SUPPORTING INFORMATION

HLi₄Cl₄⁻: A Planar Tetracoordinate Hydrogen Superhalogen Anion

Hui-Feng Yan and Jin-Chang Guo*

Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China

E-mail: guojc@sxu.edu.cn

Supporting Information

- **Table S1**. The lowest vibrational frequency at ten classical theoretical levels for the global-minimum structure $1 (D_{4h}, {}^{1}A_{1g})$ of HLi₄Cl₄⁻ cluster.
- **Table S2.**Orbital composition analysis of canonical molecular orbitals (CMOs) of 1.
- **Table S3**.Energy components of IQA for $HLi_4Cl_4^-$ at the PBE0/TZ2P level; V_{IQA}^{int} , V_C^{int} , and V_{XC}^{int} are the interatomic IQA interaction energy, the coulombic and exchange-
correlation energy components, respectively, in kcal mol⁻¹.
- Figure S1. Optimized structures for top 12 low-lying isomers of HLi₄Cl₄⁻ at the PBE0-D3(BJ)/def2-TZVPP level. Relative energies are listed in kcal mol⁻¹ at the single-point CCSD(T)/def2-TZVPP//PBE0-D3(BJ)/def2-TZVPP levels, with zero-point energy (ZPE) corrections. The T₁ diagnostic values of the converged CCSD wavefunction are shown within parentheses.
- **Figure S2.** Optimized structures of cube-like Li₄Cl₄ (T_d , ¹A₁) and star-like Li₄Cl₄ (D_{4h} , ¹A_{1g}) at the PBE0-D3(BJ)/def2-TZVPP level. The bond distances (in Å) are shown. Relative energies are listed in kcal mol⁻¹ at the PBE0-D3(BJ)/def2-TZVPP levels, with zero-point energy (ZPE) corrections.
- **Figure S3.** Canonical molecular orbitals (CMOs) of the ptH 1 cluster. (a) Twelve lone pairs CMOs for one-center two-electron (1c-2e) of Cl atoms. (b) Four σ CMOs for

(3c-2e) Li–Cl–Li bonds. (c) One delocalized σ CMO over HLi4 unit.

Cartesian coordinates of optimized structures of 12 low-lying isomers of HLi₄Cl₄-.

	Theoretical level	Lowest vibrational frequency (cm ⁻¹)
1	PBE0-D3(BJ)/def2-TZVPP	35.1
2	BP86-D3(BJ)/def2-TZVPP	32.1
3	B3LYP-D3(BJ)/def2-TZVPP	34.1
4	B2PLYP-D3(BJ)/def2-TZVPP	35.1
5	B3PW91-D3(BJ)/def2-TZVPP	32.5
6	CCSD/def2-TZVPP	34.6
7	TPSS-D3(BJ)/def2-TZVPP	31.8
8	WB97XD/def2-TZVPP	33.1
9	TPSSh/def2-TZVPP	36.1
10	MP2/def2-TZVPP	35.6

Table S1. The lowest vibrational frequency at ten classical theoretical levels for the
global-minimum structure 1 (D_{4h} , ${}^{1}A_{1g}$) of HLi₄Cl₄- cluster.

CMO	Н (%)		Li ₄ (%)		Cl ₄ (%)	
CMO	s/p	total	s/p	total	s/p	total
HOMO (a _{1g})	47.10/0.00	47.10	0.00/5.22	5.22	0.00/46.62	46.62
НОМО-1 (b _{1u})	0.00/0.00	0.00	0.00/0.00	0.00	0.00/99.80	99.80
НОМО-2 (е _g)	0.00/0.00	0.00	0.00/2.39	2.39	0.00/97.42	97.42
НОМО-2' (eg)	0.00/0.00	0.00	0.00/2.39	2.39	0.00/97.42	97.42
НОМО-3 (а2и)	0.00/0.00	0.00	0.00/5.45	5.45	0.00/94.36	94.36

Table S2.Orbital composition analysis of canonical molecular orbitals (CMOs) of 1.

CMO	H (%)		Li ₄ (%)		Cl ₄ (%)	
CMO	s/p	total	s/p	total	s/p	total
HOMO-4 (a _{2g})	0.00/0.00	0.00	0.00/0.00	0.00	0.00/98.84	98.84
HOMO-5 (e _u)	0.00/0.00	0.00	0.00/3.48	3.48	0.00/96.40	96.40
НОМО-5' (е _u)	0.00/0.00	0.00	0.00/3.48	3.48	0.00/96.40	96.40
HOMO-6 (b _{1g})	0.00/0.00	0.00	2.88/2.88	5.76	0.00/93.62	93.62
HOMO-7 (a _{1g})	0.00/0.00	0.00	1.25/1.27	2.52	0.00/95.76	95.76
НОМО-7' (e _u)	0.00/0.00	0.00	1.25/1.27	2.52	0.00/95.76	95.76

СМО	H (%)		Li ₄ (%)		Cl ₄ (%)	
	s/p	total	s/p	total	s/p	total
НОМО-8 (е _и)	0.00/0.00	0.00	0.00/0.00	0.00	0.00/97.61	97.61
НОМО-9 (a _{1g})	32.81/0.00	32.81	6.95/7.48	14.43	0.00/50.12	50.12
HOMO-10 (a _{1g})	0.00/0.00	0.00	4.40/0.00	4.40	90.94/0.00	90.94
HOMO-11 (e _u)	0.00/0.00	0.00	1.93/4.39	6.32	89.00/0.00	89.00
НОМО-11' (еџ)	0.00/0.00	0.00	1.93/4.39	6.32	89.00/0.00	89.00
НОМО-12 (b2g)	0.00/0.00	0.00	0.00/7.58	7.58	87.98/0.00	87.98

Table S3.Energy components of IQA for $HLi_4Cl_4^-$ at the PBE0/TZ2P level; V_{IQA}^{int} , V_C^{int} , and V_{XC}^{int} are the interatomic IQA interaction energy, the coulombic and exchange-
correlation energy components, respectively, in kcal mol⁻¹.

	HLi4Cl4 ⁻
V _{IQA} (H–Li)	-128.72
V_{c}^{int} (H–Li)	-120.65 (93.73%)
V ^{int} _{XC} (H– Li)	-8.07 (6.27%)
V _{IQA} (Li –Li)	96.49
V ^{int} _c (Li–Li)	96.64 (99.85%)
V ^{int} _{XC} (Li–Li)	-0.15 (0.15%)
V ^{int} _{IQA} (Li –Cl)	-138.62
V_{c}^{int} (Li – Cl)	-125.11 (90.25%)
$V_{\rm XC}^{\rm int}$ (Li – Cl)	-13.51 (9.75%)

Figure S1. Optimized structures for top 12 low-lying isomers of HLi₄Cl₄⁻ at the PBE0-D3(BJ)/def2-TZVPP level. Relative energies are listed in kcal mol⁻¹ at the single-point CCSD(T)/def2-TZVPP//PBE0-D3(BJ)/def2-TZVPP levels, with zero-point energy (ZPE) corrections. The T₁ diagnostic values of the converged CCSD wavefunction are shown within parentheses.

Figure S2. Optimized structures of cube-like $Li_4Cl_4(T_d, {}^1A_1)$ and star-like $Li_4Cl_4(D_{4h}, {}^1A_{1g})$ at the PBE0-D3(BJ)/def2-TZVPP level. The bond distances (in Å) are shown. Relative energies are listed in kcal mol⁻¹ at the PBE0-D3(BJ)/def2-TZVPP levels, with zero-point energy (ZPE) corrections.

Figure S3. Canonical molecular orbitals (CMOs) of the ptH 1 cluster. (a) Twelve lone pairs CMOs for one-center two-electron (1c-2e) of Cl atoms. (b) Four σ CMOs for (3c-2e) Li–Cl–Li bonds. (c) One delocalized σ CMO over HLi₄ unit.

Cartesian coordinates of optimized structures of 12 low-lying isomers of HLi₄Cl₄-.

1			
C1	2.21188900	-2.21188900	0.00000000
C1	-2.21188900	-2.21188900	0.00000000
C1	-2.21188900	2.21188900	0.00000000
C1	2.21188900	2.21188900	0.00000000
Н	0.00000000	0.00000000	0.00000000
Li	0.00000000	1.87098500	0.00000000
Li	1.87098500	0.00000000	0.00000000
Li	0.00000000	-1.87098500	0.00000000
Li	-1.87098500	0.00000000	0.00000000
2			
Li	-0.82093600	-1.85729700	1.31254600
Li	-0.82093600	-1.85729700	-1.31254600
Li	0.21244200	0.80385300	1.42540700
Li	0.21244200	0.80385300	-1.42540700
C1	0.21244200	-0.79156600	-3.00077000
C1	-1.55098900	0.05777100	0.00000000
C1	0.21244200	-0.79156600	3.00077000
C1	1.38967800	2.07544100	0.00000000
Н	-0.82977600	-3.03068400	0.00000000
3			
Li	0.55768100	-1.37955000	-0.85027300
Li	-0.55768100	1.37955000	-0.85027300
Li	0.61342900	1.30006300	1.42539200
Li	-0.61342900	-1.30006300	1.42539200
C1	-0.55768100	3.07121300	0.58724900
C1	-1.64976600	-0.60801200	-0.75919500
C1	1.64976600	0.60801200	-0.75919500
C1	0.55768100	-3.07121300	0.58724900
Н	0.00000000	0.00000000	2.39543600
4			
Li	1.36778900	-1.42729500	0.43835200
Li	-1.29305500	0.46373600	-0.81953600
Li	1.31974300	0.96053300	0.89770200
Li	-1.18858900	-1.01154700	1.21309300
C1	3. 22702200	-0.22520700	0.42735600
C1	0.15411800	2.14880900	-0.61185500

C1	-3.00112900	0.13061600	0.65372200
C1	-0.44112500	-1.84600500	-0.87654500
Н	0.42126900	-0.49591800	1.73564600
5			
Li	-0.47228100	-1.43310800	-0.49295500
Li	-1.05890700	0.80146500	0.65316500
Li	2.09042700	-0.90493600	0.94219000
Li	1.98425000	1.21869800	-0.23396500
C1	1.58421200	-1.03861900	-1.34757200
C1	-2.40548700	-0.37521200	-0.75014900
C1	0.21796400	2.55030900	0.10133600
C1	-0.02816200	-1.11036800	1.78710700
Н	3.10455900	0.50977500	0.95241200
6			
Н	0.07836800	-0.00017600	1.81315300
Li	1.41297600	-0.00045000	0.36700500
Li	-1.36621800	-0.00020000	-1.11444100
Li	-0.95889700	-1.28744600	1.20275200
Li	-0.95902500	1.28768700	1.20414900
C1	3.55693900	0.00047100	0.50485100
C1	-0.18917700	1.89089800	-0.81338900
C1	-2.85502200	-0.00083600	0.72262100
C1	-0.18714500	-1.89045000	-0.81358500
7			
Н	2.28359800	1.76200200	0.00000000
Li	-0.48994000	-1.26960800	0.00000000
Li	0.89734000	1.86373000	1.24553700
Li	2.18631600	-0.00420800	0.00000000
Li	0.89734000	1.86373000	-1.24553700
C1	0.89734000	-0.36830100	-1.81980300
C1	-1.97287500	-2.79974300	0.00000000
C1	-0.57220400	2.99970200	0.00000000
C1	0.89734000	-0.36830100	1.81980300
8			
Н	0.00000000	0.00000000	0.43014300
Li	0.00000000	1.52590900	-0.73812500
Li	-1.32147600	-0.76295400	-0.73812500
Li	0.00000000	0.00000000	2.16598800
Li	1.32147600	-0.76295400	-0.73812500

C1	0.00000000	-2.43453700	-1.42499900
C1	0.00000000	0.00000000	4.25823300
C1	-2.10837100	1.21726800	-1.42499900
C1	2.10837100	1.21726800	-1.42499900
9			
H	-0.72164900	-0.27255300	0, 00000000
Li	0.62076500	-0.11993600	1. 32715100
Li	-1.03113800	1.60272000	0.00000000
Li	-0.36768300	-2.11391600	0.00000000
Li	0.62076500	-0.11993600	-1.32715100
C1	-2.62163900	2.99477900	0.00000000
C1	1.45031600	1.57658300	0.00000000
C1	0.62076500	-2.21139400	2.03278800
C1	0.62076500	-2.21139400	-2.03278800
10			
н	-2 01328400	0 01449500	2 60620700
I i	1,74105100	-0.01865000	-0 04930900
Li	-0 48582200	0.45890200	1 91053800
Li	-1 16007700	0.38320200	-0 78364000
Li	-2 52930200	-0.87198300	1 18034100
C1	3 79440500	-0.35624700	-0 44511000
C1	0 27811600	1 86984100	0 24092600
C1	-0 19698800	-1 41928400	0 42143800
C1	-3. 32754900	-0.08659900	-0. 76902000
01			0
11			
	0 101/0638	-2 17351503	0,0000000
	1 28645070	2.17351503	0.0000000
	-1, 20045075	0. 42266488	0.0000000
LI	-0 11414529	2 96960903	0.0000000
	0. 018/2309	-0 41617896	-1.65430300
	-1 87/82281	2 113//862	0.0000000
C1	0 15812207	-4 39279044	0.00000000
C1	1 75394815	2 79341669	0.00000000
Н	0 01842309	-0 41617896	1 65430300
	0.01042303	0. 11011030	1.00400000
10			
12	0.07000400		0 50000000
П	2.27022400	0.55068800	2.50306600
L1	0.07842700	0.65207500	1. 79089700
L1	3. 03029400	0.05397500	0.90218600
L1	1.17546000	-0.36246500	-0.73515800

Li	-2.53871500	-0.39171300	0.08051600
C1	-0.52190800	-1.08802400	0.73478400
C1	-4.52208500	0.04607200	-0.42950700
C1	1.17568500	1.85740400	-0.13798600
C1	3. 32086000	-0.94745500	-0.67425500