## Unravelling Hidden Mechanisms in Heterostructure and Superlattice Beneficial for Thermoelectricity

Tanu Choudhary<sup>1</sup>, Satarupa Banik<sup>1</sup>, Jipin Peter<sup>1</sup>, Raju K Biswas<sup>1,2,\*</sup>

<sup>1</sup>Department of Physics, Faculty of Natural Sciences,

M S Ramaiah University of Applied Sciences, Bengaluru 560058, India

<sup>2</sup>Department of Physics, North Eastern Regional Institute of Science and Technology, Nirjuli, Arunanchal Pradesh, 791109, India

\*E-mail: rkb@nerist.ac.in

## **Supporting Information**



Fig. S1. Phonon bands dispersion and phonon DOS for (a),(b)  $ZrSe_2$  and (c),(d) HfSe<sub>2</sub> along the high symmetry points  $\Gamma - M - K - \Gamma$  in the Brillouin zone.



Fig. S2. Phonon bands dispersion for SLM at 1% strain with comparison in 0% strain along the high symmetry points  $M-\Gamma-M-K-\Gamma$  in the Brillouin zone. Here red colour bands show the strain dispersion and blue referees to unstrained system.



Fig. S3. Calculated decomposed emission and absorption scattering rate as a function of frequency for (a) HS and (b) SLM, respectively.



Fig. S4. The electronic band structure and projected DOS of (a),(c) HS and (b),(d) SLM. The band gap is represented by the arrow



Fig. S5. The calculated specific heat of ZrSe<sub>2</sub>, HS and SLM.

| Tomporatur | HS                                                            |                                                                 |                                |                     | SLM                                                           |                                                                      |                                |                    |
|------------|---------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------|---------------------|---------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------|--------------------|
| e (K)      | $\mu_h$<br>[cm <sup>2</sup> v <sup>-1</sup> s <sup>-1</sup> ] | $\mu_{e}$<br>[cm <sup>2</sup> v <sup>-1</sup> s <sup>-1</sup> ] | <i>S<sub>n</sub></i><br>(μV/K) | $S_p$ ( $\mu V/K$ ) | $\mu_h$<br>[cm <sup>2</sup> v <sup>-1</sup> s <sup>-1</sup> ] | μ <sub>e</sub><br>[cm <sup>2</sup> v <sup>-1</sup> s <sup>-1</sup> ] | <i>S<sub>n</sub></i><br>(μV/K) | $S_p$ ( $\mu$ V/K) |
| 300        | 6319                                                          | 3610                                                            | 839                            | 887                 | 375                                                           | 306                                                                  | 192                            | 227                |
| 350        | 5653                                                          | 3093                                                            | 980                            | 1037                | 324                                                           | 282                                                                  | 235                            | 263                |
| 400        | 4739                                                          | 2707                                                            | 1119                           | 1183                | 281                                                           | 229                                                                  | 260                            | 302                |
| 450        | 4396                                                          | 2406                                                            | 1271                           | 1343                | 252                                                           | 220                                                                  | 299                            | 338                |
| 500        | 3791                                                          | 2166                                                            | 1401                           | 1478                | 225                                                           | 183                                                                  | 329                            | 379                |

Table S1. The calculated hole mobility ( $\mu_h$ ), electron mobility ( $\mu_e$ ) and *n*- and *p*-type Seebeck coefficient (*S*) of HS and SLM for temperature range of 300 to 500K.

Table S2. The calculated electronic part of thermal conductivity  $({}^{\kappa_e})$  of HS and SLM for temperature range of 300 to 500K.

|             | κ <sub>e(W/</sub><br>SLN | mK) M                 | <sup>κ</sup> <sub>e(W/mK)</sub><br>Bilayer HS |                       |  |
|-------------|--------------------------|-----------------------|-----------------------------------------------|-----------------------|--|
| Temperature | n-type                   | p-type                | n-type                                        | p-type                |  |
| 300         | 3.72 × 10 <sup>-4</sup>  | 4.5× 10 <sup>-4</sup> | 4.1× 10 <sup>-5</sup>                         | 7.4× 10 <sup>-5</sup> |  |
| 350         | 6.8× 10 <sup>-4</sup>    | 7.8× 10 <sup>-4</sup> | 7.2× 10 <sup>-5</sup>                         | 1.3× 10 <sup>-4</sup> |  |
| 400         | 9.2× 10 <sup>-4</sup>    | 1.1× 10 <sup>-3</sup> | 1.0× 10 <sup>-4</sup>                         | 1.8× 10 <sup>-4</sup> |  |
| 450         | 1.34× 10 <sup>-3</sup>   | 1.5× 10 <sup>-3</sup> | 1.4× 10 <sup>-4</sup>                         | 2.5× 10 <sup>-4</sup> |  |
| 500         | 1.70× 10 <sup>-3</sup>   | 1.9× 10 <sup>-3</sup> | 1.7× 10 <sup>-4</sup>                         | 3.1× 10 <sup>-4</sup> |  |



Fig. S6. Time evolution of total energy up to 10 ps during AIMD simulations for (a) bilayer HS and (b) SLM at 300 K and 500 K.