Electronic Supplementary Information (ESI)

## Systematic study of ionic conduction in silver iodide/mesoporous alumina composites 3: Effect of binary silver halide doping

Yoko Fukui, \*<sup>a</sup> Yukihiro Yoshida, \*<sup>b</sup> Hiroshi Kitagawa <sup>b</sup> and Yohei Jikihara <sup>a</sup>

<sup>a</sup> NBC Meshtec Inc., 2-50-3 Toyoda, Hino, Tokyo 191-0053, Japan

<sup>b</sup> Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan



**Fig. S1** (a) N<sub>2</sub> gas adsorption (closed circles) and desorption (open circles) isotherms of MPA at 77 K. (b) Pore size distribution of MPA obtained by applying the BJH method.



**Fig. S2** Plots of crystallite size of  $\beta$ -AgI<sub>ss</sub> phase against AgX (X = Br and Cl)-doping ratio for AgI-AgBr-AgCl/MPA composites (closed orange squares) and AgI-AgBr/MPA composites (open green squares; Y. Fukui *et al.*, *Phys. Chem. Chem. Phys.*, 2024, **26**, 13675).



**Fig. S3** DSC profiles of (a) **Br5Cl5** and (b) **Br10Cl10**. The red and blue arrows indicate the onset temperatures of the transition on the high- and low-temperature sides, respectively, in the cooling process.



**Fig. S4** Plots of  $\sigma_{200^{\circ}C}$  against AgX (X = Br and Cl)-doping ratio for AgI-AgBr-AgCl/MPA composites (closed orange squares) and AgI-AgBr/MPA composites (open green squares; Y. Fukui *et al.*, *Phys. Chem. Chem. Phys.*, 2024, **26**, 13675).



**Fig. S5** AgX (X = Br and Cl)-doping ratio dependence of transition temperatures for AgI-AgBr-AgCl/MPA composites (closed squares) and AgI-AgBr/MPA composites (open squares; Y. Fukui *et al.*, *Phys. Chem. Chem. Phys.*, 2024, **26**, 13675) determined by the DSC profile in the cooling process (red: high-temperature peak, blue: low-temperature peak).