

Figure S1. The bond lengths $(d_{avg(D-At)})$ of different $[D \cdots At \cdots D]^+$ complexes at the SO-DFT/B3LYP-D3 level. The horizontal axis represents different donors. The hybridization type of the nitrogen atom in N-donor groups are labelled by sp³, sp² and sp, respectively.

Figure S2. The interaction energy $\Delta E_{int}(SO-CC)$ and the polarizability α of At in $[D\cdots At\cdots D]^+$ complexes with different donor types. The $[IA\cdots At\cdots IA]^+$ and $[Fur\cdots At\cdots Fur]^+$ complexes are labeled using hollow patterns.

Figure S3. SR-DFT/B3LYP-D3 calculated MEP maps for $[D \cdots At]^+$ cations at the SO-DFT/B3LYP-D3 optimized geometries of $[D \cdots At]^+$ cations. Energies are given in kcal·mol⁻¹. Blue and red colors indicate the least and most positive MEP values, respectively.

Figure S4. SR-DFT/B3LYP-D3 calculated MEP maps for $[4\text{-}R\text{-}py\cdots\text{At}]^+$ cations at the SO-DFT/B3LYP-D3 optimized geometries of $[4\text{-}R\text{-}py\cdots\text{At}]^+$ cations. Energies are given in kcal·mol⁻¹. Blue and red colors indicate the least and most positive MEP values, respectively.

Figure S5. (a) The SR-DFT/B3LYP-D3 calculated $V_{s,max}$ values of $[4\text{-}R\text{-}Py\cdots\text{At}]^+$ cations and SO-CCSD(T) calculated interaction energies ($\Delta E_{int}(\text{SO-CC})$) in different $[4\text{-}R\text{-}Py\cdots\text{At}\cdots4\text{-}R\text{-}Py]^+$ complexes. (b) The SR-DFT/B3LYP-D3 calculated $\omega_{cubic}(\text{At})$ values and SO-CCSD(T) calculated interaction energies ($\Delta E_{int}(\text{SO-CC})$) in different $[4\text{-}R\text{-}Py\cdots\text{At}\cdots4\text{-}R\text{-}Py]^+$ complexes. The horizontal axis represents different R substituents.

Figure S6. Dependence on the Hammett σ parameter of the local electrophilicity index $\omega_{\text{cubic}}(\text{At})$ ($\omega_{\text{cubic}}(\text{At}) = 0.19 \cdot \sigma + 3.72$, $R^2 = 0.47$).