_2.jpeg)

**Fig. S9.** Effect of discarding vibrational modes on the fluorescence spectrum, employing the adiabatic Hessian model, and including Franck-Condon (FC) and Franck-Condon and Herzberg-Teller (FCHT) terms at 298.15 K. The Gaussian bandwidth was set to 150 cm<sup>-1</sup>. The default value of 262144 was used for the number of points of the correlation functions.

![](_page_8_Figure_0.jpeg)

**Fig. S10.** Fluorescence rate constants obtained with different frequency thresholds for discarding vibrational modes, including Franck-Condon (FC) and Franck-Condon and Herzberg-Teller (FCHT) terms. The CAM-B3LYP/def2-SVP optimized geometry was used in all calculations.

### 3. Absorption and fluorescence processes

![](_page_9_Figure_1.jpeg)

**Fig. S11.** Computed vibronic structure and stick spectrum of the Q-band employing the adiabatic Hessian approximation, Franck-Condon and Franck-Condon-Herzberg-Teller contributions at 298.15K. The Gaussian linewidth was set to 150 cm<sup>-1</sup> and vibrational modes below 350 cm<sup>-1</sup> were removed. The calculated spectra and VEEs were shifted by 0.32 eV to align with the experimental band maximum.

# **3.1** Effect of the level of theory on the adiabatic energy differences of the low-lying singlet states

*Table S2.* Adiabatic energy differences between the lowest singlet excited state and the ground state computed at different levels of theory using the CAM-B3LYP/def2-SVP optimized structure.

| Level of theory         | ΔE <sub>S1-S0</sub><br>(eV) | ΔE <sub>S2-S0</sub><br>(eV) |
|-------------------------|-----------------------------|-----------------------------|
| CAM-B3LYP/def2-<br>SVP  | 2.20                        | 2.56                        |
| CAM-B3LYP/def2-<br>TZVP | 2.19                        | 2.56                        |
| ωB97X/def2-SVP          | 2.21                        | 2.68                        |
| ωB97X/def2-TZVP         | 2.20                        | 2.68                        |
| PBE0/def2-SVP           | 2.18                        | 2.42                        |
| PBE0/def2-TZVP          | 2.17                        | 2.41                        |

![](_page_10_Figure_0.jpeg)

### **3.2** Effect of the level of theory on the fluorescence rate constants

**Fig. S12.** Fluorescence rate constants calculated at different levels of theory, including Franck-Condon (FC) and Franck-Condon and Herzberg-Teller (FCHT) terms. The CAM-B3LYP/def2-SVP optimized geometry was used in all calculations. The values under the labels are the relative Herzberg-Teller contributions.

## **3.3** Effect of different parameters on the calculated fluorescence spectra

![](_page_10_Figure_4.jpeg)

**Fig. S13.** Predicted fluorescence spectra calculated with different functionals and basis sets including Franck-Condon (FC) and Franck-Condon and Herzberg-Teller (FCHT) terms. The CAM-B3LYP/def2-SVP optimized geometry was used in all calculations. The experimental band maximum is shown in gray.<sup>4</sup>

#### 4. **Intersystem crossing**

#### Adiabatic energy difference between the lowest singlet excited state 4.1 and the low-lying triplet states

Table S3. Adiabatic energy difference between the lowest singlet excited state and the first, second and third triplet state computed at different levels of theory using the CAM-B3LYP/def2-SVP optimized structure.

| Level of theory     | $\Delta E_{S1-T1}$ (eV) | $\Delta E_{S1-T2}$ (eV) | ΔE <sub>S1-T3</sub><br>(eV) |
|---------------------|-------------------------|-------------------------|-----------------------------|
| CAM-B3LYP/def2-SVP  | +0.92                   | +0.59                   | +0.13                       |
| CAM-B3LYP/def2-TZVP | +0.90                   | +0.52                   | +0.11                       |
| ωB97X/def2-SVP      | +0.94                   | +0.53                   | +0.10                       |
| ωB97X/def2-TZVP     | +0.92                   | +0.46                   | +0.07                       |
| PBE0/def2-SVP       | +0.85                   | +0.62                   | +0.16                       |
| PBE0/def2-TZVP      | +0.84                   | +0.56                   | +0.14                       |

#### Effect of discarding vibrational modes on the ISC rate constants 4.2

#### Table S4

Spin-orbit coupling matrix elements (SOCMEs, cm<sup>-1</sup>) and computed ISC rate constants k<sub>ISC</sub> (s<sup>-1</sup>) for MPh (298.15K) using the Franck-Condon k<sub>ISC</sub><sup>FC</sup> and Franck-Condon-Herzberg-Teller approximations  $k_{ISC}^{FCHT}$  and experimental results at room temperature.

| ISC                            | $\Delta E_{ST}$ |                                                                 | All vibratio                   | onal modes<br>ided       | Only vibration above 100 cr | onal modes<br>n <sup>-1</sup> included | (evn)                   |
|--------------------------------|-----------------|-----------------------------------------------------------------|--------------------------------|--------------------------|-----------------------------|----------------------------------------|-------------------------|
| channel                        | (eV)            | $\langle \mathbf{S}_1   \mathbf{H}_{SO}   \mathbf{I}_i \rangle$ | k <sup>FC</sup> <sub>ISC</sub> | $k_{\rm ISC}^{\rm FCHT}$ | $k_{\rm ISC}^{\rm FC}$      | $k_{\rm ISC}^{\rm FCHT}$               | k <sub>ISC</sub> (exp.) |
| $S_1-T_1$                      | +0.92           | 0.16                                                            | 2.56 x 10 <sup>5</sup>         | 1.96 x 10 <sup>6</sup>   | 5.80 x 10 <sup>5</sup>      | 7.10 x 10 <sup>6</sup>                 |                         |
| $S_1-T_2$                      | +0.59           | 0.44                                                            | 3.19 x 10 <sup>6</sup>         | 1.24 x 10 <sup>7</sup>   | 3.10 x 10 <sup>6</sup>      | $2.08 \times 10^7$                     | $7.00 \times 10^{7}$ a  |
| S <sub>1</sub> -T <sub>3</sub> | +0.13           | 0.10                                                            | $7.15 \times 10^3$             | 5.61 x 10 <sup>4</sup>   | 3.75 x 10 <sup>6</sup>      | 3.35 x 10 <sup>7</sup>                 | 7.90 X 10               |
| k <sub>ISC,total</sub>         | -               | -                                                               | 3.45 x 10 <sup>6</sup>         | 1.45 x 10 <sup>7</sup>   | 7.43 x 10 <sup>6</sup>      | 6.14 x 10 <sup>7</sup>                 |                         |

<sup>a</sup> Ref<sup>4</sup>, toluene ( $10^{-5}$  M) solution.

# **4.3** Derivatives of the SOCMEs with respect to the corresponding vibrational modes

| Mode | v <sub>i</sub> @T <sub>1</sub> | $\partial SOCME S_1-T_1$ | Mode | vi@T <sub>2</sub> | $\partial SOCME S_1-T_2$ | Mode | vi@T <sub>3</sub> | $\partial SOCME S_1-T_3$ |
|------|--------------------------------|--------------------------|------|-------------------|--------------------------|------|-------------------|--------------------------|
| 1    | 100.5                          | 0.000                    | 1    | 105.4             | 0.000                    | 1    | 100.6             | 0.000                    |
| 2    | 108.7                          | 0.000                    | 2    | 118.5             | 0.001                    | 2    | 108.2             | 0.000                    |
| 3    | 118.1                          | 0.000                    | 3    | 123.2             | 0.000                    | 3    | 116.8             | 0.000                    |
| 4    | 122.4                          | 0.000                    | 4    | 130.6             | 0.000                    | 4    | 123.9             | 0.000                    |
| 5    | 126.7                          | 0.000                    | 5    | 133.4             | 0.000                    | 5    | 131.9             | 0.000                    |
| 6    | 132.3                          | 0.000                    | 6    | 138.3             | 0.000                    | 6    | 136.6             | 0.000                    |
| 7    | 135.4                          | 0.000                    | 7    | 142.0             | 0.000                    | 7    | 143.9             | 0.000                    |
| 8    | 141.1                          | 0.000                    | 8    | 147.4             | 0.000                    | 8    | 155.5             | 0.000                    |
| 9    | 144.4                          | 0.000                    | 9    | 151.5             | 0.000                    | 9    | 158.2             | 0.000                    |
| 10   | 157.1                          | 0.000                    | 10   | 158.3             | 0.000                    | 10   | 159.7             | 0.000                    |
| 11   | 164.4                          | 0.000                    | 11   | 162.8             | 0.001                    | 11   | 169.2             | 0.000                    |
| 12   | 173.2                          | 0.000                    | 12   | 173.1             | 0.000                    | 12   | 174.5             | 0.000                    |
| 13   | 186.2                          | 0.000                    | 13   | 182.0             | 0.000                    | 13   | 181.7             | 0.000                    |
| 14   | 189.3                          | 0.000                    | 14   | 186.3             | 0.001                    | 14   | 186.3             | 0.000                    |
| 15   | 195.7                          | 0.000                    | 15   | 195.5             | 0.000                    | 15   | 188.9             | 0.000                    |
| 16   | 196.9                          | 0.000                    | 16   | 196.3             | 0.001                    | 16   | 196.6             | 0.000                    |
| 17   | 211.2                          | 0.000                    | 17   | 210.4             | 0.000                    | 17   | 198.5             | 0.000                    |
| 18   | 213.7                          | 0.000                    | 18   | 214.8             | 0.000                    | 18   | 212.3             | 0.000                    |
| 19   | 223.0                          | 0.000                    | 19   | 221.1             | 0.001                    | 19   | 217.7             | 0.000                    |
| 20   | 233.3                          | 0.000                    | 20   | 232.8             | 0.001                    | 20   | 223.5             | 0.000                    |
| 21   | 239.1                          | 0.000                    | 21   | 235.9             | 0.000                    | 21   | 234.6             | 0.000                    |
| 22   | 246.3                          | 0.000                    | 22   | 240.3             | 0.001                    | 22   | 241.8             | 0.000                    |
| 23   | 252.1                          | 0.000                    | 23   | 252.9             | 0.000                    | 23   | 243.1             | 0.000                    |
| 24   | 257.7                          | 0.000                    | 24   | 256.3             | 0.000                    | 24   | 250.8             | 0.000                    |
| 25   | 263.9                          | 0.001                    | 25   | 264.5             | 0.001                    | 25   | 261.7             | 0.000                    |
| 26   | 267.1                          | 0.000                    | 26   | 269.6             | 0.001                    | 26   | 266.6             | 0.000                    |
| 27   | 272.2                          | 0.000                    | 27   | 270.4             | 0.001                    | 27   | 269.1             | 0.001                    |
| 28   | 276.4                          | 0.000                    | 28   | 280.0             | 0.001                    | 28   | 282.7             | 0.000                    |

**Table S5.** Harmonic frequencies  $v_i$  (cm<sup>-1</sup>) and triplet-sublevel-averaged  $\partial$ SOCMEs (cm<sup>-1</sup>) with respect to the corresponding vibrational modes at the equilibrium geometry of  $T_1$ ,  $T_2$  and  $T_3$  states.

| Mode | v <sub>i</sub> @T <sub>1</sub> | $\begin{array}{c} \partial SOCME\\ S_1\text{-}T_1 \end{array}$ | Mode | v <sub>i</sub> @T <sub>2</sub> | $\begin{array}{c} \partial SOCME\\ S_1\text{-}T_2 \end{array}$ | Mode | v <sub>i</sub> @T <sub>3</sub> | $\partial SOCME S_1-T_3$ |
|------|--------------------------------|----------------------------------------------------------------|------|--------------------------------|----------------------------------------------------------------|------|--------------------------------|--------------------------|
| 29   | 286.0                          | 0.000                                                          | 29   | 287.0                          | 0.001                                                          | 29   | 286.1                          | 0.000                    |
| 30   | 291.2                          | 0.000                                                          | 30   | 293.9                          | 0.001                                                          | 30   | 290.1                          | 0.000                    |
| 31   | 296.4                          | 0.000                                                          | 31   | 297.9                          | 0.001                                                          | 31   | 294.0                          | 0.000                    |
| 32   | 316.6                          | 0.000                                                          | 32   | 317.3                          | 0.000                                                          | 32   | 300.0                          | 0.000                    |
| 33   | 321.5                          | 0.001                                                          | 33   | 320.5                          | 0.002                                                          | 33   | 312.5                          | 0.000                    |
| 34   | 345.3                          | 0.000                                                          | 34   | 346.1                          | 0.001                                                          | 34   | 327.0                          | 0.000                    |
| 35   | 362.3                          | 0.000                                                          | 35   | 362.9                          | 0.001                                                          | 35   | 344.4                          | 0.000                    |
| 36   | 368.4                          | 0.000                                                          | 36   | 367.4                          | 0.001                                                          | 36   | 360.1                          | 0.001                    |
| 37   | 383.1                          | 0.002                                                          | 37   | 379.1                          | 0.004                                                          | 37   | 368.3                          | 0.000                    |
| 38   | 386.4                          | 0.001                                                          | 38   | 384.0                          | 0.001                                                          | 38   | 374.7                          | 0.001                    |
| 39   | 409.8                          | 0.000                                                          | 39   | 412.7                          | 0.000                                                          | 39   | 390.9                          | 0.001                    |
| 40   | 429.6                          | 0.001                                                          | 40   | 429.6                          | 0.002                                                          | 40   | 416.6                          | 0.000                    |
| 41   | 443.6                          | 0.001                                                          | 41   | 444.4                          | 0.002                                                          | 41   | 429.4                          | 0.000                    |
| 42   | 462.4                          | 0.001                                                          | 42   | 461.5                          | 0.004                                                          | 42   | 445.2                          | 0.001                    |
| 43   | 469.1                          | 0.002                                                          | 43   | 466.2                          | 0.002                                                          | 43   | 461.3                          | 0.000                    |
| 44   | 480.2                          | 0.001                                                          | 44   | 476.6                          | 0.002                                                          | 44   | 471.0                          | 0.001                    |
| 45   | 493.5                          | 0.002                                                          | 45   | 488.9                          | 0.003                                                          | 45   | 486.2                          | 0.001                    |
| 46   | 521.1                          | 0.003                                                          | 46   | 522.3                          | 0.004                                                          | 46   | 489.5                          | 0.002                    |
| 47   | 538.0                          | 0.003                                                          | 47   | 535.3                          | 0.007                                                          | 47   | 509.3                          | 0.002                    |
| 48   | 552.8                          | 0.002                                                          | 48   | 555.1                          | 0.005                                                          | 48   | 529.2                          | 0.001                    |
| 49   | 575.3                          | 0.000                                                          | 49   | 575.7                          | 0.001                                                          | 49   | 542.7                          | 0.001                    |
| 50   | 593.1                          | 0.000                                                          | 50   | 592.2                          | 0.001                                                          | 50   | 548.9                          | 0.001                    |
| 51   | 610.6                          | 0.001                                                          | 51   | 611.3                          | 0.002                                                          | 51   | 570.2                          | 0.000                    |
| 52   | 615.3                          | 0.000                                                          | 52   | 620.5                          | 0.003                                                          | 52   | 592.6                          | 0.000                    |
| 53   | 620.0                          | 0.001                                                          | 53   | 634.2                          | 0.002                                                          | 53   | 610.9                          | 0.000                    |
| 54   | 639.1                          | 0.001                                                          | 54   | 643.7                          | 0.002                                                          | 54   | 618.9                          | 0.001                    |
| 55   | 650.8                          | 0.002                                                          | 55   | 655.5                          | 0.003                                                          | 55   | 636.3                          | 0.000                    |
| 56   | 663.6                          | 0.001                                                          | 56   | 668.9                          | 0.002                                                          | 56   | 658.3                          | 0.001                    |
| 57   | 673.8                          | 0.001                                                          | 57   | 683.6                          | 0.002                                                          | 57   | 664.1                          | 0.001                    |
| 58   | 685.6                          | 0.001                                                          | 58   | 687.3                          | 0.001                                                          | 58   | 672.2                          | 0.000                    |
| 59   | 691.7                          | 0.000                                                          | 59   | 695.3                          | 0.002                                                          | 59   | 688.3                          | 0.001                    |
| 60   | 706.0                          | 0.000                                                          | 60   | 701.6                          | 0.001                                                          | 60   | 690.1                          | 0.000                    |

| Mode | v <sub>i</sub> @T <sub>1</sub> | $\begin{array}{c} \partial SOCME\\ S_1\text{-}T_1 \end{array}$ | Mode | <b>v</b> <sub>i</sub> @T <sub>2</sub> | $\begin{array}{c} \partial SOCME\\ S_1\text{-}T_2 \end{array}$ | Mode | v <sub>i</sub> @T <sub>3</sub> | $\partial SOCME S_1-T_3$ |
|------|--------------------------------|----------------------------------------------------------------|------|---------------------------------------|----------------------------------------------------------------|------|--------------------------------|--------------------------|
| 61   | 707.7                          | 0.000                                                          | 61   | 708.3                                 | 0.001                                                          | 61   | 700.2                          | 0.002                    |
| 62   | 720.6                          | 0.001                                                          | 62   | 722.8                                 | 0.001                                                          | 62   | 700.7                          | 0.001                    |
| 63   | 721.8                          | 0.000                                                          | 63   | 725.9                                 | 0.002                                                          | 63   | 707.9                          | 0.000                    |
| 64   | 725.0                          | 0.001                                                          | 64   | 732.4                                 | 0.004                                                          | 64   | 713.1                          | 0.002                    |
| 65   | 730.0                          | 0.002                                                          | 65   | 735.8                                 | 0.003                                                          | 65   | 721.5                          | 0.000                    |
| 66   | 732.6                          | 0.000                                                          | 66   | 739.3                                 | 0.005                                                          | 66   | 729.0                          | 0.002                    |
| 67   | 753.3                          | 0.001                                                          | 67   | 753.9                                 | 0.001                                                          | 67   | 736.6                          | 0.001                    |
| 68   | 755.8                          | 0.001                                                          | 68   | 756.0                                 | 0.001                                                          | 68   | 741.2                          | 0.001                    |
| 69   | 768.6                          | 0.001                                                          | 69   | 767.9                                 | 0.002                                                          | 69   | 758.0                          | 0.001                    |
| 70   | 776.2                          | 0.000                                                          | 70   | 780.2                                 | 0.002                                                          | 70   | 768.7                          | 0.002                    |
| 71   | 782.8                          | 0.000                                                          | 71   | 783.6                                 | 0.002                                                          | 71   | 772.0                          | 0.001                    |
| 72   | 789.8                          | 0.002                                                          | 72   | 791.5                                 | 0.008                                                          | 72   | 775.7                          | 0.001                    |
| 73   | 795.9                          | 0.002                                                          | 73   | 796.6                                 | 0.001                                                          | 73   | 783.1                          | 0.002                    |
| 74   | 799.3                          | 0.001                                                          | 74   | 802.3                                 | 0.001                                                          | 74   | 791.7                          | 0.003                    |
| 75   | 801.4                          | 0.003                                                          | 75   | 808.4                                 | 0.002                                                          | 75   | 797.2                          | 0.000                    |
| 76   | 812.9                          | 0.001                                                          | 76   | 812.8                                 | 0.001                                                          | 76   | 800.5                          | 0.000                    |
| 77   | 833.0                          | 0.001                                                          | 77   | 835.5                                 | 0.003                                                          | 77   | 812.3                          | 0.001                    |
| 78   | 846.0                          | 0.001                                                          | 78   | 842.3                                 | 0.003                                                          | 78   | 844.8                          | 0.001                    |
| 79   | 853.4                          | 0.001                                                          | 79   | 848.1                                 | 0.004                                                          | 79   | 850.9                          | 0.002                    |
| 80   | 869.0                          | 0.001                                                          | 80   | 848.2                                 | 0.000                                                          | 80   | 869.9                          | 0.000                    |
| 81   | 876.2                          | 0.000                                                          | 81   | 872.0                                 | 0.001                                                          | 81   | 877.6                          | 0.001                    |
| 82   | 891.0                          | 0.002                                                          | 82   | 877.7                                 | 0.001                                                          | 82   | 883.5                          | 0.001                    |
| 83   | 902.3                          | 0.000                                                          | 83   | 905.1                                 | 0.001                                                          | 83   | 886.3                          | 0.001                    |
| 84   | 908.6                          | 0.000                                                          | 84   | 910.6                                 | 0.000                                                          | 84   | 905.7                          | 0.001                    |
| 85   | 916.7                          | 0.000                                                          | 85   | 916.6                                 | 0.001                                                          | 85   | 911.5                          | 0.000                    |
| 86   | 931.6                          | 0.000                                                          | 86   | 930.5                                 | 0.000                                                          | 86   | 915.4                          | 0.000                    |
| 87   | 940.7                          | 0.000                                                          | 87   | 937.6                                 | 0.000                                                          | 87   | 929.1                          | 0.000                    |
| 88   | 948.8                          | 0.000                                                          | 88   | 956.9                                 | 0.000                                                          | 88   | 936.2                          | 0.000                    |
| 89   | 956.0                          | 0.000                                                          | 89   | 958.3                                 | 0.000                                                          | 89   | 955.3                          | 0.000                    |
| 90   | 963.6                          | 0.001                                                          | 90   | 964.2                                 | 0.001                                                          | 90   | 959.9                          | 0.000                    |
| 91   | 989.5                          | 0.000                                                          | 91   | 985.5                                 | 0.000                                                          | 91   | 965.6                          | 0.001                    |
| 92   | 994.8                          | 0.001                                                          | 92   | 995.7                                 | 0.002                                                          | 92   | 989.2                          | 0.000                    |

| Mode | v <sub>i</sub> @T <sub>1</sub> | $\begin{array}{c} \partial SOCME\\ S_1\text{-}T_1 \end{array}$ | Mode | v <sub>i</sub> @T <sub>2</sub> | $\partial SOCME S_1-T_2$ | Mode | v <sub>i</sub> @T <sub>3</sub> | $\partial SOCME S_1-T_3$ |
|------|--------------------------------|----------------------------------------------------------------|------|--------------------------------|--------------------------|------|--------------------------------|--------------------------|
| 93   | 996.7                          | 0.000                                                          | 93   | 998.8                          | 0.000                    | 93   | 994.7                          | 0.000                    |
| 94   | 1004.6                         | 0.001                                                          | 94   | 1016.0                         | 0.000                    | 94   | 995.2                          | 0.000                    |
| 95   | 1014.7                         | 0.000                                                          | 95   | 1019.3                         | 0.000                    | 95   | 1010.6                         | 0.001                    |
| 96   | 1025.6                         | 0.001                                                          | 96   | 1026.8                         | 0.002                    | 96   | 1020.6                         | 0.000                    |
| 97   | 1038.6                         | 0.000                                                          | 97   | 1041.3                         | 0.001                    | 97   | 1027.7                         | 0.001                    |
| 98   | 1041.2                         | 0.000                                                          | 98   | 1042.5                         | 0.000                    | 98   | 1035.1                         | 0.000                    |
| 99   | 1045.5                         | 0.001                                                          | 99   | 1044.7                         | 0.002                    | 99   | 1043.0                         | 0.000                    |
| 100  | 1047.0                         | 0.001                                                          | 100  | 1046.5                         | 0.001                    | 100  | 1043.5                         | 0.000                    |
| 101  | 1057.3                         | 0.001                                                          | 101  | 1051.6                         | 0.001                    | 101  | 1046.6                         | 0.001                    |
| 102  | 1071.9                         | 0.000                                                          | 102  | 1062.4                         | 0.000                    | 102  | 1047.3                         | 0.001                    |
| 103  | 1078.1                         | 0.001                                                          | 103  | 1073.3                         | 0.000                    | 103  | 1056.6                         | 0.000                    |
| 104  | 1087.0                         | 0.001                                                          | 104  | 1076.3                         | 0.002                    | 104  | 1074.6                         | 0.000                    |
| 105  | 1090.8                         | 0.000                                                          | 105  | 1088.8                         | 0.001                    | 105  | 1078.4                         | 0.001                    |
| 106  | 1096.8                         | 0.001                                                          | 106  | 1094.9                         | 0.002                    | 106  | 1088.6                         | 0.000                    |
| 107  | 1104.4                         | 0.001                                                          | 107  | 1106.4                         | 0.001                    | 107  | 1093.5                         | 0.000                    |
| 108  | 1126.7                         | 0.000                                                          | 108  | 1114.8                         | 0.001                    | 108  | 1098.4                         | 0.000                    |
| 109  | 1133.7                         | 0.000                                                          | 109  | 1130.5                         | 0.001                    | 109  | 1114.7                         | 0.000                    |
| 110  | 1136.5                         | 0.001                                                          | 110  | 1135.9                         | 0.001                    | 110  | 1116.4                         | 0.001                    |
| 111  | 1138.7                         | 0.001                                                          | 111  | 1137.2                         | 0.001                    | 111  | 1132.2                         | 0.000                    |
| 112  | 1144.7                         | 0.000                                                          | 112  | 1142.5                         | 0.001                    | 112  | 1134.3                         | 0.000                    |
| 113  | 1152.1                         | 0.000                                                          | 113  | 1146.2                         | 0.001                    | 113  | 1141.9                         | 0.000                    |
| 114  | 1157.8                         | 0.000                                                          | 114  | 1155.6                         | 0.000                    | 114  | 1147.0                         | 0.001                    |
| 115  | 1174.3                         | 0.001                                                          | 115  | 1168.3                         | 0.000                    | 115  | 1155.6                         | 0.000                    |
| 116  | 1177.8                         | 0.000                                                          | 116  | 1178.1                         | 0.000                    | 116  | 1160.6                         | 0.000                    |
| 117  | 1178.8                         | 0.000                                                          | 117  | 1178.7                         | 0.000                    | 117  | 1162.3                         | 0.000                    |
| 118  | 1187.4                         | 0.000                                                          | 118  | 1183.5                         | 0.000                    | 118  | 1178.5                         | 0.000                    |
| 119  | 1199.1                         | 0.000                                                          | 119  | 1195.1                         | 0.000                    | 119  | 1179.2                         | 0.000                    |
| 120  | 1203.1                         | 0.000                                                          | 120  | 1196.7                         | 0.001                    | 120  | 1194.2                         | 0.000                    |
| 121  | 1211.0                         | 0.000                                                          | 121  | 1205.6                         | 0.001                    | 121  | 1202.7                         | 0.000                    |
| 122  | 1212.9                         | 0.001                                                          | 122  | 1207.9                         | 0.001                    | 122  | 1205.6                         | 0.000                    |
| 123  | 1223.6                         | 0.001                                                          | 123  | 1212.9                         | 0.001                    | 123  | 1210.9                         | 0.000                    |
| 124  | 1227.4                         | 0.000                                                          | 124  | 1223.4                         | 0.002                    | 124  | 1213.4                         | 0.000                    |

| Mode | v <sub>i</sub> @T <sub>1</sub> | $\begin{array}{c} \partial SOCME\\ S_1\text{-}T_1 \end{array}$ | Mode | v <sub>i</sub> @T <sub>2</sub> | $\frac{\partial SOCME}{S_1 - T_2}$ | Mode | vi@T <sub>3</sub> | $\partial SOCME S_1-T_3$ |
|------|--------------------------------|----------------------------------------------------------------|------|--------------------------------|------------------------------------|------|-------------------|--------------------------|
| 125  | 1234.7                         | 0.001                                                          | 125  | 1230.5                         | 0.001                              | 125  | 1224.5            | 0.000                    |
| 126  | 1241.1                         | 0.001                                                          | 126  | 1234.1                         | 0.001                              | 126  | 1236.6            | 0.000                    |
| 127  | 1244.2                         | 0.000                                                          | 127  | 1258.6                         | 0.000                              | 127  | 1250.5            | 0.000                    |
| 128  | 1265.3                         | 0.000                                                          | 128  | 1259.5                         | 0.001                              | 128  | 1257.3            | 0.001                    |
| 129  | 1272.5                         | 0.000                                                          | 129  | 1287.5                         | 0.000                              | 129  | 1264.1            | 0.000                    |
| 130  | 1287.9                         | 0.000                                                          | 130  | 1288.3                         | 0.000                              | 130  | 1279.8            | 0.000                    |
| 131  | 1289.4                         | 0.000                                                          | 131  | 1292.8                         | 0.001                              | 131  | 1288.8            | 0.000                    |
| 132  | 1306.8                         | 0.001                                                          | 132  | 1305.3                         | 0.001                              | 132  | 1293.9            | 0.000                    |
| 133  | 1310.4                         | 0.001                                                          | 133  | 1307.9                         | 0.001                              | 133  | 1303.3            | 0.001                    |
| 134  | 1311.5                         | 0.000                                                          | 134  | 1323.7                         | 0.001                              | 134  | 1307.5            | 0.000                    |
| 135  | 1325.5                         | 0.000                                                          | 135  | 1326.8                         | 0.000                              | 135  | 1318.0            | 0.001                    |
| 136  | 1331.3                         | 0.000                                                          | 136  | 1341.8                         | 0.001                              | 136  | 1323.4            | 0.001                    |
| 137  | 1343.1                         | 0.000                                                          | 137  | 1358.6                         | 0.001                              | 137  | 1325.1            | 0.001                    |
| 138  | 1346.8                         | 0.001                                                          | 138  | 1365.4                         | 0.002                              | 138  | 1331.0            | 0.000                    |
| 139  | 1362.2                         | 0.001                                                          | 139  | 1371.6                         | 0.000                              | 139  | 1345.1            | 0.000                    |
| 140  | 1372.6                         | 0.001                                                          | 140  | 1377.2                         | 0.000                              | 140  | 1368.3            | 0.000                    |
| 141  | 1379.0                         | 0.000                                                          | 141  | 1379.2                         | 0.001                              | 141  | 1372.8            | 0.001                    |
| 142  | 1383.6                         | 0.000                                                          | 142  | 1389.6                         | 0.000                              | 142  | 1378.3            | 0.000                    |
| 143  | 1389.6                         | 0.001                                                          | 143  | 1397.2                         | 0.001                              | 143  | 1385.9            | 0.000                    |
| 144  | 1394.1                         | 0.000                                                          | 144  | 1398.2                         | 0.000                              | 144  | 1390.5            | 0.000                    |
| 145  | 1396.3                         | 0.001                                                          | 145  | 1401.8                         | 0.000                              | 145  | 1393.8            | 0.000                    |
| 146  | 1398.4                         | 0.000                                                          | 146  | 1406.9                         | 0.000                              | 146  | 1397.8            | 0.000                    |
| 147  | 1400.6                         | 0.000                                                          | 147  | 1413.9                         | 0.000                              | 147  | 1398.3            | 0.000                    |
| 148  | 1413.4                         | 0.000                                                          | 148  | 1418.1                         | 0.000                              | 148  | 1407.1            | 0.001                    |
| 149  | 1417.6                         | 0.000                                                          | 149  | 1427.1                         | 0.001                              | 149  | 1411.8            | 0.000                    |
| 150  | 1423.1                         | 0.000                                                          | 150  | 1431.8                         | 0.000                              | 150  | 1416.7            | 0.000                    |
| 151  | 1435.7                         | 0.000                                                          | 151  | 1440.2                         | 0.000                              | 151  | 1424.2            | 0.000                    |
| 152  | 1442.3                         | 0.000                                                          | 152  | 1446.1                         | 0.000                              | 152  | 1430.7            | 0.001                    |
| 153  | 1447.3                         | 0.000                                                          | 153  | 1447.6                         | 0.000                              | 153  | 1443.2            | 0.000                    |
| 154  | 1449.7                         | 0.000                                                          | 154  | 1450.1                         | 0.001                              | 154  | 1446.3            | 0.000                    |
| 155  | 1450.2                         | 0.000                                                          | 155  | 1452.2                         | 0.000                              | 155  | 1448.6            | 0.000                    |
| 156  | 1451.6                         | 0.000                                                          | 156  | 1455.5                         | 0.000                              | 156  | 1454.2            | 0.000                    |

| Mode | v <sub>i</sub> @T <sub>1</sub> | $\begin{array}{c} \partial SOCME\\ S_1\text{-}T_1 \end{array}$ | Mode | v <sub>i</sub> @T <sub>2</sub> | $\frac{\partial SOCME}{S_1 - T_2}$ | Mode | vi@T <sub>3</sub> | $\partial SOCME S_1-T_3$ |
|------|--------------------------------|----------------------------------------------------------------|------|--------------------------------|------------------------------------|------|-------------------|--------------------------|
| 157  | 1454.2                         | 0.000                                                          | 157  | 1455.5                         | 0.001                              | 157  | 1454.9            | 0.000                    |
| 158  | 1456.2                         | 0.000                                                          | 158  | 1458.4                         | 0.000                              | 158  | 1455.9            | 0.000                    |
| 159  | 1456.9                         | 0.000                                                          | 159  | 1458.8                         | 0.000                              | 159  | 1456.9            | 0.000                    |
| 160  | 1457.9                         | 0.000                                                          | 160  | 1459.3                         | 0.000                              | 160  | 1458.6            | 0.000                    |
| 161  | 1458.1                         | 0.000                                                          | 161  | 1462.4                         | 0.000                              | 161  | 1459.4            | 0.000                    |
| 162  | 1463.0                         | 0.001                                                          | 162  | 1463.8                         | 0.000                              | 162  | 1461.3            | 0.000                    |
| 163  | 1464.1                         | 0.000                                                          | 163  | 1464.7                         | 0.000                              | 163  | 1461.5            | 0.000                    |
| 164  | 1464.4                         | 0.001                                                          | 164  | 1465.5                         | 0.000                              | 164  | 1462.7            | 0.000                    |
| 165  | 1464.8                         | 0.000                                                          | 165  | 1466.0                         | 0.000                              | 165  | 1464.0            | 0.000                    |
| 166  | 1465.7                         | 0.000                                                          | 166  | 1466.2                         | 0.000                              | 166  | 1464.3            | 0.000                    |
| 167  | 1466.1                         | 0.000                                                          | 167  | 1466.4                         | 0.000                              | 167  | 1464.7            | 0.000                    |
| 168  | 1466.3                         | 0.000                                                          | 168  | 1467.4                         | 0.000                              | 168  | 1466.2            | 0.000                    |
| 169  | 1467.4                         | 0.000                                                          | 169  | 1470.2                         | 0.000                              | 169  | 1467.1            | 0.000                    |
| 170  | 1478.0                         | 0.000                                                          | 170  | 1473.9                         | 0.000                              | 170  | 1473.1            | 0.000                    |
| 171  | 1482.8                         | 0.000                                                          | 171  | 1478.4                         | 0.000                              | 171  | 1474.6            | 0.001                    |
| 172  | 1484.1                         | 0.000                                                          | 172  | 1483.5                         | 0.000                              | 172  | 1477.9            | 0.000                    |
| 173  | 1486.3                         | 0.001                                                          | 173  | 1484.3                         | 0.000                              | 173  | 1479.3            | 0.001                    |
| 174  | 1490.4                         | 0.001                                                          | 174  | 1488.4                         | 0.000                              | 174  | 1483.9            | 0.000                    |
| 175  | 1517.9                         | 0.001                                                          | 175  | 1532.9                         | 0.000                              | 175  | 1487.5            | 0.000                    |
| 176  | 1538.0                         | 0.001                                                          | 176  | 1551.2                         | 0.001                              | 176  | 1500.7            | 0.001                    |
| 177  | 1547.4                         | 0.001                                                          | 177  | 1559.2                         | 0.000                              | 177  | 1507.8            | 0.000                    |
| 178  | 1556.8                         | 0.000                                                          | 178  | 1600.6                         | 0.000                              | 178  | 1532.6            | 0.000                    |
| 179  | 1576.1                         | 0.001                                                          | 179  | 1620.6                         | 0.000                              | 179  | 1589.5            | 0.000                    |
| 180  | 1600.0                         | 0.001                                                          | 180  | 1629.2                         | 0.001                              | 180  | 1622.8            | 0.000                    |
| 181  | 1632.3                         | 0.001                                                          | 181  | 1661.5                         | 0.000                              | 181  | 1634.2            | 0.001                    |
| 182  | 1642.4                         | 0.002                                                          | 182  | 1705.8                         | 0.000                              | 182  | 1644.7            | 0.000                    |
| 183  | 1677.3                         | 0.002                                                          | 183  | 1720.4                         | 0.000                              | 183  | 1663.1            | 0.000                    |
| 184  | 1720.7                         | 0.000                                                          | 184  | 1732.6                         | 0.000                              | 184  | 1667.9            | 0.000                    |
| 185  | 1730.1                         | 0.000                                                          | 185  | 1818.2                         | 0.000                              | 185  | 1723.5            | 0.000                    |
| 186  | 1733.0                         | 0.001                                                          | 186  | 1844.3                         | 0.000                              | 186  | 1842.0            | 0.000                    |
| 187  | 1831.0                         | 0.000                                                          | 187  | 1848.9                         | 0.001                              | 187  | 1843.9            | 0.000                    |
| 188  | 1842.7                         | 0.000                                                          | 188  | 2115.5                         | 0.001                              | 188  | 1858.1            | 0.000                    |

| Mode | v <sub>i</sub> @T <sub>1</sub> | $\begin{array}{c} \partial SOCME\\ S_1\text{-}T_1 \end{array}$ | Mode | <i>v</i> <sub>i</sub> @T <sub>2</sub> | $\partial SOCME S_1-T_2$ | Mode | v <sub>i</sub> @T <sub>3</sub> | $\partial SOCME S_1-T_3$ |
|------|--------------------------------|----------------------------------------------------------------|------|---------------------------------------|--------------------------|------|--------------------------------|--------------------------|
| 189  | 1851.9                         | 0.000                                                          | 189  | 2971.5                                | 0.001                    | 189  | 1951.0                         | 0.002                    |
| 190  | 3052.1                         | 0.000                                                          | 190  | 3051.3                                | 0.000                    | 190  | 2722.8                         | 0.022                    |
| 191  | 3052.1                         | 0.000                                                          | 191  | 3052.1                                | 0.000                    | 191  | 3042.8                         | 0.000                    |
| 192  | 3052.7                         | 0.000                                                          | 192  | 3052.5                                | 0.000                    | 192  | 3050.1                         | 0.000                    |
| 193  | 3054.1                         | 0.000                                                          | 193  | 3054.6                                | 0.000                    | 193  | 3054.3                         | 0.000                    |
| 194  | 3054.6                         | 0.000                                                          | 194  | 3055.0                                | 0.000                    | 194  | 3054.9                         | 0.000                    |
| 195  | 3065.8                         | 0.000                                                          | 195  | 3066.6                                | 0.000                    | 195  | 3056.2                         | 0.000                    |
| 196  | 3068.8                         | 0.000                                                          | 196  | 3072.1                                | 0.000                    | 196  | 3062.2                         | 0.000                    |
| 197  | 3071.6                         | 0.000                                                          | 197  | 3072.5                                | 0.000                    | 197  | 3066.1                         | 0.001                    |
| 198  | 3072.1                         | 0.000                                                          | 198  | 3075.8                                | 0.001                    | 198  | 3072.5                         | 0.000                    |
| 199  | 3077.6                         | 0.000                                                          | 199  | 3078.3                                | 0.000                    | 199  | 3073.2                         | 0.000                    |
| 200  | 3084.9                         | 0.000                                                          | 200  | 3086.5                                | 0.000                    | 200  | 3077.9                         | 0.000                    |
| 201  | 3093.1                         | 0.000                                                          | 201  | 3094.4                                | 0.001                    | 201  | 3084.4                         | 0.000                    |
| 202  | 3094.2                         | 0.000                                                          | 202  | 3096.9                                | 0.001                    | 202  | 3089.3                         | 0.000                    |
| 203  | 3115.0                         | 0.000                                                          | 203  | 3111.9                                | 0.000                    | 203  | 3091.4                         | 0.000                    |
| 204  | 3125.5                         | 0.000                                                          | 204  | 3120.3                                | 0.000                    | 204  | 3107.6                         | 0.000                    |
| 205  | 3125.6                         | 0.000                                                          | 205  | 3121.7                                | 0.000                    | 205  | 3108.9                         | 0.000                    |
| 206  | 3128.7                         | 0.000                                                          | 206  | 3128.2                                | 0.000                    | 206  | 3128.8                         | 0.000                    |
| 207  | 3132.8                         | 0.000                                                          | 207  | 3135.1                                | 0.000                    | 207  | 3133.9                         | 0.000                    |
| 208  | 3145.6                         | 0.000                                                          | 208  | 3141.3                                | 0.000                    | 208  | 3134.1                         | 0.000                    |
| 209  | 3145.9                         | 0.000                                                          | 209  | 3142.5                                | 0.000                    | 209  | 3140.4                         | 0.000                    |
| 210  | 3148.2                         | 0.000                                                          | 210  | 3146.2                                | 0.000                    | 210  | 3144.1                         | 0.000                    |
| 211  | 3150.0                         | 0.000                                                          | 211  | 3149.2                                | 0.000                    | 211  | 3145.2                         | 0.000                    |
| 212  | 3151.4                         | 0.000                                                          | 212  | 3149.7                                | 0.000                    | 212  | 3151.3                         | 0.000                    |
| 213  | 3161.3                         | 0.000                                                          | 213  | 3156.9                                | 0.000                    | 213  | 3152.2                         | 0.000                    |
| 214  | 3164.4                         | 0.000                                                          | 214  | 3160.0                                | 0.000                    | 214  | 3152.3                         | 0.000                    |
| 215  | 3165.5                         | 0.000                                                          | 215  | 3164.8                                | 0.000                    | 215  | 3165.2                         | 0.000                    |
| 216  | 3167.0                         | 0.000                                                          | 216  | 3166.6                                | 0.000                    | 216  | 3166.4                         | 0.000                    |
| 217  | 3170.4                         | 0.000                                                          | 217  | 3170.4                                | 0.000                    | 217  | 3168.1                         | 0.000                    |
| 218  | 3175.0                         | 0.000                                                          | 218  | 3171.5                                | 0.000                    | 218  | 3170.8                         | 0.000                    |
| 219  | 3188.4                         | 0.000                                                          | 219  | 3181.5                                | 0.000                    | 219  | 3175.7                         | 0.000                    |
| 220  | 3201.4                         | 0.000                                                          | 220  | 3201.5                                | 0.000                    | 220  | 3183.2                         | 0.000                    |

| Mode | v <sub>i</sub> @T <sub>1</sub> | $\begin{array}{c} \partial SOCME\\ S_1\text{-}T_1 \end{array}$ | Mode | v <sub>i</sub> @T <sub>2</sub> | $\frac{\partial SOCME}{S_1 - T_2}$ | Mode | <b>v</b> <sub>i</sub> @T <sub>3</sub> | $\begin{array}{c} \partial SOCME\\ S_1\text{-}T_3 \end{array}$ |
|------|--------------------------------|----------------------------------------------------------------|------|--------------------------------|------------------------------------|------|---------------------------------------|----------------------------------------------------------------|
| 221  | 3203.2                         | 0.000                                                          | 221  | 3202.2                         | 0.000                              | 221  | 3201.9                                | 0.000                                                          |
| 222  | 3229.0                         | 0.000                                                          | 222  | 3231.2                         | 0.000                              | 222  | 3204.0                                | 0.000                                                          |
| 223  | 3235.2                         | 0.000                                                          | 223  | 3246.8                         | 0.000                              | 223  | 3227.7                                | 0.001                                                          |
| 224  | 3237.4                         | 0.000                                                          | 224  | 3248.2                         | 0.000                              | 224  | 3229.5                                | 0.000                                                          |
| 225  | 3281.9                         | 0.000                                                          | 225  | 3271.6                         | 0.000                              | 225  | 3239.9                                | 0.001                                                          |
| 226  | 3529.6                         | 0.000                                                          | 226  | 3431.2                         | 0.000                              | 226  | 3276.6                                | 0.000                                                          |
| 227  | 3635.4                         | 0.000                                                          | 227  | 3596.2                         | 0.000                              | 227  | 3515.7                                | 0.001                                                          |
| -    | -                              | -                                                              | -    | -                              | -                                  | 228  | 3652.6                                | 0.002                                                          |

### 4.4 Effect of the Gaussian linewidth on the ISC rate constants

|                                 | Paran                | Result                                        |                                     |
|---------------------------------|----------------------|-----------------------------------------------|-------------------------------------|
| Channel                         | $\Delta E_{ST} (eV)$ | Gaussian linewidth $\eta$ (cm <sup>-1</sup> ) | $k_{ISC}^{FCHT}$ (s <sup>-1</sup> ) |
| $S_1 \rightsquigarrow T_1$      | +0.92                | 0.1                                           | 7.10 x 10 <sup>6</sup>              |
| $S_1 \rightsquigarrow T_1$      | +0.92                | 1.0                                           | 7.10 x 10 <sup>6</sup>              |
| $S_1 \rightsquigarrow T_1$      | +0.92                | 10.0                                          | 7.10 x 10 <sup>6</sup>              |
| $S_1 \rightsquigarrow T_1$      | +0.92                | 100.0                                         | 7.11 x 10 <sup>6</sup>              |
| $S_1 \rightsquigarrow T_2$      | +0.59                | 0.1                                           | 2.08 x 10 <sup>7</sup>              |
| $S_1 \rightsquigarrow T_2$      | +0.59                | 1.0                                           | 2.08 x 10 <sup>7</sup>              |
| $S_1 \rightsquigarrow T_2$      | +0.59                | 10.0                                          | 2.08 x 10 <sup>7</sup>              |
| $S_1 \rightsquigarrow T_2$      | +0.59                | 100.0                                         | 2.11 x 10 <sup>7</sup>              |
| S <sub>1</sub> > T <sub>3</sub> | +0.13                | 0.1                                           | 3.32 x 10 <sup>7</sup>              |
| $S_1 \rightsquigarrow T_3$      | +0.13                | 1.0                                           | 3.34 x 10 <sup>7</sup>              |
| $S_1 \rightsquigarrow T_3$      | +0.13                | 10.0                                          | 3.35 x 10 <sup>7</sup>              |
| $S_1 \rightsquigarrow T_3$      | +0.13                | 100.0                                         | 3.39 x 10 <sup>7</sup>              |

**Table S6.** Effect of the Gaussian linewidth on the ISC rate constants  $k_{ISC}$  at room temparature.

4.5 Effect of the level of theory, FC and FCHT approximations on the  $k_{\rm ISC}$ 

![](_page_21_Figure_1.jpeg)

**Fig. S14.** Effect of the level of theory on the ISC rate constants  $k_{ISC}$  employing the FC (Franck-Condon) and Franck-Condon-Herzberg-Teller (FCHT) approximations. All calculations were performed at the CAM-B3LYP/def2-SVP optimized geometries, and using the SOCMEs calculated at the CAM-B3LYP/def2-SVP level of theory.

![](_page_21_Figure_3.jpeg)

### 4.6 The five largest coupling vibrational normal modes

![](_page_22_Figure_0.jpeg)

**Fig. S15.** The five largest coupling vibrational normal modes calculated at their own  $T_n (\pi \rightarrow \pi^*)$  *minimum of methylpheophorbide a (MPh).* 

#### References

- 1A. G. Martynov, J. Mack, A. K. May, T. Nyokong, Y. G. Gorbunova and A. Y. Tsivadze, Methodological Survey of Simplified TD-DFT Methods for Fast and Accurate Interpretation of UV– Vis–NIR Spectra of Phthalocyanines, *ACS Omega*, 2019, **4**, 7265–7284.
- 2 S. Bai, R. Mansour, L. Stojanović, J. M. Toldo and M. Barbatti, On the origin of the shift between vertical excitation and band maximum in molecular photoabsorption, *J. Mol. Model.*, 2020, **26**, 107.
- 3I. Balashova, A. Tolbin, P. Tarakanov, A. Krot, K. Fedorova, I. Sergeeva, S. Trashin, K. De Wael, V. Pushkarev, M. Koifman and G. Ponomarev, A Covalently Linked Dyad Based on Zinc Phthalocyanine and Methylpheophorbide a: Synthetic and Physicochemical Study, *MACROHETEROCYCLES*, 2021, 14, 40–50.
- 4K.-K. Wang, J. Li, B.-J. Kim, J.-H. Lee, H.-W. Shin, S.-H. Ko, W.-Y. Lee, C.-H. Lee, S. H. Jung and Y.-R. Kim, Photophysical Properties of Pheophorbide-a Derivatives and Their Photodynamic Therapeutic Effects on a Tumor Cell Line *In Vitro*, *Int. J. Photoenergy*, 2014, **2014**, 793723, 1–7.