Supplementary Information

Toward Synergetic Reduction of Pollutant and Greenhouse Gas Emissions from Vehicles: A Catalysis Perspective

Yan Zhang ^{a, e}, Jinpeng Du ^b, Yulong Shan ^b, Fei Wang ^c, Jingjing Liu ^b, Meng Wang ^{a, e},

Zhi Liu ^b, Yong Yan ^d, Guangyan Xu ^b, Guangzhi He ^b, Xiaoyan Shi ^b, Zhihua Lian ^a,

Yunbo Yu^{b, d}, Wenpo Shan * a, e, Hong He * a, b

^a Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban

Environment, Chinese Academy of Sciences, Xiamen 361021, China

^b Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

^c Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China

^d Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China

^e Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo, 315800, China

* Corresponding Author: Wenpo Shan (E-mail: wpshan@iue.ac.cn)

Hong He (E-mail: honghe@rcees.ac.cn)

year	NOx (g/kW.h)			PM((g/kW.h)				
	China	US	EU	Japan	China	US	EU	Japan
2000		5.435	5			0.136	0.16	
2001		5.435	5			0.136	0.16	
2002		5.435	5			0.136	0.16	
2003		5.435	5			0.136	0.16	
2004		2.717	5			0.136	0.16	
2005		2.717	3.5	2		0.136	0.03	0.027
2006		2.717	3.5	2		0.136	0.03	0.027
2007		0.272	3.5	2		0.136	0.03	0.027
2008	5	0.272	2	2	0.16	0.014	0.03	0.027
2009	5	0.272	2	0.7	0.16	0.014	0.03	0.01
2010	5	0.272	2	0.7	0.16	0.014	0.03	0.01
2011	5	0.272	2	0.7	0.16	0.014	0.03	0.01
2012	5	0.272	2	0.7	0.16	0.014	0.03	0.01
2013	5	0.272	0.46	0.7	0.16	0.014	0.01	0.01
2014	5	0.272	0.46	0.7	0.16	0.014	0.01	0.01
2015	3.5	0.272	0.46	0.7	0.03	0.014	0.01	0.01
2016	3.5	0.272	0.46	0.4	0.03	0.014	0.01	0.01
2017	2	0.272	0.46	0.4	0.03	0.014	0.01	0.01
2018	2	0.272	0.46	0.4	0.03	0.014	0.01	0.01
2019	2	0.272	0.46	0.4	0.03	0.014	0.01	0.01
2020	2	0.272	0.46	0.4	0.03	0.014	0.01	0.01
2021	0.46	0.272	0.46	0.4	0.01	0.014	0.01	0.01
2022	0.46	0.272	0.46	0.4	0.01	0.014	0.01	0.01
2023	0.46	0.272	0.46	0.4	0.01	0.014	0.01	0.01
2024	0.46	0.272	0.46	0.4	0.01	0.014	0.01	0.01

 Table S1 NOx and PM limits in the standards for heavy-duty vehicles in US, EU, China,

and Japan from 2000-2400

Table	S2	The	advantages,	disadvantages,	and	exhaust	emission	characteristics	for
-------	----	-----	-------------	----------------	-----	---------	----------	-----------------	-----

vehicles using	carbon-neutral fu	els
	المعامم والمراجع المراجع والمراجع	۸.,

	Hydrogen-fueled vehicles	Ammonia-fueled vehicles	Ammonia-hydrogen hybrid vehicles	Alcohol-fueled vehicles
Advantages	 zero carbon emissions, low cost, high efficiency, and low requirements for hydrogen purity. mature industrial chain with low manufacturing cost. 	 (1) high octane rating and good anti-knock performance, suitability for operation with high compression ratios. (2) lower cost of storage and transportation than H₂. (3) no need for urea injection system. 	(1) easier ignition and faster combustion than individual NH_3 fuel.(2) H_2 conveniently produced by decomposition of on- board NH_3 .	 significant renewable and clean carbon-neutral fuel. high octane rating. lower levels of CO, PM, and HC compared with gasoline vehicles.
isadvantages	 high storage and transportation cost. requirement of urea injection system with NH₃ leakage risk. 	 (1) difficulties of ignition and slow combustion. (2) difficulties of simultaneously meeting the high NH₃ concentrations, low temperatures, and high N₂ selectivity. 	 (1) slow kinetics of electrocatalytic NH₃ to H₂. (2) requirement of high temperature pyrolysis of NH₃ to produce H₂. 	 formaldehyde formation due to unburned methanol oxidation under oxygen- rich conditions. no clear technical route for post-treatment under lean combustion condition.
Exhaust emission naracteristics	 (1) a large amount of NO_x emissions (~ 10,000 ppm) with N₂O. (2) high water vapor and high airspeed. 	 multi-pollutants containing high concentration of NOx, NH₃ and N₂O. insufficient low temperature activity. 	 multi-pollutants containing high concentrations of NOx, NH₃, and N₂O. insufficient low temperature activity. 	 multi-pollutants containing NOx, CO, HC and formaldehyde. narrow temperature window of CH₃OH-SCR with insufficient low temperature activity

Appendix: The abbreviations in the manuscript

- TWC: three-way catalyst
- SCR: NO_x selective catalytic reduction
- NSR: NO_x storage-reduction
- DOC: diesel oxidation catalyst
- ASC: ammonia slip catalyst
- MOC: methane oxidation catalyst
- DeN₂O: N₂O abatement catalyst
- PNA: passive NO_x adsorber
- CSC: cold start catalyst
- GHGs: greenhouse gases
- ICE: internal combustion engines
- HC: hydrocarbons
- CO: carbon monoxide
- NO_x: nitrogen oxides
- PM: particulate matter
- GPF: gasoline particulate filter
- CGPF: catalyzed gasoline particulate filter
- CH₄: methane
- DPF: diesel particulate filter
- CDPF: catalyzed diesel particulate filter
- NH₃-SCR: selective catalytic reduction of NO_x with ammonia
- cc-SCR: close-coupled SCR
- H₂-SCR: selective catalytic reduction of NO_x with H₂
- US: the United States
- EPA: Environmental Protection Agency
- CARB: California Air Resources Board
- EU: European Union
- SI: spark ignition
- CI: compression ignition

NGV: natural gas vehicles THC: total hydrocarbons PN: particle number WHSC: World Harmonized Steady-state Cycle WHTC: World Harmonized Transient Cycle EGR: exhaust gas recirculation EFI: electronic fuel injection VVT: variable valve timing AFR: air-to-fuel ratio EHC: electrically heated catalyst HCCI: homogeneous charge compression ignition GCI: gasoline compression ignition S: sulfur P: phosphorus cc-DOC: close-coupled DOC MY: Model Year NMHCs: non-methane hydrocarbon Al₂O₃: alumina CeO₂-ZrO₂: ceria-zirconia mixed oxides CH₄-SCR: selective catalytic reduction of NO_x with methane FTP: Federal Test Procedure OC: oxidation catalyst PGM: platinum group metals OSMs: oxygen storage materials AP: ambient-pressure OSC: oxygen storage capacity pyr-CZO: pyrochlore-phase ceria-zirconia t-CZO: tetragonal-phase ceria-zirconia ORR: oxygen release rate Td: tetrahedral

- C₃H₆-PROX: C₃H₆-preferential oxidation catalyst
- MSI: metal-support interaction
- HDCC: high dispersion-close coupling
- ESC: European steady-state cycle
- ZDDP: zinc dialkyldithiophosphate
- HC-SCR: selective catalytic reduction of NO_x with hydrocarbons
- CH₄-SCR: selective catalytic reduction of NO_x with methane
- CN: cyanide
- NCO: isocyanate
- EFAI: extra-framework aluminum
- NSC: NO_x storage capability
- SOF: solvent organic fraction
- PVA: polyvinyl alcohol
- BEA: β-zeolite
- SACs: single-atom catalysts
- 3DOM: three-dimensionally ordered microporous
- DRC: degree of relative contact
- TMO: transition metal (Mn, Fe, Co, Ni, Cu) oxide
- SOC: surface composite oxides
- CNG-LCV: natural gas light commercial vehicles
- NH₃-SCO: selective catalytic oxidation of NH₃
- SMSI: strong metal-support interaction
- -HNO: imide
- -N₂H₄: hydrazine
- i-SCR: internal selective catalytic reduction
- MvK: Mars-van Krevelen
- DFT: density functional theory
- L-H mechanism: Langmuir-Hinshelwood mechanism
- E-R mechanism: Elecy-Rideal mechanism
- Pd/CZO: Pd/CeO₂-ZrO₂