Supporting Information

Platinum complexes with aggregation-induced emission

Sheng-Yi Yang^{†a}, Yingying Chen^{†a}, Ryan T. K. KWOK ^{a*}, Jacky W. Y. LAM ^{a*}, Ben Zhong Tang ^{a,b*}

^a Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.

^bSchool of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.

†These authors contributed equally to this work.

E-mail: chryan@ust.hk; chjacky@ust.hk; tangbenz@cuhk.edu.cn.

AIE Aggregation Applications Year Type of ligands Ref. Aggregation environment mechanism state Pt-Pt [1] 2002 Tridentate ligand Sensor Acetonitrile/diethyl ether Nanoparticles interactions Pt-Pt 2005 Tridentate ligand Sensor Acetonitrile/diethyl ether Nanoparticles [2] interactions Pt-Pt 2005 Tridentate ligand Poly(acrylic acid)/TBAH Nanoparticles [3] Sensor interactions Pt-Pt [4] 2006 Polynuclear Sensor DMSO Nanoparticles interactions Pt-Pt 2007 Tridentate ligand DMSO Gels [5] Sensor interactions [6] RIM 2008 Polynuclear Acetonitrile/H2O Nanoparticles Pt-Pt 2009 Tridentate ligand [7] Sensor Polyacetylene in methanol Nanoparticles interactions Pt-Pt 2009 Tridentate ligand Optoelectronic Methanol/H₂O Microfibers [8] interactions Pt-Pt G-quadruplex formation upon K⁺ [9] 2009 Tridentate ligand Nanoparticles Sensor interactions ion binding Buffer-CH₃CN Pt-Pt solution /α-[10] 2011 Tridentate ligand Sensor Nanoparticles interactions glucosidase Pt-Pt [11] 2011 Polynuclear Sensor H_2O Nanoparticles interactions Stimuli [12] 2011 Polynuclear RIM Cyclohexane and sonication Gels response RIM [13] 2011 One ligand Optoelectronic Crystalline Crystals [14] 2010 Polynuclear RIM Acetonitrile/dichloromethane Nanoparticles Pt-Pt [15] 2011 Tridentate ligand Sensor Acetone/H₂O Nanoparticles interactions Pt-Pt 2011 Tridentate ligand Frozen matrices /thin film Fibers or gels [16] Optoelectronic interactions Other [17] 2010 Three ligands Solid state Solids mechanisms Heteroleptic [18] 2012 RDES Biological THF/H₂O Nanoparticles bidentate ligand

Table S1. Relevant information on reported cyclometallic platinum complexes, including complex types, AIE mechanisms, application fields, aggregation environments, aggregation states, and corresponding references.

Year	Type of ligands	AIE mechanism	Applications	Aggregation environment	Aggregation state	Ref.
2013	Tridentate ligand	Pt-Pt interactions	Biological	H ₂ O	Nanoparticles	[19]
2013	Heteroleptic bidentate ligand	RIM	/	Crystalline	Crystals	[20]
2013	Tridentate ligand	Pt-Pt interactions	Biological	Tris-HCl with ATP	Nanoparticles	[21]
2013	Polynuclear	Pt-Pt interactions	/	Acetonitrile/H ₂ O	Nanoparticles	[22]
2014	Tridentate ligand	Pt-Pt interactions	Sensor	In aqueous buffer solutions	Nanoparticles	[23]
2014	Tridentate ligand	RIM	Sensor	Methanol/H ₂ O	Micelles	[24]
2014	Tridentate ligand	RIM	/	Methanol/H ₂ O	Nanoparticles	[25]
2014	Three ligands	RIM	Optoelectronic	THF/H ₂ O	Nanoparticles	[26]
2014	Heteroleptic bidentate ligand	RIM	Biological	Dichloromethane/hexane	Nanoparticles	[27]
2014	Six ligands	RIM	Biological	DMSO/PBS	Nanoparticles	[28]
2014	Six ligands	RIM	Biological	TPS-CH ₂ N ₃ / DMSO/PIPES	Nanoparticles	[29]
2015	Tridentate ligand	Pt-Pt interactions	/	Toluene	Nanoparticles	[30]
2015	Six ligands	RIM	Biological	Incubated with GSH (100 mM)	Nanoparticles	[31]
2015	Tridentate ligand	Pt-Pt interactions	/	1,4-Dioxane/H ₂ O	Nanoparticles	[32]
2016	Polynuclear	Other mechanisms	/	Benzene	Gels	[33]
2016	Three ligands	RIM	Stimuli response	Methanol/H ₂ O	Nanoparticles	[34]
2017	Tridentate ligand	Pt-Pt interactions	Optoelectronic	Dichloromethane/ H ₂ O	Nanoparticles	[35]
2017	Tridentate ligand	Pt-Pt interactions	/	Acetonitrile/H ₂ O	Nanoparticles	[36]
2017	Tridentate ligand	Pt-Pt interactions	Sensor	Hexa-arginine in PBS buffer	Nanoparticles	[37]
2017	Three ligands	RIM	Optoelectronic	Acetonitrile/H ₂ O	Nanoparticles	[38]
2018	Heteroleptic bidentate ligand	Pt-Pt interactions	/	THF/acetonitrile	Nanoparticles	[39]

Table S1. Continued.

Table	S1 .	Continued.

Year	Type of ligands	AIE mechanism	Applications	Aggregation environment	Aggregation state	Ref.
2018	Polynuclear	Pt-Pt interactions	/	DMSO/H ₂ O	Nanoparticles	[40]
2018	Tridentate ligand	Pt-Pt interactions	/	THF	Nanoparticles	[41]
2018	Tridentate ligand	RIM	/	Alcohols and dodecane	Gels	[42]
2018	Heteroleptic bidentate ligand	RIM	Biological	Dichloromethane/hexane	Nanoparticles	[43]
2018	One ligand	RIM	Optoelectronic	THF/H ₂ O	Nanoparticles	[44]
2018	Tridentate ligand	Pt-Pt interactions	Biological	Acetonitrile/H ₂ O	Nanoparticles	[45]
2018	Three ligands	RIM	Optoelectronic	THF/H ₂ O	Nanoparticles	[46
2019	Three ligands	Pt-Pt interactions	Sensor	Chloroform/hexane	Gels	[47]
2019	Heteroleptic bidentate ligand	Pt-Pt interactions	Stimuli response	Dichloromethane	Metallomesogens	[48]
2019	Polynuclear	RIM	/	Crystalline	Crystals	[49]
2019	Tridentate ligand	Pt-Pt interactions	Sensor	PBS buffer	Nanoparticles	[50]
2019	One ligand	Other mechanisms	/	Chloroform	Solution	[51]
2019	Heteroleptic bidentate ligand	RDES	Biological	THF/H ₂ O	Nanoparticles	[52]
2019	Polynuclear	RIM	/	Crystalline	Crystals	[53]
2019	Polynuclear	RIM	/	Solid state	Solids	[54]
2019	Tridentate ligand	RIM	/	DMF/H ₂ O	Nanoparticles	[55]
2019	Homoleptic bidentate ligand	Pt-Pt interactions	Sensor	Dichloromethane/Hg ²⁺	Liquid crystalline mesophases	[56]
2020	Four ligands	RIM	Biological	DMSO/H ₂ O	Nanoparticles	[57]
2020	Tridentate ligand	Pt-Pt interactions	Sensor	Solid state	Liquid crystals	[58]
2019	Tridentate ligand	RIM	/	THF/H ₂ O	Micelles	[59]
2020	Heteroleptic bidentate ligand	RIM	Optoelectronic	THF/H ₂ O	Nanoparticles	[60]
2020	Three ligands	RIM	Stimuli response	THF/H ₂ O	Nanoparticles	[61]
2020	Four ligands	Other mechanisms	/	Solid state	Solids	[62]

Year	Type of ligands	AIE mechanism	Applications	Aggregation environment	Aggregation state	Ref.
2020	Polynuclear	RIM	Optoelectronic	Crystal or neat film	Crystal or solid state	[63]
2020	Heteroleptic bidentate ligand	Other mechanisms	/	Liquid crystal	Liquid crystal	[64]
2020	Three ligands	RCSD	Optoelectronic	THF/H ₂ O	Nanoparticles	[65]
2020	Tridentate ligand	RIM	Stimuli response	THF/H ₂ O	Nanoparticles	[66]
2021	Polynuclear	Other mechanisms	Optoelectronic	THF/H ₂ O	Nanoparticles	[67]
2021	Homoleptic bidentate ligand	Pt-Pt interactions	Biological	THF/H ₂ O	Metallomesogens	[68]
2021	Polynuclear	Pt-Pt interactions	Biological	ct-DNA in Tris-HCl buffer	Nanoparticles	[69]
2021	Heteroleptic bidentate ligand	RIM	Sensor	Acetonitrile/H ₂ O	Nanoparticles	[70]
2021	Polynuclear	Other mechanisms	Optoelectronic	Acetonitrile/H ₂ O	Nanoparticles	[71]
2021	One ligand	Other mechanisms	/	Crystalline	Crystals	[72]
2021	Tridentate ligand	Pt-Pt interactions	Biological	RNA in PBS buffer	Nanoparticles	[73]
2021	Three ligands	RIM	Biological	THF/H ₂ O	Nanoparticles	[74]
2021	Heteroleptic bidentate ligand	RIM	/	Dichloromethane/hexane	Nanoparticles	[75]
2021	Polynuclear	Other mechanisms	Optoelectronic	Powder	Powders	[76]
2021	Three ligands	Restrained D_{2d} deformation	Optoelectronic	THF/H ₂ O	Nanoparticles	[77]
2022	Heteroleptic bidentate ligand	RIM	Sensor	Acetonitrile/H ₂ O	Nanoparticles	[78]
2022	Polynuclear	Other mechanisms	Optoelectronic	Solid state	Powders	[79]
2022	Three ligands	RCSD	Optoelectronic	THF/H ₂ O	Nanoparticles	[80]
2022	Tridentate ligand	RIM	Stimuli response	THF/H ₂ O	Nanoparticles	[81]
2022	Tridentate ligand	Pt-Pt interactions	/	Chloroform	Solutions	[82]

Table S1. Continued.

Tab	le S	S1 .	Conti	nued.

Year	Type of ligands	AIE mechanism	Applications	Aggregation environment	Aggregation state	Ref.
2022	Tridentate ligand	Pt-Pt interactions	Biological	Acetonitrile/H ₂ O	Nanoparticles	[83]
2022	Tridentate ligand	RIM	Biological	Ethanol/H ₂ O	Nanoparticles	[84]
2022	One ligand	RIM	/	DMSO/H ₂ O	Nanoparticles	[85]
2022	Three ligands	Restrained D_{2d} deformation	Sensor	THF/H ₂ O	Nanoparticles	[86]
2023	Heteroleptic bidentate ligand	RIM	/	Acetonitrile/H ₂ O	Nanoparticles	[87]
2023	Tridentate ligand	Pt-Pt interactions	/	Dichloromethane/toluene	Nanoparticles	[88]
2023	Polynuclear	RIM	Optoelectronic	Solid state	Solids	[89]
2023	Heteroleptic bidentate ligand	RIM	Optoelectronic	THF/H ₂ O	Nanoparticles	[90]
2023	Polynuclear	Pt-Pt interactions	Biological	NaCl or KCl solution	Nanoparticles	[91]
2023	Tridentate ligand	RIM	/	Acetonitrile/H ₂ O	Nanoparticles	[92]
2023	Heteroleptic bidentate ligand	RIM	Sensor	Acetonitrile/H ₂ O	Nanoparticles	[93]
2023	Homoleptic bidentate ligand	RMCT	Optoelectronic/ Biological	DMSO/H ₂ O	Nanoparticles	[94]

AIE mechanism	Type of ligands	Solution state	Aggregation state		
Restriction of coordination skeletal deformation	Three ligands	 Monodentate ligands to rotate freely around the single bonds. The S₀/S₁ minimal energy conical intersection (MECI) could be easily reached upon photoexcitation since there was almost no barrier to overcome the decay from the Frank–Condon point to MECI. Coordination skeletal deformation. 	 (1) The coordination skeletal deformation would be greatly restricted to increase the energy gap of MECI between S₁ and S₀ and decrease the rate of IC. (2) The planar geometry of T₁ minimum was very similar to that of S₀ and similar to that of S₁ at the Frank–Condon point, which would benefit the ISC from S₁ to T₁ to promote the emission from the T₁ state. 		
Restrained D _{2d} deformation of the coordinating skeleton	Three ligands	(1) Monodentate ligands to rotate freely around the single bonds. (2) The S ₀ /S ₁ minimal MECI could be easily reached upon photoexcitation since there was almost no barrier to overcome the decay from the Frank–Condon point to MECI. (3) The square-planar (D_{4h}) coordinating skeleton of Pt(II) complexes with mono-dental ligands can undergo deformation to form a tetrahedron (T_d) skeleton in their excited states to induce nonradiative decay processes and quench the emission signal in dilute solution.	The deformation of the square- planar (D_{4h}) coordinating skeleton of the Pt(II) center to tetrahedron (T_d) can be effectively restrained to facilitate radiative decay of the excited states.		
Restriction of molecular configuration transformation	Homoleptic bidentate ligands	 (1) The monomeric molecules undergo substantial molecular configuration transformation in S₁ and T₁ states from the square-planar one to the tetrahedral one caused by the significant metal center d-d transitions. (2) The effortless reaching of the S₀/S₁ MECI points from the Franck-Condon points, leading to the nonradiative transitions of S₁ and T₁ states. 	The intermolecular interactions and the molecular packings, the molecular configuration transformation in excited states at the solid or crystal states can be efficiently restrained, obtaining emissions at aggregated states.		

Table S	S2. (Comparison	table of t	three AIE	mechanisms	of the	platinum	complexes.

References

- 1. V. W.-W. Yam, K. M.-C. Wong and N. Zhu, J. Am. Chem. Soc., 2002, 124, 6506-6507.
- Z. Jiang, J. Wang, T. Gao, J. Ma, Z. Liu and R. Chen, ACS Appl. Mater. Interfaces, 2020, 12, 9520-9527.
- C. Yu, K. M.-C. Wong, K. H.-Y. Chan and V. W.-W. Yam, *Angew. Chem. Int. Ed.*, 2005, 44, 791-794.
- 4. V. W.-W. Yam, K. H.-Y. Chan, K. M.-C. Wong and B. W.-K. Chu, *Angew. Chem. Int. Ed.*, 2006, **45**, 6169-6173.
- 5. A. Y.-Y. Tam, K. M.-C. Wong, G. Wang and V. W.-W. Yam, *Chem. Commun.*, 2007, 2028-2030.
- 6. M.-X. Zhu, W. Lu, N. Zhu and C.-M. Che, Chem.-Eur. J., 2008, 14, 9736-9746.
- 7. K. H.-Y. Chan, J. W.-Y. Lam, K. M.-C. Wong, B.-Z. Tang and V. W.-W. Yam, *Chem.– Eur. J.*, 2009, **15**, 2328-2334.
- W. Lu, Y. Chen, V. A. L. Roy, S. S.-Y. Chui and C.-M. Che, *Angew. Chem. Int. Ed.*, 2009, 48, 7621-7625.
- C. Yu, K. H.-Y. Chan, K. M.-C. Wong and V. W.-W. Yam, *Chem. Commun.*, 2009, 3756-3758.
- C. Y.-S. Chung, K. H.-Y. Chan and V. W.-W. Yam, *Chem. Commun.*, 2011, 47, 2000-2002.
- 11. Y. Hu, K. H.-Y. Chan, C. Y.-S. Chung and V. W.-W. Yam, *Dalton Trans.*, 2011, **40**, 12228-12234.
- 12. N. Komiya, T. Muraoka, M. Iida, M. Miyanaga, K. Takahashi and T. Naota, *J. Am. Chem. Soc.*, 2011, **133**, 16054-16061.
- N. Komiya, M. Okada, K. Fukumoto, D. Jomori and T. Naota, J. Am. Chem. Soc., 2011, 133, 6493-6496.
- 14. S. C. F. Kui, Y.-C. Law, G. S. M. Tong, W. Lu, M.-Y. Yuen and C.-M. Che, *Chem. Sci.*, 2011, **2**, 221-228.
- 15. C. Po, A. Y.-Y. Tam, K. M.-C. Wong and V. W.-W. Yam, J. Am. Chem. Soc., 2011, 133, 12136-12143.
- 16. C. A. Strassert, C.-H. Chien, M. D. Galvez Lopez, D. Kourkoulos, D. Hertel, K. Meerholz and L. De Cola, *Angew. Chem. Int. Ed.*, 2011, **50**, 946-950.
- J. R. Berenguer, E. Lalinde, M. T. Moreno, S. Sánchez and J. Torroba, *Inorg. Chem.*, 2012, 51, 11665-11679.
- S. Liu, H. Sun, Y. Ma, S. Ye, X. Liu, X. Zhou, X. Mou, L. Wang, Q. Zhao and W. Huang, J. Mater. Chem., 2012, 22, 22167-22173.
- 19. C. Y.-S. Chung, S. P.-Y. Li, M.-W. Louie, K. K.-W. Lo and V. W.-W. Yam, *Chem. Sci.*, 2013, 4, 2453-2462.
- N. Komiya, T. Kashiwabara, S. Iwata and T. Naota, J. Organomet. Chem., 2013, 738, 66-75.
- 21. M. C.-L. Yeung and V. W.-W. Yam, Chem. Sci., 2013, 4, 2928-2935.
- 22. S. Yu-Lut Leung and V. Wing-Wah Yam, Chem. Sci., 2013, 4, 4228-4234.
- 23. C. Y. S. Chung and V. W. W. Yam, Chem.-Eur. J., 2014, 20, 13016-13027.

- 24. H. Honda, J. Kuwabara and T. Kanbara, J. Organomet. Chem., 2014, 772-773, 139-142.
- 25. H. Honda, Y. Ogawa, J. Kuwabara and T. Kanbara, *Eur. J. Inorg. Chem.*, 2014, 1865-1869.
- 26. Y. Li, D. P.-K. Tsang, C. K.-M. Chan, K. M.-C. Wong, M.-Y. Chan and V. W.-W. Yam, *Chem.–Eur. J.*, 2014, **20**, 13710-13715.
- 27. S. S. Pasha, P. Alam, S. Dash, G. Kaur, D. Banerjee, R. Chowdhury, N. Rath, A. Roy Choudhury and I. R. Laskar, *RSC Adv.*, 2014, **4**, 50549-50553.
- 28. Y. Yuan, Y. Chen, B. Z. Tang and B. Liu, Chem. Commun., 2014, 50, 3868-3870.
- 29. Y. Yuan, R. T. K. Kwok, B. Z. Tang and B. Liu, J. Am. Chem. Soc., 2014, 136, 2546-2554.
- 30. T. Ikeda, M. Takayama, J. Kumar, T. Kawai and T. Haino, *Dalton Trans.*, 2015, 44, 13156-13162.
- 31. Y. Yuan, C.-J. Zhang and B. Liu, Chem. Commun., 2015, 51, 8626-8629.
- 32. A. Aliprandi, M. Mauro and L. De Cola, Nat. Chem., 2016, 8, 10-15.
- F. Gou, J. Cheng, X. Zhang, G. Shen, X. Zhou and H. Xiang, *Eur. J. Inorg. Chem.*, 2016, 4862-4866.
- S. S. Pasha, P. Alam, A. Sarmah, R. K. Roy and I. R. Laskar, *RSC Adv.*, 2016, 6, 87791-87795.
- 35. S. Carrara, A. Aliprandi, C. F. Hogan and L. De Cola, J. Am. Chem. Soc., 2017, 139, 14605-14610.
- H.-K. Cheng, M. C.-L. Yeung and V. W.-W. Yam, ACS Appl. Mater. Interfaces, 2017, 9, 36220-36228.
- 37. A. S.-Y. Law, M. C.-L. Yeung and V. W.-W. Yam, *ACS Appl. Mater. Interfaces*, 2017, **9**, 41143-41150.
- 38. R. Liu, S. Zhu, J. Lu, H. Shi and H. Zhu, Dyes Pigments, 2017, 147, 291-299.
- 39. Y. Ai, M. Ng, E. Y.-H. Hong, A. K.-W. Chan, Z.-W. Wei, Y. Li and V. W.-W. Yam, *Chem.-Eur. J.*, 2018, **24**, 11611-11618.
- 40. H.-L. Au-Yeung, S. Y.-L. Leung and V. W.-W. Yam, *Chem. Commun.*, 2018, **54**, 4128-4131.
- 41. S. Fang, S. Y. L. Leung, Y. Li and V. W. W. Yam, Chem.-Eur. J., 2018, 24, 15596-15602.
- 42. T. Ikeda, K. Hirano and T. Haino, Mater. Chem. Front., 2018, 2, 468-474.
- 43. S. S. Pasha, L. Fageria, C. Climent, N. P. Rath, P. Alemany, R. Chowdhury, A. Roy and I. R. Laskar, *Dalton Trans.*, 2018, **47**, 4613-4624.
- 44. J. Song, M. Wang, X. Zhou and H. Xiang, Chem.-Eur. J., 2018, 24, 7128-7132.
- 45. J. Wu, Y. Li, C. Tan, X. Wang, Y. Zhang, J. Song, J. Qu and W.-Y. Wong, *Chem. Commun.*, 2018, **54**, 11144-11147.
- J. Zhao, Z. Feng, D. Zhong, X. Yang, Y. Wu, G. Zhou and Z. Wu, *Chem. Mater.*, 2018, 30, 929-946.
- 47. Y. Ai, Y. Li, H. L.-K. Fu, A. K.-W. Chan and V. W.-W. Yam, *Chem.–Eur. J.*, 2019, **25**, 5251-5258.
- 48. C. Cuerva, J. A. Campo, M. Cano and C. Lodeiro, Chem.-Eur. J., 2019, 25, 12046-12051.
- 49. M. Ikeshita, M. Ito and T. Naota, Eur. J. Inorg. Chem., 2019, 3561-3571.
- 50. A. S.-Y. Law, L. C.-C. Lee, M. C.-L. Yeung, K. K.-W. Lo and V. W.-W. Yam, J. Am. Chem. Soc., 2019, 141, 18570-18577.

- 51. N. H.-T. Le, R. Inoue, S. Kawamorita, N. Komiya and T. Naota, *Inorg. Chem.*, 2019, **58**, 9076-9084.
- S. Lin, H. Pan, L. Li, R. Liao, S. Yu, Q. Zhao, H. Sun and W. Huang, J. Mater. Chem. C, 2019, 7, 7893-7899.
- 53. L. Qu, C. Li, G. Shen, F. Gou, J. Song, M. Wang, X. Xu, X. Zhou and H. Xiang, *Mater. Chem. Front.*, 2019, **3**, 1199-1208.
- J. Song, M. Wang, X. Xu, L. Qu, X. Zhou and H. Xiang, *Dalton Trans.*, 2019, 48, 4420-4428.
- 55. S. Wang, W. Li, Y. Yu, J. Liu and C. Zhang, *Acta Physico-Chimica Sinica*, 2019, **35**, 1276-1281.
- 56. C. Cuerva, J. A. Campo, M. Cano, M. Caño-García, J. M. Otón and C. Lodeiro, *Dyes Pigments*, 2020, **175**, 108098.
- B. Guo, M. Wu, Q. Shi, T. Dai, S. Xu, J. Jiang and B. Liu, *Chem. Mater.*, 2020, **32**, 4681-4691.
- X. Hao, B. Xiong, M. Ni, B. Tang, Y. Ma, H. Peng, X. Zhou, I. I. Smalyukh and X. Xie, ACS Appl. Mater. Interfaces, 2020, 12, 53058-53066.
- 59. T. Hirao, H. Tsukamoto, T. Ikeda and T. Haino, Chem. Commun., 2020, 56, 1137-1140.
- Z. Jiang, J. Wang, T. Gao, J. Ma, Z. Liu and R. Chen, ACS Appl. Mater. Interfaces, 2020, 12, 9520-9527.
- M. Martínez-Junquera, R. Lara, E. Lalinde and M. T. Moreno, *J. Mater. Chem. C*, 2020, 8, 7221-7233.
- 62. W. J. Mullin, H. Qin, T. Mani, P. Müller, M. J. Panzer and S. W. Thomas, *Chem. Commun.*, 2020, **56**, 6854-6857.
- X. Wu, D.-G. Chen, D. Liu, S.-H. Liu, S.-W. Shen, C.-I. Wu, G. Xie, J. Zhou, Z.-X. Huang, C.-Y. Huang, S.-J. Su, W. Zhu and P.-T. Chou, *J. Am. Chem. Soc.*, 2020, 142, 7469-7479.
- B. Yang, H. Ni, H. Wang, Y. Hu, K. Luo and W. Yu, J Phys. Chem. C, 2020, 124, 23879-23887.
- 65. X. Yang, L. Yue, Y. Yu, B. Liu, J. Dang, Y. Sun, G. Zhou, Z. Wu and W.-Y. Wong, *Adv. Opt. Mater.*, 2020, **8**, 2000079.
- 66. S. Zhu, J. Hu, S. Zhai, Y. Wang, Z. Xu, R. Liu and H. Zhu, *Inorg. Chem. Front.*, 2020, 7, 4677-4686.
- 67. X. Chen, Y. Sun, X. Zhao, X. Deng, X. Yang, Y. Sun, G. Zhou and Z. Wu, *Mater. Chem. Front.*, 2021, **5**, 4160-4173.
- 68. C. Cuerva, J. Fernández-Lodeiro, M. Cano, J. L. Capelo-Martínez and C. Lodeiro, *Nano Res.*, 2021, **14**, 245-254.
- 69. B. Das and P. Gupta, *Dalton Trans.*, 2021, 50, 10225-10236.
- L. Di, Z. Xia, H. Wang, Y. Xing and Z. Yang, Sensor. Actual. B-Chem., 2021, 326, 128987.
- 71. Z.-L. Gong, K. Tang and Y.-W. Zhong, Inorg. Chem., 2021, 60, 6607-6615.
- 72. R. Inoue, T. Naota and M. Ehara, Chem. -Asian J., 2021, 16, 3129-3140.
- A. S.-Y. Law, L. C.-C. Lee, K. K.-W. Lo and V. W.-W. Yam, J. Am. Chem. Soc., 2021, 143, 5396-5405.
- 74. M. Martínez-Junquera, E. Lalinde, M. T. Moreno, E. Alfaro-Arnedo, I. P. López, I. M. Larráyoz and J. G. Pichel, *Dalton Trans.*, 2021, **50**, 4539-4554.

- 75. W. Tao, Y. Chen, L. Lu and C. Liu, Tetrahedron Lett., 2021, 66, 152802.
- L. Wang, H. Xiao, L. Qu, J. Song, W. Zhou, X. Zhou, H. Xiang and Z.-X. Xu, *Inorg. Chem.*, 2021, 60, 13557-13566.
- 77. H. Yang, H. Li, L. Yue, X. Chen, D. Song, X. Yang, Y. Sun, G. Zhou and Z. Wu, *J. Mater. Chem. C*, 2021, **9**, 2334-2349.
- 78. L. Di, Z. Wang, Z. Yu, Q. Cao, H. Wang, Y. Xing, Z. Yang and Z. Xia, *Dyes Pigments*, 2022, **205**, 110582.
- J. Song, H. Xiao, L. Fang, L. Qu, X. Zhou, Z.-X. Xu, C. Yang and H. Xiang, J. Am. Chem. Soc., 2022, 144, 2233-2244.
- Y. Sun, C. Zhu, S. Liu, W. Wang, X. Chen, G. Zhou, X. Yang and W.-Y. Wong, *Chem. Eng. J.*, 2022, 449, 137457.
- H.-H. Zhang, S.-X. Wu, Y.-Q. Wang, T.-G. Xie, S.-S. Sun, Y.-L. Liu, L.-Z. Han, X.-P. Zhang and Z.-F. Shi, *Dyes Pigments*, 2022, **197**, 109857.
- 82. E. K.-H. Wong, M. H.-Y. Chan, W. K. Tang, M.-Y. Leung and V. W.-W. Yam, J. Am. Chem. Soc., 2022, 144, 5424-5434.
- 83. B. Li, Y. Wang, M. H.-Y. Chan, M. Pan, Y. Li and V. W.-W. Yam, *Angew. Chem. Int. Ed.*, 2022, **61**, e202210703.
- Z. Fang, D. Chen, J. Xu, J. Wang, S. Li, X. Tian, Y. Tian and Q. Zhang, *Anal. Chem.*, 2022, 94, 14769-14777.
- 85. H.-H. Zhang, J. Jing, G. Xu, Y.-X. Song, S.-X. Wu, X.-H. Chen, D.-S. Zhang, X.-P. Zhang and Z.-F. Shi, *Heliyon*, 2022, **8**, e11358.
- 86. C. Li, L. Xu, X. Chen, Z. Chi, B. Xu and J. Zhao, Dyes Pigments, 2023, 209, 110912.
- 87. M.-J. Kim, M. Chae, M. Ahn and K.-R. Wee, Adv. Opt. Mater., 2023, 11, 2202983.
- N. Zhou, C. Zou, S. Suo, Y. Liu, J. Lin, X. Zhang, M. Shi, X. Chang and W. Lu, *Dalton Trans.*, 2023, 52, 5503-5513.
- J. Song, H. Xiao, B. Zhang, L. Qu, X. Zhou, P. Hu, Z.-X. Xu and H. Xiang, *Angew. Chem. Int. Ed.*, 2023, 62, e202302011.
- D. Tauchi, T. Koida, Y. Nojima, M. Hasegawa, Y. Mazaki, A. Inagaki, K.-i. Sugiura, Y. Nagaya, K. Tsubaki, T. Shiga, Y. Nagata and H. Nishikawa, *Chem. Commun.*, 2023, 59, 4004-4007.
- S. T. Borah, B. Das, P. Biswas, A. I. Mallick and P. Gupta, *Dalton Trans.*, 2023, 52, 2282-2292.
- 92. A. Lázaro, R. Bosque, J. S. Ward, K. Rissanen, M. Crespo and L. Rodríguez, *Inorg. Chem.*, 2023, **62**, 2000-2012.
- 93. Y. Yan, W. Jia, L. Zhang and C. Liu, Dyes Pigments, 2023, 220, 111719.
- J. Wu, B. Xu, Y. Xu, L. Yue, J. Chen, G. Xie and J. Zhao, *Inorg. Chem.*, 2023, 62, 19142-19152.