Supporting Information

Insights into Triazole-Based Energetic Material Design from Decomposition Pathways of Triazole Derivatives

Sarika Venugopal, Shani Saha, Neeraj Kumbhakarna, Anuj A Vargeese*

1. Materials and methods

1.1 Materials

The required reagents and solvents were purchased from Sigma Aldrich, Avra, Isochem, or Qualigens-Thermo Fisher Scientific, and used without further purification.

NMR spectra were recorded on a JEOL 500 MHz NMR Spectrometer with dimethyl sulfoxide (DMSO-d₆) as the solvent. Chemical shift values are reported in δ units (parts per million) relative to tetramethylsilane (TMS) as an internal standard.

1.2 Synthesis

1.2.1 Synthesis of 2,4-Dihydro-3H-1,2,4-triazol-3-ylidene-nitramide (Compound 2):^[1]

Scheme. S1 Synthesis scheme of compound 2

To a cold mixture of fuming nitric acid (2.5 mL) and concentrated sulphuric acid (3 mL), 3-amino-1,2,4-triazole (0.5g, 5.9 mmol) was added portion-wise. The resulting reaction mixture was stirred at room temperature for 10 hours and poured into ice-cold water. The precipitate formed was filtered off and dried under vacuum to obtain 2,4-Dihydro-3H-1,2,4-triazol-3-ylidene-nitramide as a white solid (0.69g, 91%). ¹H NMR (500 MHz, DMSO-d₆) δ : 14.18 (br. s, 2H), 8.45 (s, 1H); ¹³C NMR (125 MHz, DMSO-d₆) δ : 152.72, 139.52; HRMS (ESI-TOF): calculated for C₂H₂N₅O₂⁻ [M-H]⁻:128.0214, found: 128.0211.

1.2.2 Synthesis of 5-amino-1,2,4-triazole-3-yl-acetic acid (Compound 3):^[2]

Scheme. S2 Synthesis scheme of compound 3

Aminoguanidine hydrogen carbonate (3.4g, 25 mmol) was added gradually to a hot solution (60-70 °C) of malonic acid (2.6g, 25 mmol) in water (7.5 mL). Then the mixture was heated in a water bath for 4 hours and then cooled to room temperature. Potassium hydroxide (2.5g, 44.5 mmol) was added to it and the resulting mixture was heated at 100 °C for 2 hours. The mixture was then cooled and acidified with concentrated hydrochloric acid to pH 3-4. The precipitate formed was filtered off and dried to obtain 5-amino-1,2,4-triazol-3-yl-acetic acid as a white solid (2.3g, 65%). ¹H NMR (500 MHz, DMSO-d₆) δ : 5.74 (br. s, 2H), 3.322 (s, 2H); ¹³C NMR (125 MHz, DMSO-d₆) δ : 171.07, 157.93, 153.98, 34.56; HRMS (ESI-TOF): calculated for C₄H₅N₄O₂⁻ [M-H]⁻:141.0418, found: 141.0418.

1.3 HRMS analysis

The source temperature applied was 120 °C, and the desolvation gas flow was maintained at 900 L/h with a desolvation temperature of 400 °C. The capillary voltage was at 2.8 kV, and a cone voltage of 35 V was used. All the tandem mass spectra (MS/MS) were recorded using argon as the collision gas with a collision energy of 20 V. The obtained mass fragments were fitted to the possible molecular formulas using the i-Fit software available with the instrument.

1.4 Kinetics analysis

In Vyazovkin's method^[3], for a set of 'n' experiments are conducted at different heating rates, the apparent activation energy can be determined at any given value of α by identifying the value of E_{α} for which the given function, Eq. (2), is a minimum. Here, β represents the heating rate, i and j are the set of experiments performed under different heating rates, and n is the total number of experiments performed. The third-degree approximation shown in Eq. (4)^[4] was used to calculate the integral in Eq. (3). MATLAB R2020a was used to perform the kinetic computations.

$$\sum_{i}^{n} \sum_{j \neq i}^{n} \left[I\left(E_{\alpha}, T_{\alpha, i}\right) \beta_{j} \right] / \left[I\left(E_{\alpha}, T_{\alpha, j}\right) \beta_{i} \right] = min.....(2)$$

Where,
$$I(E,T) = \int_0^T e^{-(\frac{E}{RT})} dT$$
.....(3)

$$f(x) = \frac{e^{-x}}{x} \times \frac{x^2 + 10x + 18}{x^3 + 12x^2 + 36x + 24}.$$
 (4)

Where,
$$x = \frac{E}{RT}$$
 and $I(E,T) = \frac{E}{R}f(x)$(5)

2. Characterization data:

Fig. S1 ¹H NMR spectrum of compound 1 in DMSO-d₆

Fig. S2 ¹³C NMR spectrum of compound 1 in DMSO-d₆

Fig. S3 HRMS spectrum of compound 1

Fig. S4 ¹H NMR spectrum of compound 2 in DMSO-d₆

Fig. S5 13 C NMR spectrum of compound 2 in DMSO-d₆

Fig. S6 HRMS spectrum of compound 2

Fig. S7 ¹H NMR spectrum of compound 3 in DMSO-d₆

Fig. S8 ¹³C NMR spectrum of compound 3 in DMSO-d₆

Fig. S9 HRMS spectrum of compound 3

3. Thermal analysis data:

Compound	Melting point	Decomposition					
	(DSC)	Onset temperature (°C)		Peak temperature (°C)		End temperature (°C)	
		TG (DTG)	DSC	TG (DTG)	DSC	TG (DTG)	DSC
Compound 1	156	168	174	223	224	234	231
Compound 2	-	164	153	209	209	232	233
		166	168	188	184	198	193
Compound 3	184	198	230	212	257	232	276

Table. S1 Thermal analysis data of compound 1, 2, and 3

4. TG-FTIR analysis

Fig. S11 TG-FTIR of compound 2

Fig. S12 TG-FTIR of compound 3

Fig. S13 GC-MS spectrum of compound 1

Fig. S14 MS/MS spectrum of compound 2 at m/z 128.03

Fig. S15 MS/MS spectrum of compound 3 at m/z 141.06

6. Computational Studies:

Fig. S16 Optimized molecular structures of compounds 1 (a), 2 (b), and 3(c)

Bond	Compound 1	Compound 2	Compound 3
1,2	1.37	1.37	1.37
2,3	1.33	1.36	1.32
3,4	1.38	1.32	1.49
4,5	-	1.38	1.52
5,6	1.32	-	-
3,5	1.37	-	-
3,6	-	1.37	1.37
6,7	-	1.37	1.32
7,8	-	-	1.38
1,6	1.34	-	-
1,7	-	1.3	1.35

Table. S2 Bond lengths (Å) of different bonds in compounds 1, 2, and 3

7. Kinetic analysis data:

Fig. S17 α -T curve of compound 1

Fig. S18 α -T curve of compound 2

Fig. S19 α -T curve of compound 3

Fig. S20 $E_{\alpha} - \alpha$ curve of compounds obtained by Vyazovkin's non linear integral method and Flynn-Wall-Ozawa Method. The open symbols (\Box) represents E_{α} obtained using Flynn-Wall-Ozawa Method^[5, 6] and filled symbols (\blacksquare) represents E_{α} obtained using Vyazovkin's non linear integral method

8. Residue Analysis

Fig. S21 ¹H NMR spectrum of Compound 3-Residue in DMSO-d₆

Fig. S22 FTIR spectrum of Compound 3-Residue (3-methyl-1,2,4-triazol-5-amine)

Reference:

- S. Lal, R. J. Staples, J. M. Shreeve, Nitroiminotriazole (NIT) based potential solid propellants: synthesis, characterization, and applications, *Dalton Transactions* 2024, 53, 903–907.
- [2] A. M. Abdel-Megeed, H. M. Abdel-Rahman, G.-E. S. Alkaramany and M. A. El-Gendy, Design, synthesis and molecular modeling study of acylated 1,2,4-triazole-3-acetates with potential anti-inflammatory activity, *Eur J Med Chem* 2009, 44, 117–123.
- [3] S. Vyazovkin, Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature, *J. Comput. Chem.* **1997**, 18, 393–402.
- [4] G. I. Senum and Yang. R. T, Rational approximations of the integral of the Arrhenius function, *J. Therm. Anal.* **1977**, *119*, 445–447.
- [5] J. H. Flynn and L. A. Wall, General Treatment of the Thermogravimetry of Polymers, *J. Res. Nat. Bur. Stand.*, 1966, 70A, 487–523
- [6] T. Ozawa, A New Method of Analyzing Thermogravimetric Data, *Bull. Chem. Soc. Jpn.*, 1965, 38, 1881–1886.