Supporting Information

From photocatalysis to photon-phonon co-driven catalysis for methanol

reforming to hydrogen and valuable by-products

Hui Wang^{1,2}, Eleana Harkou³, Achilleas Constantinou³, Sultan M. Al-Salemc⁴, George Manos², Junwang Tang^{2,5,6*}

E-mail: jwtang@tsinghua.edu.cn.

^{1.} College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China.

^{2.} Department of Chemical Engineering, University College London (UCL), London, WC1E 7JE, United Kingdom.

^{3.} Department of Chemical Engineering, Cyprus University of Technology, 57 Corner of Athinon and Anexartisias, Limassol 3036, Cyprus.

^{4.} Environment and Life Sciences Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait.

^{5.} Industrial Catalysis Centre, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.

^{6.} Ordos Laboratory, Inner Mongolia, 017000, China.

 Table S1 Representative thermocatalysts for methanol-involved hydrogen production.

Catalyst	T (°C)/P (atm)	CO selectivity (%)	Conversion (%)	H ₂ selectivity (%)	H ₂ activity (mmol g ⁻¹ h ⁻¹)	S/M ratio	Ref.
Cu/ZrAl _{0.4}	270/1	1.23 (300 °C)	96	-	460.1 (220 °C)	1.5	1
Ru/TiO ₂ /monolith	300/1	5.4	98.9	97.8	-	2	2
15Pt/15In ₂ O ₃ /CeO ₂	350/1	-	99.9	-	-	1.4	3
1Cu1Zr/AZ	400/-	3.2	90.6	71.3	655.1	1.2	4
AlCuFe oxide	220/-	0.0	89.86	95.7	-	1.2	5
Pt/CeO ₂ -NR	350/1	6.2	100	75	-	-	6
Cu-1In/SiO ₂	260/1	0.08	71.2	-	301	1.3	7
Cu/ZnTiO ₃	300/1	0.0	99.9	>90	5.46	2	8
0.5Zn-Pt/MOC	160/1	-	65.9	-	106.9	3	9
CuZnAl-5Mg	200/1	-	-	-	172.6	1	10
CuCe-MC (IMP)	250	15	68	>95	-	3	11
PdZn(AI)O/MCM- 48-2	230/-	0.6	73.8	99	281.3	1	12
CuPd-A	220/1	3	85	-	86.3 (220 °C)	1.5	13
Pd/In ₂ O ₃ /CeO ₂ -r	250/-	<1	96	-	-	1.4	14
0.1%Pd/ZnAl ₂ O ₄	280/-	2	73	-	41 (20 °C)	1.1	15
CuZn/MCM-41 (COMCM)	300	<2	88	91	-	3	16

Table S2 Selected representative photocatalysts without a cocatalyst for methanol based H₂ production operated at room temperature.

Catalysts	CH ₃ OH concentration	Light source	H ₂ activity (mmol ⁻¹ g ⁻¹ h ⁻¹)	Ref.
TiO ₂ nanosheets	30%	300 W Xe lamp	0.895	17
In ₂ TiO ₅	33.3%	450 W Hg Lamp	0.44	18
Cu ₂ O	76%	UV–Vis 300 W Xe	0.42	19
ZnO	76%	UV–Vis 300 W Xe	3.1	19
ZnS	30%	Hg (290 nm)	1.67	20
C ₃ N ₄	76%	UV–Vis 300 W Xe	1.5	19
MgO	100%	1000 W Hg lamp	0.328	21
MoS ₂	20%	300 W Xe lamp	62	22
SrTiO ₃	100%	300 W Xe lamp	0.164	23
UiO-66(NH ₂)	25%	Xe-Hg Lamp	0.308	24

Table S3 Representative heterojunction or cocatalysts/photocatalyst structure for methanol based H₂ production and the apparent quantum efficiency (AQE).

	Photocatalyst	Cocatalysts	CH₃OH concentration	Light source	H ₂ activity (mmol ⁻¹ g ⁻¹ h ⁻¹)	AQE	Ref.
	TiO ₂ /BiYO ₃	/	20%	300 W Xe lamp	0.159	13.4% (380 nm)	25
	Cu ₂ O/TiO ₂	/	30%	full-acr Xe lamp	11.0	15.1% (365 nm)	26
	TiO ₂ –Co ₃ O ₄	/	25%	300W Xe lamp	2.9	/	27
	gC ₃ N ₄ /TiO ₂	/	25%	500 W Xe lamp	0.76	/	28
Heterojunction without cocatalysts	NiSe/TiO ₂	/	10%	300 W Xe lamp	1.1	/	29
	TiO ₂ @SiO ₂	/	25%	300 W Xe arc lamp	0.4	/	30
	MoS ₂ /TiO ₂	/	10%	300W Xe-arc lamp	2.1	6.4% (360 nm)	31
	MoS ₂ /CdS	/	76%	300 W Xe-lamp, λ ≥ 420 nm	12.0	5% (450 nm)	19
	Anatase/rutile TiO2nanofiber	/	20%	300 W Xe lamp	6.48	20.9 (365 nm)	32
	TiO ₂	i-Pt	20%	Xe lamp	19.7	8.6% (375 nm)	33
	Ultrathin TiO ₂	_{1%} Pt	30%	300 W Xe lamp	17.9	28.5% (350 nm)	17
	TiO ₂ -ZSM	_{2%} Pt	10%	300 W Xe lamp	10.0	12.6% (365 nm)	34
	Black TiO ₂	Pt	50%	Xe lamp AM 1.5	10.0	/	35
	NYTiO ₂	_{0.188%} Pt	50%	200 W Hg lamp	20.9	/	36

	TiO ₂ /CNT	_{0.5%} Pt	50%	200 W Hg lamp	40.6	/	37
	Co ₃ O ₄ -TiO ₂	1%Pt	25%	300 W Hg lamp	5.28	11.3% (365 nm)	27
	CaNbO ₆	Rh	10%	500 W Xe lamp	76.96	65% (300 nm)	38
	Na-ZnO	_{2%} Pt	10%	300 W Xe lamp	1.38	13.5 % (350 nm)	39
	g-C ₃ N ₄	_{3%} Pt	10%	300 W Xe lamp	0.66	6.8 % (420 nm)	40
Noble metal cocatalysts	g-C ₃ N ₄	Rh	10%	Xe Arc Lamp (visible)	0.015	/	41
	CuO	_{1%} Pt	25%	300 W Xe lamp	6.8	/	42
	TiO ₂	1%Pd	50%	400 W Hg	1.20	/	43
	TiO ₂ /WO ₃	Au	36%	300 W Xe-lamp	5.39	/	44
	g-C ₃ N ₄	Ag NPs	100%	300 W Xe-lamp, 350–780 nm	0.15	/	45
	SrTiO ₃	_{2%} Ag	50%	UV low pressure Hg lamp	9.26	/	46
	TiO ₂	1%PtO	30%	300 W Xe lamp	4.4	/	47
	BaTiO ₃	AgCl/Ag	10%	300 W Xe lamp	4.53	/	48
	TiO ₂	_{0.75%} Cu	67%	300 W Xe lamp	101.7	56% (365nm)	49
	TiO ₂	CuNWs	25%	UV-LED lamp	5.1	17.2% (365 nm)	50
	TiO ₂	_{0.75%} Cu	33%	Xe lamp(MAX-302)	16.6	45.5% (340 nm)	51
	TiO ₂	Cu	50%	Xe lamp(MAX-302)	17.8	16.4% (365 nm)	52
	TiO ₂	_{0.5%} Ni	10%	UV SB-100P/F Lamp	15.7	22.2% (365 nm)	53

	CdS	_{0.5%} Ni	100%	300 W Xe-lamp, λ ≥ 420 nm	7.7	/	54
	TiO ₂	_{0.4%} Ni ₂ P	50%	300 W Xe lamp	9.38	11.6 % (360 nm)	55
	CdS	Ni ₂ P	100%	300 W Xe lamp, λ ≥ 420 nm	0.58	/	56
Non-noble metal cocatalysts	$Zn_2In_2S_5$	СоР	76%	300W Xe lamp	5.5	/	57
	TiO ₂	Ni(OH) ₂	25%	UV-LEDs (3 W, 365 nm)	3.1	12.4% (365 nm)	58
	MoS ₂	Cd	20%	300 W Xe-lamp, λ ≥ 420 nm	33.2	/	22
	TiO ₂	_{3%} Li	20%	300 W Xe lamp	41.8	/	59
	CeO ₂	Fe	10%	125 W Hg lamp	12.82	9.1 % (420 nm)	60
	TiO ₂	Rh-Cu	20%	UV-pen ray Hg lamp 365 nm	5.5	/	61
Bimetallic	TiO ₂	Ag-Au	25%	UV-300 W Hg lamp	0.7	3.3% (420 nm)	62
cocatalysts	TiO ₂	Ni ₁ Pd ₁₀	50%	400 W mercury arc (Eiko-sha 400)	4.2	41 % (355 nm)	63
	TiO ₂	PtCu	70%	LED 365nm	476.8	99.2 % (365 nm)	64

Catalysts	CH ₃ OH concentration	Light source	Product	H ₂ activity	Selectivity	Ref.
				(mmol g ⁻¹ h ⁻¹)		
0.5%Pt/TiO ₂ /10 %CNT	40%	Fe-halogen-Hg	нсно	9.0	31%	65
0.5%Pt/ ^{P25} TiO ₂	40%	Fe-halogen-Hg	нсно	7.0	80%	65
1%Pt/ ^{P25} TiO ₂	40%	Hg lamp	НСНО	7.16	61%	66
1%Au/ ^{p25} TiO ₂	40%	Hg lamp	нсно	5.2	64%	66
1%Ag/ ^{P25} TiO ₂	40%	Hg lamp	нсно	0.81	86%	66
PtCu- TiO₂	70%	365 LED lamp	НСНО	476.8	99%	64
^{P25} TiO ₂	40%	Hg lamp	нсно	0.48	77%	66
FP- _{0.5%} Pt	40%	Hg arc lamp	нсно	17.38		19
ZnO	76%	300W Xe lamp	НСНО	3.0	91%	19

Table S4 The oxidation products' selectivity on the representative photocatalysts operated at different temperatures.

ZnS	76%	300W Xe lamp	НСНО	2.2	43%	19
MoS ₂ foam/CdS	76%	300W Xe lamp	НСНО	2.5	10%	19
g-C ₃ N ₄	76%	300W Xe lamp	НСНО	0.79	64%	19
Bi ₂ WO ₆	75%	300W Hg lamp Vis	НСНО	0.008		67
MoS ₂ foam/CdS	76%	300 W Xe-lamp,	HOCH ₂ CH ₂ OH	11	90%	19
ZnS	76%	300W Xe lamp	HOCH ₂ CH ₂ OH	1.3	54%	19
CdS	76%	300W Xe lamp	HOCH ₂ CH ₂ OH	0.46	71%	57
CoP/Zn ₂ In ₂ S ₅	76%	300W Xe lamp	HOCH ₂ CH ₂ OH	1.1	84%	57
Ag/TiO ₂	100%	500 W Hg lamp 365nm	HCOOCH ₃	7.3	80%	68
Au/TiO ₂	100%	500 W Hg lamp 365nm	HCOOCH ₃	5.9	75%	68
Cu/TiO ₂	100%	500 W Hg lamp	HCOOCH ₃	4.4	55%	69
CuO/CuZnAl	100%	500 W Hg lamp	HCOOCH ₃	5.8	60%	70

GaN	100%	300 W Xe lamp	CH₃CH₂OH	4.05	100%	23
		for				

References

- 1 C. Mateos-Pedrero, C. Azenha, P. T. Pacheco, J. M. Sousa and A. Mendes, *Appl. Catal. B Environ.*, 2020, **277**, 119243.
- 2 P. Tahay, Y. Khani, M. Jabari, F. Bahadoran and N. Safari, *Appl. Catal. A Gen.*, 2018, **554**, 44–53.
- 3 V. Shanmugam, S. Neuberg, R. Zapf, H. Pennemann and G. Kolb, *Int. J. Hydrogen Energy*, 2020, **45**, 1658–1670.
- 4 M. Chen, G. Sun, Y. Wang, D. Liang, C. Li, J. Wang and Q. Liu, *Fuel*, 2022, **314**, 122733.
- 5 F. Bai, T. Zhang, W. Qiao, L. Zhang, H. Ma, H. Sun, H. Guo, S. Ma, T. Ren and Z. He, *J. Alloys Compd.*, 2021, **885**, 160854.
- A. Claudio-Piedras, R. M. Ramírez-Zamora, B. C. Alcántar-Vázquez, A. Gutiérrez-Martínez, G. Mondragón-Galicia, F. Morales-Anzures and R. Pérez-Hernández, *Catal. Today*, 2021, 360, 55–62.
- 7 F. Bossola, T. Roongcharoen, M. Coduri, C. Evangelisti, F. Somodi, L. Sementa, A. Fortunelli and V. Dal Santo, *Appl. Catal. B Environ.*, 2021, **297**, 120398.
- 8 P. Tahay, Y. Khani, M. Jabari, F. Bahadoran, N. Safari and A. Zamanian, *Int. J. Hydrogen Energy*, 2020, **45**, 9484–9495.
- 9 F. Cai, J. J. Ibrahim, Y. Fu, W. Kong, J. Zhang and Y. Sun, *Appl. Catal. B Environ.*, 2020, **264**, 118500.
- 10 Z. Cheng, W. Zhou, G. Lan, X. Sun, X. Wang, C. Jiang and Y. Li, *J. Energy Chem.*, 2021, **63**, 550–557.
- 11 S. Bepari, M. Khan, X. Li, N. Mohammad and D. Kuila, *Top. Catal.*, 2023, **66**, 375–392.
- 12 Y. Liu, Int. J. Hydrogen Energy, 2022, 48, 6418–6435.
- 13 C. Azenha, T. Lagarteira, C. Mateos-Pedrero and A. Mendes, *Int. J. Hydrogen Energy*, 2021, **46**, 17490–17499.
- 14 J. Zhang, Y. Men, Y. Wang, L. Liao and S. Liu, Int. J. Hydrogen Energy, 2023, **51**, 1185–1199.
- 15 L. Liu, Y. Lin, Y. Hu, Z. Lin, S. Lin, M. Du, L. Zhang, X. Zhang, J. Lin, Z. Zhang, H. Xiong, S. Wang, B. Ge, S. Wan and Y. Wang, *ACS Catal.*, 2022, **12**, 2714–2721.
- 16 O. O. Fasanya, A. Y. Atta, M. T. Z. Myint, J. Dutta and B. Y. Jibril, *Int. J. Hydrogen Energy*, 2021, **46**, 3539–3553.
- 17 Z. Ding, H. Hu, J. Xu, P. Lin, C. Cui, D. Qian, P. Wang, L. Xu, J. Pan and C. Li, *Int. J. Hydrogen Energy*, 2018, **43**, 13190–13199.
- 18 M. R. Pai, A. M. Singhal, A. M. Banerjee, R. Tewari, G. K. Dey, A. K. Tyagi and S. R. Bharadwaj, *J. Nanosci. Nanotechnol.*, 2012, **12**, 1957–1966.
- 19 S. Xie, Z. Shen, J. Deng, P. Guo, Q. Zhang, H. Zhang, C. Ma, Z. Jiang, J. Cheng, D. Deng and Y. Wang, *Nat. Commun.*, 2018, **9**, 1–7.
- 20 S. Yanagida, T. Azuma and H. Sakurai, *Chem. Lett.*, 1982, **11**, 1069–1070.
- 21 Z. Liu, Z. Yin, C. Cox, M. Bosman, X. Qian, N. Li, H. Zhao, Y. Du, J. Li and D. G. Nocera, *Sci. Adv.*, 2016, **2**, e1501425.
- 22 K. Chang, X. Hai, H. Pang, H. Zhang, L. Shi, G. Liu, H. Liu, G. Zhao, M. Li and J. Ye, *Adv. Mater.*, 2016, **28**, 10033–10041.
- 23 M. Liu, Y. Wang, M. Liu, Y. Wang, X. Kong, R. T. Rashid, S. Chu and C. Li, *Chem*, 2019, **5**, 858–867.
- 24 C. G. Silva, I. Luz, F. X. Llabrøs and A. Corma, *Chem. Eur. J.* 2010, **16**, 11133–11138.
- 25 Z. Qin, L. Chen, R. Ma, R. Tomovska, X. Luo, X. Xie, T. Su and H. Ji, *J. Alloys Compd.*, 2020, **836**, 155428.
- 26 S. Lv, Y. Wang, Y. Zhou, Q. Liu, C. Song and D. Wang, J. Alloys Compd., 2021, 868, 159144.
- 27 A. Meng, J. Zhang, D. Xu, B. Cheng and J. Yu, *Appl. Catal. B Environ.*, 2016, **198**, 286–294.
- A. Qu, X. Xu, H. Xie, Y. Zhang, Y. Li and J. Wang, *Mater. Res. Bull.*, 2016, **80**, 167–176.
- 29 H. Gong, Q. Liu and C. Huang, *Int. J. Hydrogen Energy*, 2019, **44**, 4821–4831.
- 30 X. Yue, H. Li, Y. Qiu, Z. Xiao, X. Yu, C. Xue and J. Xiang, J. Solid State Chem., 2021, **300**, 122250.
- 31 Y. J. Yuan, Z. J. Ye, H. W. Lu, B. Hu, Y. H. Li, D. Q. Chen, J. S. Zhong, Z. T. Yu and Z. G. Zou, ACS *Catal.*, 2016, **6**, 532–541.
- 32 F. Xu, W. Xiao, B. Cheng and J. Yu, Int. J. Hydrogen Energy, 2014, **39**, 15394–15402.
- 33 J. Liu, G. Liu, M. Li, W. Shen, Z. Liu, J. Wang, J. Zhao, L. Jiang and Y. Song, *Energy Environ. Sci.*, 2010, **3**, 1503–1506.
- 34 C. Jiang, K. Y. Lee, C. M. A. Parlett, M. K. Bayazit, C. C. Lau, Q. Ruan, S. J. A. Moniz, A. F. Lee and J. Tang, *Appl. Catal. A Gen.*, 2016, **521**, 133–139.

- 35 X. Chen, L. Liu, P. Y. Yu and S. S. Mao, *Science (80-.).*, 2011, **331**, 746–750.
- 36 J. Jin, C. Wang, X. N. Ren, S. Z. Huang, M. Wu, L. H. Chen, T. Hasan, B. J. Wang, Y. Li and B. L. Su, *Nano Energy*, 2017, **38**, 118–126.
- 37 A. Moya, A. Cherevan, S. Marchesan, P. Gebhardt, M. Prato, D. Eder and J. J. Vilatela, *Appl. Catal. B Environ.*, 2015, **179**, 574–582.
- 38 Y. Okamoto, S. Ida, J. Hyodo, H. Hagiwara and T. Ishihara, *J. Am. Chem. Soc.*, 2011, **133**, 18034– 18037.
- 39 Z. Wu, Y. Li, L. Gao, S. Wang and G. Fu, *Dalt. Trans.*, 2016, **45**, 11145–11149.
- 40 L. Lin, W. Ren, C. Wang, A. M. Asiri, J. Zhang and X. Wang, *Appl. Catal. B Environ.*, 2018, **231**, 234–241.
- 41 Y. Zhang, D. A. J. M. Ligthart, X. Quek, L. Gao and E. J. M. Hensen, *Int. J. Hydrogen Energy*, 2014, **39**, 11537–11546.
- 42 A. A. Yadav, Y. M. Hunge and S. Kang, *Mater. Res. Bull.*, 2021, **133**, 111026.
- 43 M. Y. Qi, M. Conte, M. Anpo, Z. R. Tang and Y. J. Xu, *Chem. Rev.*, 2021, **121**, 13051–13085.
- 44 H. Gao, P. Zhang, J. Zhao, Y. Zhang and J. Hu, *Appl. Catal. B, Environ.*, 2017, **210**, 297–305.
- 45 Y. Liu, S. Yang, S. N. Yin, L. Feng, Y. Zang and H. Xue, *Chem. Eng. J.*, 2018, **334**, 2401–2407.
- 46 J. E. Ramos-Sanchez, R. Camposeco, S. W. Lee and V. Rodríguez-González, *Catal. Today*, 2020, **341**, 112–119.
- 47 Y. Li, J. Xing, Z. Chen, Z. Li, F. Tian, L. Zheng, H. Wang, P. Hu, H. Zhao and H.Yang, *Nat. Commun.*, 2013, **4**, 1–7.
- 48 Z. Jiang, J. Pan, B. Wang and C. Li, *Appl. Surf. Sci.*, 2018, **436**, 519–526.
- 49 Y. Zhang, J. Zhao, H. Wang, B. Xiao, W. Zhang, X. Zhao, T. Lv, M. Thangamuthu, J. Zhang, Y. Guo, J. Ma, L. Lin, J. Tang, R. Huang and Q. Liu, *Nat. Commun.*, 2022, **13**, 58.
- 50 S. Xiao, P. Liu, W. Zhu, G. Li, D. Zhang and H. Li, *Nano Lett.*, 2015, **15**, 4853–4858.
- 51 B. H. Lee, S. Park, M. Kim, A. K. Sinha, S. C. Lee, E. Jung, W. J. Chang, K. S. Lee, J. H. Kim, S. P. Cho, H. Kim, K. T. Nam and T. Hyeon, *Nat. Mater.*, 2019, **18**, 620–626.
- 52 F. Yu, L. Chen, X. Li, X. Shen, H. Zhao, C. Duan and Q. Chen, *ACS Appl. Mater. Interfaces*, 2021, **13**, 18619–18626.
- 53 W. T. Chen, A. Chan, D. Sun-Waterhouse, J. Llorca, H. Idriss and G. I. N. Waterhouse, J. Catal., 2018, **367**, 27–42.
- 54 Z. Chai, T. T. Zeng, Q. Li, L. Q. Lu, W. J. Xiao and D. Xu, *J. Am. Chem. Soc.*, 2016, **138**, 10128–10131.
- 55 Y. Chen and Z. Qin, *Catal. Sci. Technol.*, 2016, **6**, 8212–8221.
- 56 M. Zhou, J. Chen, Y. Zhang, M. Jiang, S. Xu, Q. Liang and Z. Li, *J. Alloys Compd.*, 2020, **817**, 152796.
- 57 H. Zhang, S. Xie, J. Hu, X. Wu, Q. Zhang, J. Cheng and Y. Wang, *Chem. Commun.*, 2020, **56**, 1776– 1779.
- 58 J. Yu, Y. Hai and B. Cheng, J. Phys. Chem. C, 2011, **115**, 4953–4958.
- 59 G. Ou, Y. Xu, B. Wen, R. Lin, B. Ge, Y. Tang, Y. Liang, C. Yang, K. Huang, D. Zu, R. Yu, W. Chen, J. Li, H. Wu, L. M. Liu and Y. Li, *Nat. Commun.*, 2018, **9**, 1–9.
- 60 S. Mansingh, D. K. Padhi and K. M. Parida, *Int. J. Hydrogen Energy*, 2016, **41**, 14133–14146.
- 61 R. Camposeco, M. Hinojosa-Reyes and R. Zanella, *Int. J. Hydrogen Energy*, 2021, **46**, 26074–26086.
- 62 Z. Wu, Y. Li, L. Gao, S. Wang and G. Fu, *Dalt. Trans.*, 2016, **45**, 11145–11149.
- 63 A. L. Luna, D. Dragoe, K. Wang, P. Beaunier, E. Kowalska, B. Ohtani, D. Bahena Uribe, M. A. Valenzuela, H. Remita and C. Colbeau-Justin, *J. Phys. Chem. C*, 2017, **121**, 14302–14311.
- 64 H. Wang, H. Qi, X. Sun, S. Jia, X. Li, T. J. Miao, L. Xiong, S. Wang, X. Zhang, X. Liu, A. Wang, T. Zhang, W. Huang and J. Tang, *Nat. Mater.*, 2023, **22**, 619–626.
- 65 G. Luca, D. Ferri and E. Selli, J. Catal., 2011, 280, 168–177.
- 66 G. L. Chiarello, M. H. Aguirre and E. Selli, *J. Catal.*, 2010, **273**, 182–190.
- 67 Z. Li, A. Ivanenko, X. Meng and Z. Zhang, J. Hazard. Mater., 2019, **380**, 120822.
- 68 C. Han, X. Yang, G. Gao, J. Wang, H. Lu, J. Liu, M. Tong and X. Liang, *Green Chem.*, 2014, **16**, 3603–3615.
- 69 P. Lisowski, J. C. Colmenares, D. Łomot, O. Chernyayeva and D. Lisovytskiy, J. Mol. Catal. A Chem., 2016, **411**, 247–256.
- 70 X. Liang, X. Yang, G. Gao, C. Li, Y. Li, W. Zhang, X. Chen, Y. Zhang, B. Zhang, Y. Lei and Q. Shi, *J. Catal.*, 2016, **339**, 68–76.