Supplementary Information (SI) for Chemical Society Reviews. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Ampere-level electroreduction of CO₂ and CO

Qian Sun, ¹ Chen Jia, ¹ Haochen Lu, ¹ Mengmeng Yang, ¹ Ruirui Liu, ¹ Dan M. Villamanca, ² Yong Zhao, ², * and Chuan Zhao, ¹, *

¹ School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia ² Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, NSW 2308, Australia

* Corresponding author. E-mail: yong.zhao@newcastle.edu.au; chuan.zhao@unsw.edu.au

Catalysts	Cataly st loadin g (mg cm ⁻²)	Electrolysis window (cm²)	Electrolyte	Potential (V vs RHE) / Cell voltage (V)	FE _{main} product	j _{main product} (mA cm ⁻²)	Maximu m operatio n current (mA cm ⁻ ²)	Energy efficienc y (%)	Stabilit Y (h)	Ref.
Ni-N/C	3.0 ±	Flow cell	1 M KOH	-0.9	89.3% (CO)	447.6 mA			6 h @ -	1
	0.1	(1)				cm ⁻² @ −1			1 V vs	
						V vs RHE			RHE	
O–Ni–N _x –C	1	Flow cell (2*0.5)	1 M KOH		> 96% (CO)	944.1	1000			2
Ni-SAC-CNT	0.8	Flow cell (2)	1 М КОН	-0.4	> 90% (CO)	~450	800		8 h @ 200 mA cm ⁻²	3
NiSA	1.25	MEA (100)	0.1 M KHCO ₃	-2.8	96% (CO)	7680	8000 (total)		6 h @ 8000 mA cm ⁻²	4
IPCF@CS	0.8	Flow cell (1)	Catholyte: 0.5 M K_2SO_4 Anolyte: 0.5 M H_2SO_4	-1.07 to -1.58	> 99.08% (CO)	572			16 h @ 200 mA cm ⁻²	5
Ni ₂ NC	1	Flow cell	1 М КОН	-0.8	99% (CO)	1000			30 h @ -0.37 V vs RHE	6

Table S1. Summary of catalysts performances for CO2RR at ampere-level current

Ni-N-C	2	Flow cell	1 M KOH	-0.96	98% (CO)	726		70 h @	7
		(0.25)						-0.6 V	
								vs RHE	
Ni-NBr-C	0.5	MEA	1 M KOH	2.66±0.2	97% (CO)		897.5	85 h @	8
								350	
								mA	
								cm ⁻²	
A-Ni@CMK	1	Flow cell	1 M KOH	-0.5	100% (CO)	366		5	9
Ni _{NC&SA} /N-C		Flow cell	1 M KOH	-1.15	100% (CO)	969	1000	10 h @	10
								200	
								mA	
								cm ⁻²	
			1 M KCl	-1.15	100%	860	900		
			1.0 M	-2.25	100%	801	800		-
			KCl+H ₂ SO ₄						
			(pH=2)						
Ni-ASCs/4.3 wt.%	1.5	Flow cell	1 M KOH	-1.27	95.1% (CO)	533		2.2 h	11
								@	
								-0.77	
								V vs	
								RHE	
		MEA	1 M KHCO ₃	3.5	100% (CO)	450.3		10 h @	-
								3.3 V	
Ni/N/C	0.4	Flow cell	1 M KOH	-1.4	80.4% (CO)	528		12 h @	12
								200	
								mA	
								cm ⁻²	
Ni–N ₅ –C	0.3	Flow cell (0.2)	1 M KOH	-2.4	99.6% (CO)	1230	1260	100 h	13
								@ -2.2	
								V	

NiPc/NMCN		MEA (1)	1 M KOH		60% (CO)	528	2000			14
Ni ₆ @Ni-N ₃		Flow cell	1 M KOH	-1.15	99.7% (CO)	498.5	500			15
O–Ni–N _x –GC		Flow cell	1 M KOH		> 96% (CO)	960.5	1000		100 h	2
									@ 140	
									mA	
									cm⁻²	
									34 h @	
									200	
									mA	
									cm ⁻²	
Cu/Ni-NC		Flow cell	1 M KOH		> 99% (CO)	489 ± 14			25 h @	16
		(1.05)							100	
									mA	
									cm⁻²	
2D meso Ni-N-C		Flow cell	0.2 M KHCO ₃		> 90% (CO)	446.2	700			17
	1	MEA	1 M KHCO ₃	2.8	> 90% (CO)	254.1	> 1000	42	50 h	
									(0.1 M	
									KHCO₃	
)	
Ni-ZIF-8	0.87	Flow cell (1)	1 M KOH		96% (CO)	1060	1200		10 h @	18
									200	
									mA	
									cm⁻²	
Ni-CN-3DF		Flow cell	1 M KOH		99.1% (CO)		500			19
					@ 300 mA					
					cm ⁻²					
		MEA (2*2)	0.5 M KHCO ₃		98.7% (CO)		350			
					@ 250 mA					
					cm ⁻²					
		MEA (5*5)	0.5 M KHCO ₃		> 98% (CO)		7 A			-

					@ 6 A (total)		(total)			
Cu ₃ N-HDD		Flow cell	1 M KOH		75.8% (C ₂₊)		700			
					@ 500 mA cm ⁻²					
Zn ^{δ+} -NC	1	Flow cell	1 M KOH		> 95% (CO)		1000		2 h @	20
									500	
									mA	
									cm ⁻²	
3D NiCu-69	1	Flow cell	1 M KOH		98% (CO)		800		22 h @	21
									100	
									mA	
									cm⁻²	
									20 h @	
									200	
									mA	
									Cm⁻²	
NICO-HDAC	1	Flow cell	1 M KHCO3	~ ~ ~	95.7% (CO)	5/4.3	600			22
ZnNi-TACs		Flow cell	1 M KOH	-0.9	98.9% (CO)	485	<u> </u>			23
CO-N-C		Flow cell	1 M KOH	-1./	99.8% (CO)	349.3	600		8	24
AI-NC	0.5	MEA (4)	1 M KHCO ₃	2.35	93.88% (CO)	605	/00		16 h @	25
									400	
									mA	
7n N/So C	0.0		1 14 404	0.0		E20 7			10 h @	26
211-11/30-0	0.8	Flow cell		-0.8	97.5% (CO)	559.7			10 H @	
Ag@ionomer		MFA (4)	$0.1 M Cs_2 CO_2$	-32	> 90% (CO)		600	~32%	> 220	27
			0.1 m 052003	5.2			000	3270	h @	
									300	
									mA	

									cm ⁻²	
CoTAAPc@CNT-12		Flow cell	0.05 M	-1.5	93.3% (CO)	568.6	609.7		8 h @	28
			H ₂ SO ₄ + 3.0	-1.82	100%	526.8			-1.35	
			M KCl						V and	
									200	
									mA	
									cm⁻²	
Ag@Ag-TCNQ	1	Flow cell	0.5 M K ₂ SO ₄		100% (CO)	497.5	700		100 h	29
			+ H ₂ SO ₄						@ 300	
									mA	
									cm ⁻²	
CoPc@GO	CoPc:	Flow cell	1 M KOH		96.33 ±	481.65 ±	500		1.5 h	30
	0.06				2.50% (CO)	12.50			@ 300	
									mA	
									cm ⁻²	
Ag@C-d	2	Flow cell	$0.5 \text{ mM H}_2\text{SO}$		> 98% (CO)		500		100 h	31
			4 +						@ 100	
			0.5 M K ₂ SO ₄						mA	
									cm ⁻²	<u>-</u>
	1	MEA	0.15 M K ₂ SO ₄		91.6% (CO)	183.2		40% @	20 h @	
								100 mA	100	
								cm ⁻²	mA	
									cm ⁻²	
CoCu DASC	1	Flow cell (1)	1 M KOH		99.1% (CO)	483	500		10 h @	32
									100	
									mA	
									cm ⁻²	
$Cu_{92}Sb_5Pd_3$	1	Flow cell (0.6)	1 M KOH		100% ±1.5%		1000		528 h	33
					(CO) @				@ 100	
					402 mA cm⁻				mA	

					2				cm ⁻²	
NiFe-DAC	1	MEA (25)	1 M KOH	2.91	98.7% (CO)		6000 (total)	87.4% @ 200 mA cm ⁻² 85.8% @ 300 mA cm ⁻²		34
		MEA (140, four cell stack)	0.1 M KHCO ₃		>98% (CO)		28000 (total)		6 h @ 200 mA cm ⁻²	
Au	0.4	MEA (3.2)	alkaline polymer	3	>85% (CO)		500	62	100 h @ 50 °C and 100 mA cm ⁻²	35
AgNP	2 ± 0.1	Flow cell	3 М КОН	3	> 90% (CO)	~460			/	36
Ag HF		Gas-tight two- compartment electrolysis cell (0.5)	3.0 M KCl + 0.01 M KHCO ₃	-0.91	92.3% (CO)	920	1200	57.8	150	37
Hg-CoTPP/NG		Flow cell	1 М КОН	-0.74	100% (CO)	1186.8	1200		360 h @ 420 mA cm ⁻² > 1 h @	38

									1000	
									mA	
									cm ⁻²	
CI-aAg HPE		Home-made	Catholyte: 3	-1.08	90.3% (CO)	3160	4000	52	200 h	39
		gas-tight two-	M KCl						in 3 M	
		compartment	Anolyte: 1 M						KCI @	
		quartz	КОН						2000	
		electrolyzer							mA	
									cm ⁻²	
Ni-N-C		MEA	Anolyte: 0.5	3.64	95% (CO)	425.6	500	45% @	8 h @	40
			M K ₂ SO ₄ +					300 mA	500	
			H_2SO_4					cm ⁻²	mA	
									cm ⁻²	
Ag-NOLI	0.44	GDE	1 M KHCO ₃		98.1% @		500			41
		configuration			400 mA cm ⁻					
					² (CO)					
Ag NPs		PiperION-	1 M KOH	2.6–3.4 V	90% (CO)	> 1000				42
		MEA								
CD-Ag HPE		Home-made	0.05 M H ₂ SO ₄	-1.41	95% (CO)	4300	5000		200 h	43
		gas-tight two-	+ 3 M KCl						@	
		compartment							2000	
		quartz							mA	
		electrolyzer							cm ⁻²	
			0.05 M H ₂ SO ₄	-0.98	90% (CO)		2500			
			+ 3 M KCl							
Ag-TEL	1	flow-through	0.5 M KHCO ₃	-3.5	92.0 ± 3.0%	1637.6	3370	> 40	48 h @	44
		induced			(CO)				100	
		dynamic							mA	
		triple-phase							cm ⁻²	
		boundaries							210 h	

		cell (FTDT, 1)							@ 1 mA cm ⁻²	
				-4.5	88% (CO)	2965.6			84 h @ 2.9 V and 100 mA cm ⁻²	
		(FTDT, 4)		-3.5	91% (CO)	846.3		> 30		
		(FTDT, 100)		-3.5	92% (CO)	570.4		< 30		
				-4	88% (CO)	792				
Cu-TE	1	(FTDT, 1)	0.5 M KHCO ₃	-3.3	32% (C ₂ H ₄)	384				-
				-3.1	39% (C ₂ H ₄)	241.8				
				-2.9	46% (C ₂ H ₄)	276				
activated Ag HF		Flow cell	1.5 M KHCO ₃	-0.83	92.7% (CO)	1170			170	45
				-0.86	90.6% (CO)	1330				
				-0.89	83.1% (CO)	1402				
				-0.94	62.6% (CO)	1267				
Nano Ag@Ni foam		Flow cell	30 wt% [C₄mim][PF ₆] / 70wt% MeCN	2.47 V vs. Fc/Fc ⁺	96.5% (CO)	528.3				46
2H/ <i>fcc</i> Au ₉₉ Cu ₁	1	Flow cell (1)	1 М КОН		92.6% (CO)	463			17 h @	47
hierarchical nanosheets					96.6% (CO)	289.8			300 mA cm ⁻²	
Zn ₁ Mn ₁ -SNC DASC	1	Flow cell	0.5 M KHCO ₃	-0.85	> 90% (CO)	450	500		90 h @ −0.66 V	48

Ag/GDE	~0.27	MEA	10 mM CsOH	4	90% (CO)	650	1950		100 h	49
		(1.5*1.5 cm ²)					(total)		@ 500	
									mA	
									cm ⁻²	
Ag/C		Flow cell	1 M KOH	-1.6	95% (CO)	765.6	1200		39 h @	50
		(0.36)							100	
									mA	
									cm ⁻²	
Ag nanoparticles	1	MEA (HQPC-	0.1 M KHCO ₃	-3.5	90% (CO)	603			150	51
		tmIM								
		membrane)								
CoTAAPc@CNT-12		Flow cell (1)	0.05 M		93.3% (CO)	609.7			8 h @	28
			$H_2SO_4 + 3.0$						200	
			M KCl						mA	
									cm ⁻²	
Ni ₁ -N/C _{NP}	1	Flow cell (1)	1 M KOH		96.4% (CO)	482	700	78.9	12.5 h	52
									@ 250	
									mA	
									cm ⁻²	
CoPc/d-CNT		Flow cell	0.5 M KHCO ₃		96% (CO)	480	500		20 h @	53
		(0.5*2)							150	
									mA	
									cm⁻²	
Ru ₁ /SDC-LSCF		Solid oxide	LSGM	1.6	~100% (CO)	1680	2390 @		100 h	54
		electrolysis	electrolyte				1.16 V		@ 1.1	
		cells (800 °C)							V	
MW-BiN ₃ -POMC		Flow cell	0.5 M KHCO ₃	–0.3 to	> 90% (CO)	414			30	55
		(2*0.5)		-1.3						
Ag: Cs-DC		MEA (5 cm ⁻² ,	0.25 M		96.1% (CO)		700			56
		55 °C)	KHCO₃		@ 400 mA					

					cm ⁻²					
					89.1% (CO)	500				
					@ 400 mA					
					cm ⁻²					
Ag NPs		Flow cell (1)	Catholyte: 2		93.9% (CO)		500		12 h @	57
			wt%		@ 250 mA				200	
			polystyrene		cm ⁻²				mA	
			sulfonate +						cm ⁻²	
			0.1 M H ₂ SO ₄							
			+ 0.2 M							
			K ₂ SO ₄							
			Anolyte: 0.5							
			M H ₂ SO ₄							
Ag-TDC@EtOH		MEA			> 90% (CO)		900		40 h @	58
									200	
									mA	
									cm ⁻²	
		Flow cell (1)	0.5 M K ₂ SO ₄	-2.25	> 97% @ 10		900		36 h @	
			+ H ₂ SO ₄ (pH =		– 400 mA				300	
			3)		cm ⁻²				mA	
					75% @ 600				cm ⁻²	
					mA cm ⁻²					
					(CO)	451				
Ag-TDC@HEX				-1.77	45% (CO)	180	900			
					41%	164				
					(HCOOH)					
Ag-TDC@MeOH				-1.8	22.3% (CO)	89.2	900			
					60%	240				
					(HCOOH)					
Ag-OC ₆	0.5	MEA	0.1 M CsOH	3.5	90% (CO)	450	900	51	110 h	59

									@ 300	
									mA	
									cm ⁻²	
									80 h @	
									600	
									mA	
									cm ⁻²	
Ag crystal-triazole	1	Flow cell (1)	1 M KOH	-0.9	98% (CO)	802.5				60
		MEA	0.1 M KHCO ₃		96.1% (CO)	525.3		> 60	70 h @	-
									300	
									mA	
									cm⁻²	
Cu@PIL@Cu		Flow cell	Anolyte: 0.5		83.1% (CO)	304.2	900	37.6	16 h @	61
			$M H_2SO_4$						150	
			Catholyte:						mA	
			0.005 M						cm ⁻²	
			$H_2SO_4 + 3 M$							
			KCI							
Ag	1	MEA	0.1 M KHCO ₃		95% (CO)	409	500		12 h @	62
									100	
									mA	
									cm ⁻²	
CuSb-2		Flow cell	1 M KOH	-0.6	98.2% (CO)	430	1300		10 h @	63
				-1.1	75.6% (C ₂₊)	850			300	
									mA	
									cm ⁻²	
									10 h @	
									1100	
									mA	
									cm-2	
									••••	

Sheet-like Bi		Flow cell (1)	Anolyte: 0.5 M H ₂ SO ₄ Catholyte: 0.1 M H ₂ SO ₄ + 0.5 M		96.3% (formate)	471	500			64
		Slim flow coll	$K_2 SU_4$	_1 56	05 8%	1200 mA	1500 mA	<u>۸0% @</u>	50 h @	-
		(5)	M H SO	-4.50	(formate)	(total)	(total)	40%@ _2.96.V	500	
		(5)			(ioiiiate)	(total)	(total)	2.50 V	mΔ	
			$0.05 \text{ M} \text{ H}_{3}\text{SO}_{4}$						ШA	
			+ 0.5 M							
			K₂SO₄							
Gemini-Bi ₂ O ₃		Flow cell	1 M KOH	-1.1	91%		510			65
					(formate)					
RD Bi	2	MEA (2)	Solid state		94.2% @	1160	1400		300 h	66
			electrolyte		1200 mA				@ 200	
					cm ⁻²				mA	
					(formate)				cm⁻²	
Bi(OH) ₃ -after	1	Flow cell	0.5 M KHCO ₃		97.1%	971	1000			67
		(0.5*0.5)			(formate)					
	1	MEA (5)	20 mM	3.1~3.14	> 85%	170	2 A	33.6	200 h	
			Cs ₂ CO ₃		(formate)				@ 200	
									mA	
									cm⁻²	
Cu-Bi ₂ O ₂ CO ₃		Flow cell	1 M KOH		> 98%		800		20	68
					(formate)					
TeBi nanotips	1	Flow cell (1)	1 M KOH	-0.9~	> 90%	~325	450		100 h	99
				-1.7	(tormate)				@	
									-0.65	
									V	

p-SnS _x		MEA AEM-based MEA (5)	1 M KOH 0.1 M KHCO ₃	2.4~3.2 -2.6	> 90% (formate) 93 ± 3% (formate)	540 mA cm ⁻² @ 3.2 V 420		30	70
CuS 811		Flow cell (1)	1 M KOH		92% (formate)	321	500	33 h @ 100 mA cm ⁻² 27 h @ 200 mA cm ⁻²	71
r-Pb	2	PEM electrolyser (1) PEM electrolyser (5)	H ₂ SO ₄ + KOH	2.2	93% (formate) > 91% (formate)	1116	1200 15 A (total)	5200	
2,5-TDC In-MOF	2.5	Flow cell (1)	1 М КОН		93.34% (formate)	> 900	1100	36 h @ 300 mA cm ⁻²	73
Cu–SnO ₂	0.8	Flow cell (1)	1 M KOH		70% (formate)	210	500	5 h @ 200 mA cm ⁻² 50 h @ 500 mA	74

								cm ⁻²	
Bi-CrO _x	1	Flow cell	1 M KOH	-0.9	\sim 100%	687		32 h @	75
					(formate)			-0.6 V	
Bi NS		Flow cell (1)	1 M CsOH	-1.8	93%	870		10 h @	76
					(formate)			100	
								mA	
								cm⁻²	
Cu-doped Bi	1	Flow cell	5 M KOH	-0.86	85.1%	1132		5 h @	77
					(formate)			-0.5 V	
			1 M KOH		92.6%	600		100 h	
					(formate)			@ 400	
								mA	
								cm ⁻²	
Sb ₂ Bi ₆	0.5	Flow cell (1)	1 M KOH	-1	> 90%	734	800	10 h @	78
					(formate)			100	
								mA	
								cm⁻²	
np-Bi	0.5	Flow cell (1)	1 M KOH	-0.45 ~	~100%	500		2 h @	79
				-0.62 V	(formate)			100	
								mA	
								cm⁻²	
In-Bi ₂ O ₃ -100		Flow cell	1 M KOH	-1.2	96.8%	407.5		25 h @	80
					(formate)			100	
								mA	
								cm⁻²	
e-SnO ₂	2.0 ±	Flow cell	1 M KOH	-0.68 ~	> 90%	535 ± 12		43 h @	81
	0.1			-1.14 V	(formate)			400	
								mA	
								cm⁻²	
Bi ₆₀ In ₂ O ₉₃	1	Flow cell (1)	1 M KOH	-1	95.3 ± 2.9%	1030 mA	1120	500	82

Initial interaction of the i						(formato)				min	
MEA (1) 0.1 M KOH 89% 1110 48 h (formate) (formate) (formate) 4 h @ ************************************						(Ionnate)	-1.3 V				
In/in ₂ O ₃ 2 Flow cell 1 M KOH -1.2 93% (00) ~ 590 650 4 h 0 * MEA 0.1 M KOH -1.2 93% (00) ~ 590 650 4.5 70 h 0 -0.9 V MEA 0.1 M KOH -200 200.5% (0) -1.5 90.6% (0) -1.5 200 -0.9 V Ag/Sn-SnO2 2 Flow cell (1) 1 M KOH -2.01 ''''''''''''''''''''''''''''''''''''			MEA (1)	0.1 M KOH		89%		1110		48 h	
In/In203 2 Flow cell 1 M KOH -1.2 93% @-0.9 ~ 590 650 4 h @ 83 MEA 0.1 M KOH 90.6% @ -0.9 V 44.5 70 h @ -0.9 V MEA 0.1 M KOH 90.6% @ - 44.5 70 h @ 150 mA cm 200 150 mA cm 200 -0.9 V 200 h 84 70 h @ 200 h 70 h						(formate)					
MEA 0.1 M KOH 90.6% @ 44.5 70 h @ 150 mA cm 150 mA cm 200 200 200 mA 2 (formate) 100 mA cm 200 cm ⁻² 200 200 84.5 Ag/5n-5n02 2 Flow cell (1) 1 M KOH -2.01 ~100% 200 200 84 Nanosheets 44.5 70 h @ 100% 200 70 h @ 84 MEA with Porous 83% 1000 80 200 h 84 solid styrene- (formate) 1000 80 200 h 900 electrolyte divinylbenze sulfonated co-polymer mA cell (2) mA mA cell (2) ne sulfonated co-polymer mA co-polymer 60 h @ 500 500 mA 500 500 mA 500 500 500 500 60 h @ 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500	In/In ₂ O ₃	2	Flow cell	1 М КОН	-1.2	93% @ -0.9	~ 590	650		4 h @	83
MEA 0.1 M KOH 90.6% @ 44.5 70 h @ 150 mA cm ⁻² 200 200 mA 2 Flow cell (1) 1 M KOH -2.01 ~100% 2000 000 h Nanosheets Flow cell (1) 1 M KOH -2.01 ~100% 2000 000 h 000 h MEA MEA with Porous -2.01 ~100% 500 80 200 h 000 h MEA with Porous -83% 1000 80 200 h 00 h 0						V (formate)				-0.9 V	
Ag/Sn-SnO2 2 Flow cell (1) 1 M KOH -2.01 '100% 2000 200 h mA Ag/Sn-SnO2 2 Flow cell (1) 1 M KOH -2.01 '100% 2000 h 200 h 60 h			MEA	0.1 M KOH		90.6% @			44.5	70 h @	
Ag/Sn-SnO2 2 Flow cell (1) 1 M KOH -2.01 ~100% 2000 200 h 84 Nanosheets MEA with Norus (formate) 2000 80 200 h						150 mA cm ⁻				200	
Ag/Sn-SnO2 2 Flow cell (1) 1 M KOH -2.01 ~100% 2000 200 h 84 Nanosheets (formate) (formate) @ 200 mA MEA with Porous 83% 1000 80 200 h 60 ho olid styrene- (formate) 1000 80 200 h 60 ho electrolyte divinylbenze (formate) 1000 80 200 h 60 ho sulfonated - - - - cm² 60 ho 500						² (formate)				mA	
Ag/Sn -SnO2 2 Flow cell (1) 1 M KOH -2.01 ~100% 2000 200 h ⁸⁴ Nanosheets										cm ⁻²	
Nanosheets (formate)	Ag/Sn–SnO ₂	2	Flow cell (1)	1 M KOH	-2.01	~100%		2000		200 h	84
mA mA cm ² MEA with Porous 83% 1000 80 200 h solid styrene- (formate) 1000 80 200 h electrolyte divinylbenze (formate) 1000 80 200 h cell (2) ne sulfonated cm ² mA cm ² mA sulfonated co-polymer sulfonated co-polymer mA cm ² mA Bi-MOF-MF 1 Flow cell 1M KOH -1.5 >90% 945 sulfonated sulfonated (0.5*0.5) 1M KOH -1.5 >90% 1301 sulfonated s	Nanosheets					(formate)				@ 200	
MEA with Porous 83% 1000 80 200 h solid styrene- (formate) 9100 @100 electrolyte divinylbenze - mA cell (2) ne - cm² sulfonated co-polymer - cm² Bi-MOF-MF 1 Flow cell 1 M KOH -1.5 >90% 945 - - 400 r Bi-MOF-TS 1 KOH -1.5 >90% 945 - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>mA</td><td></td></td<>										mA	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										cm ⁻²	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			MEA with	Porous		83%		1000	80	200 h	-
$ \begin{array}{c c c c c c c } \mbox{electrolyte} & \mbox{electrol} & $			solid	styrene–		(formate)				@ 100	
cell (2) ne cm ⁻² sulfonated co-polymer co-polymer Bi-MOF-MF 1 Flow cell 1 M KOH -1.5 > 90% 945 500 Bi-MOF-TS 1 M KOH -1.5 > 90% 1301 500 60 h @ Bi-MOF-TS 1 M KOH -1.5 > 90% 870 1000 60 h @ Bi-MOF-TS 1 M KOH -1.5 > 90% 870 1000 60 h @ Bi-MOF-TS 1 M KOH -0.64 95.8 ± 2.8% 958 ± 28 3000 4000 s 86 Bi(110)-S-Na 1 Flow cell 1 M KOH -0.64 95.8 ± 2.8% 958 ± 28 3000 4000 s 86 (formate) -0.64 95.8 ± 2.8% 958 ± 28 3000 4000 s 86 (formate) -0.64 95.8 ± 2.8% 958 ± 28 3000 4000 s 86 (formate) -0.64 83.5% 2505 ± 75 1000 1000 1000			electrolyte	divinylbenze						mA	
Bi-MOF-MF 1 Flow cell (0.5*0.5) 1 M KOH -1.5 > 90% 945 5 Bi-MOF-TS 1 M KOH -1.5 > 90% 1301 5 6 Bi-MOF-TS 1 M KOH -1.5 > 90% 1000 60 h @ 60 h @ Bi-MOF-TS 1 M KOH -1.5 > 90% 870 1000 60 h @ 60 h @ Bi-MOF-TS 1 M KOH -1.5 > 90% 870 1000 60 h @ 60 h @ Bi-MOF-TS 1 M KOH -0.64 95.8 ± 2.8% 958 ± 2.8 3000 4000 s 86 Bi(110)-S-Na 1 Flow cell 1 M KOH -0.64 95.8 ± 2.8% 958 ± 2.8 3000 4000 s 86 (formate) 83.5% 2505 ± 7.5 1000 1000 1000 1000 1000 1000			cell (2)	ne						cm ⁻²	
Bi-MOF-MF 1 Flow cell (0.5*0.5) 1 M KOH -1.5 >90% 945 85 Bi-MOF-TS 1 M KOH -1.5 >90% 1301 100 60 h @ Bi-MOF-TS 1 M KOH -1.5 >90% 1000 60 h @ 500 Bi-MOF-TS 1 M KOH -1.5 >90% 870 1000 60 h @ 500 Bi-MOF-TS 1 M KOH -0.64 95.8 ± 2.8% 958 ± 2.8 3000 4000 s ⁸⁶ Bi(110)-S-Na 1 Flow cell 1 M KOH -0.64 95.8 ± 2.8% 958 ± 2.8 3000 4000 s ⁸⁶ Bi(110)-S-Na 1 Flow cell 1 M KOH -0.64 95.8 ± 2.8% 2505 ± 75 1000 1000				sulfonated							
Bi-MOF-MF 1 Flow cell (0.5*0.5) 1 M KOH -1.5 > 90% 945 85 Bi-MOF-TS 1 M KOH -1.5 > 90% 1301				co-polymer							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Bi-MOF-MF	1	Flow cell	1 M KOH	-1.5	> 90%	945				85
Bi-MOF-TS 1 M KOH -1.5 > 90% 1301 Acid 87 ± 0.92% 870 1000 60 h @ (pH = 1.5 ± 0. 2) 500 mA Bi(110)-S-Na 1 Flow cell 1 M KOH -0.64 95.8 ± 2.8% 958 ± 28 3000 4000 s ⁸⁶ Bi(110)-S-Na 1 Flow cell 1 M KOH -0.64 95.8 ± 2.8% 958 ± 28 3000 4000 s ⁸⁶ Bi(110)-S-Na 1 Flow cell 1 M KOH -0.64 95.8 ± 2.8% 958 ± 28 3000 4000 s ⁸⁶ Bi(110)-S-Na 1 Flow cell 1 M KOH -0.64 95.8 ± 2.8% 958 ± 28 3000 4000 s ⁸⁶ Bi(110)-S-Na 1 Flow cell 1 M KOH -0.64 95.8 ± 2.8% 958 ± 28 3000 4000 s ⁸⁶ Bi(110)-S-Na 1 M KOH -0.64 95.8 ± 2.8% 958 ± 28 3000 4000 s ⁸⁶ Bi(110)-S-Na 1 1 80 1 80 1 1000 1000			(0.5*0.5)			(formate)					
Acid 87 ± 0.92% 870 1000 60 h @ (pH = 1.5 ± 0. 500 mA 2) mA cm-2 Bi(110)-S-Na 1 Flow cell 1 M KOH -0.64 95.8 ± 2.8% 958 ± 28 3000 4000 s ⁸⁶ (formate) @ 83.5% 2505 ± 75 1000 1000	Bi-MOF-TS			1 M KOH	-1.5	> 90%	1301				-
(pH = 1.5 ± 0. 500 2) mA Bi(110)-S-Na 1 Flow cell 1 M KOH -0.64 95.8 ± 2.8% 958 ± 28 3000 4000 s ⁸⁶ (formate) @ 83.5% 2505 ± 75 1000				Acid		87 ± 0.92%	870	1000		60 h @	
2) mA cm-2 Bi(110)-S-Na 1 Flow cell 1 M KOH -0.64 95.8 ± 2.8% 958 ± 28 3000 4000 s ⁸⁶ (formate) @ 2005 ± 75 1000				(pH = 1.5 ± 0.						500	
cm-2 Bi(110)-S-Na 1 Flow cell 1 M KOH -0.64 95.8 ± 2.8% 958 ± 28 3000 4000 s ⁸⁶ (formate) @ 83.5% 2505 ± 75 1000				2)						mA	
Bi(110)-S-Na 1 Flow cell 1 M KOH -0.64 95.8 ± 2.8% 958 ± 28 3000 4000 s ⁸⁶ (formate) @ 83.5% 2505 ± 75 1000										cm-2	
(formate) @ 83.5% 2505 ± 75 1000	Bi(110)-S-Na	1	Flow cell	1 M KOH	-0.64	95.8 ± 2.8%	958 ± 28	3000		4000 s	86
83.5% 2505 ± 75 1000						(formate)				@	
						83.5%	2505 ± 75			1000	

					(formate)				mA	
									cm ⁻²	
									30 h @	
									600	
									mA	
									cm ⁻²	
Bi-TDC@DMF MOF		Flow cell	H ₂ SO ₄ +	–1.32 to	> 90%		700			87
			K ₂ SO ₄	-1.3	(formate)					
		PEM-MEA	H ₂ SO ₄ +	-3.5	93.5%			38.2%	100 h	
			K ₂ SO ₄		(formate)				@ 250	
									mA	
									cm ⁻²	
Cl-SnO₂@Ni HF		Gas-tight	Anolyte: 2 M		99%	1860	3500		520 h	88
		electrolysis	KHCO ₃		(formate)				@	
		cell	Catholyte: 2						3000	
			M KCl						mA	
									cm ⁻²	
Bi HF		Gas-tight	2 M KHCO ₃	-1.26	95% @ -	1042			40 h @	89
		electrolysis			0.59 V				-1.01	
		cell			(formate)				V	
nBuLi-Bi	0.7	Flow cell	1 M KHCO ₃	-1.05	97%	460			100 h	90
		(1)			(formate)				@ 30	
									mA	
									cm ⁻²	
		Solid state	porous solid	1.35	90%	~150	200		30 h @	
		reactor	electrolyte		(formate)				30 mA	
		(4.75)							cm ⁻²	
AI5S8	1	Flow cell	1 M KOH	-0.951	94%	564.2	600			91
					(formate)					
AIS2				-0.949	94%	561.3			135 h	

					(formate)				@ 100	
									mA	
InP CQDs	0.02	Flow cell	3 М КОН	-1.33	93%	930	1000		2 cm 2 4 h	92
					(formate)				(400	
									mA	
									Cm -	
									, 1 М	
									кон)	
Pb ₁ Cu		Flow cell	0.5 M KHCO ₃	-0.8	96%	800	1500		20 h @	93
-		(/)	-		(formate)				500	
				-1	92%	1000			mA	
					80%	1200			cm ⁻²	
					(formate)					
		solid	proton-	-3.86	94%	375			180 h	
		electrolyte	conducting		(formate)				@ 100	
		reactor	solid						mA	
		(3)	electrolyte						cm ⁻²	
Cu ₆ Sn ₅		Flow cell (0.5)	1 М КОН	-1.8	91%	1500	2000	57.9	300 h	94
					(formate)				@ 500	
									mA	
				_1 /	06%		1600	52.2	160 h	
			+ 3 M KCl (nH	-1.4	9078		1000	52.2	100 m @ 500	
			= 1)						mA	
			_,						cm ⁻²	
		Solid state	0.5 M H ₂ SO ₄	-3.7	~96% @		500	37	130	
		MEA (4)	+ 3 M KCl (pH		100 mA cm ⁻					
			= 1)		2					

	•	el "	0 5 1 4		02.452/ 0	720.2	4000		40 - 1	
Sn(S)-H	4	Flow cell	0.5 M		92.15% @ -	730.2	1000		13.5 h	92
			$K_2SO_4 + H_2SO_4$		200 mA cm ⁻				@ 400	
					² (formate)				mA	
									cm⁻²	
BiPO ₄ -derived		High-	2 M KHCO ₃	-0.81	90%	534			10 h @	96
		pressure H-			(formate)				200	
		cell							mA	
		(3 MPa CO ₂)							cm ⁻²	
			1 M KHCO ₃	-0.92		435				•
BiO _n cluster		MEA	0.1 M KOH		> 90%	450	500	44	6 h @	97
					(formate)				200	
									mA	
									cm-2	
BiCu/CF		Flow cell (1)	1 M KOH	-2.41	> 85%	856	1000		80 h @	98
					(formate)				100,	
					, ,				500	
									mA	
									cm ⁻²	
		MEA		3.2	93.4%				10 h @	-
					(formate)				100.	
					(,				500.	
									1000	
									mA	
									cm ⁻²	
BS/VC		Flow cell (1)	0.5 M KHCO ₂	-1.1	98.6%	910 mA				99
20,10	-		0.5 11 10 03		(formate)	cm ⁻² @				
					(ionnace)	_1 8 V				
	05	Solid state	Apolyte: 0.5		<u>م0% @ 50</u>	1.0 V		22	120 h	
	0.5				$50\% \oplus 50$			33	±2011 ⊜ 100	
		Cell (4)	IVI П2304						ლ 100 ლ^	
					87%@150				MA	

PD-Bi Flow cell (1) 1 M KOH 91.9% (formate) 180 600 6 h @ 100 200 mA Bi ^D -Bi ₂ O ₂ CO ₃ 1 Flow cell (1) 1 M KOH -0.95 96% @- 0.25 V (formate) 1900 2000 80 10 h @ 301 Bi ^D -Bi ₂ O ₂ CO ₃ 1 Flow cell (1) 1 M KOH -0.95 96% @- 0.25 V (formate) 1900 2000 80 10 h @ 301 Bi ^D -Bi ₂ O ₂ CO ₃ 1 Flow cell (1) 1 M KOH -0.95 96% @- 0.25 V (formate) 1100 200 80 10 h @ 301 Bi Bi ₁ O ₁ nanodots Flow cell (1) 1 M KOH 96% 960 1000 20 h @ 302 Bi Bi anosheet Flow cell (1) 1 M KOH 96% 960 1000 26 h @ 303 Bi POV Flow cell (1) 1 M KOH 95.8% 655 800 11 h @ 200 Bi POV Flow cell (1) 1 M KOH 90% 1200 1400 16 207 Bi Pone-NW Flow						mA cm ⁻²				cm ⁻²	
PD-Bi Flow cell (1) 1 M KOH 91.9% 180 600 6 h @ 100 Bi ⁰ -Bi ₂ O ₂ CO ₃ 1 Flow cell (1) 1 M KOH -0.95 96% @ - 0.25 V (formate) 100 200 80 10 h @ 101 Solid- electrolyte anion- cell (4) 4.2 93% 1100 200 80 10 h @ 101 Bi-BiO _x nanodots Flow cell (1) 1 M KOH -0.95 96% 960 1000 200 80 100 101						(formate)				••••	
Bi ² -Bi ₂ O ₂ CO ₃ 1 Flow cell (1) 1 M KOH -0.95 96% @- 0.25 V (formate) 1900 200 80 10 h @ 101 Bi ² -Bi ₂ O ₂ CO ₃ 1 Flow cell (1) 1 M KOH -0.95 96% @- 0.25 V (formate) 1900 2000 80 10 h @ 101 Solid- electrolyte cell (4) anion- electrolyte cell (4) 4.2 93% 1100 280 h (formate) 280 h (formate) 200 mA cm ² Bi-BiO ₃ nanodots Flow cell (1) 1 M KOH 96% 960 1000 20 h @ 100 Bi nanosheet Flow cell (1) 1 M KOH 96% 960 800 26 h @ 103 Bi nanosheet Flow cell (1) 1 M KOH 91% 200 800 26 h @ 103 Bi-DV Flow cell (1) 1 M KOH 95.8% 655 800 11 h @ 104 Bi/69bi2O ₂ CO ₃ 3 Flow cell (1) 1 M KOH -0.7 91% 1200 1400 16 15 Bi-OV Flow cell (1) 1 M KOH -0.7 91% 518.7 600 > 18 h <	PD-Bi		Flow cell (1)	1 M KOH		91.9%	180	600		6 h @	100
Bi ³ -Bi ₂ O ₂ CO ₃ 1 Flow cell (1) 1 M KOH -0.95 96% @ - 0.25 V 1900 2000 80 10 h @ 101 Bi ³ -Bi ₂ O ₂ CO ₃ 1 Flow cell (1) 1 M KOH -0.95 96% @ - 0.25 V 1900 2000 80 10 h @ 101 250 V 250 200 200 200 200 200 200 200 200 200 200 201 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>(formate)</td><td></td><td></td><td></td><td>200</td><td></td></td<>						(formate)				200	
Bi ² -Bi ₂ O ₂ CO ₃ 1 Flow cell (1) 1 M KOH -0.95 96% @- 1900 2000 80 10 h @ 101 Bi ² -Bi ₂ O ₂ CO ₃ 1 Reveal (1) 1 M KOH -0.95 96% @- 1900 2000 80 10 h @ 101 Bi ² -Bi ₂ O ₂ CO ₃ 1 Anion- 4.2 93% 1100 280 h mA Bi ² -Bi ₂ O ₂ CO ₃ Solid- anion- 4.2 93% 1100 280 h mA Bi ² -Bi ₂ O ₂ CO ₃ Flow cell (1) 1 M KOH - 93% 1000 20 h @ 1000 mA Bi ² -Bi ₂ O ₂ CO ₃ Flow cell (1) 1 M KOH - 96% 960 1000 20 h @ 102 Bi ² -Bi ₂ O ₂ CO ₃ Flow cell (1) 1 M KOH - 91% 200 800 26 h @ 103 Bi ² -Bi ₂ O ₂ CO ₃ Flow cell (1) 1 M KOH - 91% 200 800 26 h @ 103 Bi ² -Bi ₂ O ₂ CO ₃ Flow cell (1) 1 M KOH - 91% 555 800 11 h @ 104 mA <td></td> <td></td> <td></td> <td></td> <td></td> <td>. ,</td> <td></td> <td></td> <td></td> <td>mA</td> <td></td>						. ,				mA	
Bi ² -Bi ₂ O ₂ CO ₃ 1 Flow cell (1) 1 M KOH -0.95 96% @ - 0.25 V (formate) 1900 2000 80 10 h @ 101 Solid- electrolyte cell (4) anion- electrolyte resin 4.2 93% 1100 280 h mA Bi-BiO, nanodots Flow cell (1) 1 M KOH -0.95 96% 960 1000 280 h Bi-BiO, nanodots Flow cell (1) 1 M KOH -0.95 96% 960 1000 20 h @ 102 Bi-BiO, nanodots Flow cell (1) 1 M KOH 96% 960 1000 20 h @ 102 Bi-BiO, nanodots Flow cell (1) 1 M KOH 96% 960 1000 26 h @ 103 Bi nanosheet Flow cell (1) 1 M KOH 91% 200 800 26 h @ 103 Bi nanosheet Flow cell (1) 1 M KOH 95.8% 655 800 11 h @ 104 Bi@Bi_D_C_CO_3 3 Flow cell (1) 1 M KOH >90% 1200 1400 16										cm ⁻²	
Solid- anion- 4.2 93% 1100 mA Solid- anion- 4.2 93% 1100 280 h electrolyte exchange (formate) 1100 02100 0100 cell (4) resin resin<	Bi ⁰ -Bi ₂ O ₂ CO ₃	1	Flow cell (1)	1 M KOH	-0.95	96% @ -	1900	2000	80	10 h @	101
Solid- anion- 4.2 93% 1100 280 h electrolyte exchange (formate) 1100 280 h cell (4) resin (formate) 1100 0100 010 Bi-BiO, nanodots Flow cell (1) 1 M KOH 96% 960 1000 20 h @ 102 Bi-BiO, nanodots Flow cell (1) 1 M KOH 96% 960 1000 20 h @ 102 Bi-BiO, nanodots Flow cell (1) 1 M KOH 91% 200 800 26 h @ 103 Bi nanosheet Flow cell (1) 1 M KOH 91% 200 800 26 h @ 103 Bi nanosheet Flow cell (1) 1 M KOH 91% 200 800 26 h @ 104 BiPDV Flow cell (1) 1 M KOH 91% 655 800 11 h @ 104 Bi@Bi_20_2CO_3 3 Flow cell (1) 1 M KOH -90% 1200 1400 104 Biene-NW Flow cell 1 M KOH						0.25 V				250	
Solid- electrolyte cell (4) anion- exchange resin 4.2 93% 1100 280 h Bi-BiO, nanodots Flow cell (1) 1 M KOH 96% 960 1000 20 h @ Bi-BiO, nanodots Flow cell (1) 1 M KOH 96% 960 1000 20 h @ 102 Bi-BiO, nanodots Flow cell (1) 1 M KOH 96% 960 1000 20 h @ 102 Bi-BiO, nanodots Flow cell (1) 1 M KOH 91% 200 800 26 h @ 103 Bi-BiO, nanodots Flow cell (1) 1 M KOH 91% 200 800 26 h @ 103 Bi nanosheet Flow cell (1) 1 M KOH 91% 200 800 11 h @ 104 Bi-DV Flow cell (1) 1 M KOH 95.8% 655 800 11 h @ 104 Bi@Bi_20_2CO_3 3 Flow cell (1) 1 M KOH > 90% 1200 1400 16 105 Bi-ene-NW Flow cell (1) 1 M KOH -0.7						(formate)				mA	
Solid- electrolyte cell (4) anion- exchange resin 4.2 93% 1100 280 h Bi-BiO, nanodots Flow cell (1) 1 M KOH (formate) 100 20 h @ 100 Bi-BiO, nanodots Flow cell (1) 1 M KOH 96% 960 1000 20 h @ 100 Bi-BiO, nanodots Flow cell (1) 1 M KOH 96% 960 1000 20 h @ 100 Bi-BiO, nanodots Flow cell (1) 1 M KOH 96% 960 800 26 h @ 100 Bi anosheet Flow cell (1) 1 M KOH 91% 200 800 26 h @ 103 Bi nanosheet Flow cell (1) 1 M KOH 91% 200 800 11 h @ 104 Bi-DV Flow cell (1) 1 M KOH 95.8% 655 800 11 h @ 104 Bi@Bi_0_0_CO_3 3 Flow cell (1) 1 M KOH >90% 1200 1400 104 Bi-ene-NW Flow cell (1) 1 M KOH -0.7 91% 518.7<										cm ⁻²	
electrolyte cell (4) exchange resin (formate)			Solid-	anion-	4.2	93%	1100			280 h	-
cell (4) resin nmA Bi-BiO, nanodots Flow cell (1) 1 M KOH 96% 960 1000 20 h @ 102 Bi-BiO, nanodots Flow cell (1) 1 M KOH 96% 960 1000 20 h @ 102 Bi-BiO, nanodots Flow cell (1) 1 M KOH 91% 200 800 26 h @ 103 Richly lattice-distorted Flow cell (1) 1 M KOH 91% 200 800 26 h @ 103 Bi nanosheet Flow cell (1) 1 M KOH 95.8% 655 800 11 h @ 104 Bi-DV Flow cell (1) 1 M KOH 95.8% 655 800 11 h @ 104 Bi@Bi_2O_2CO3 3 Flow cell (1) 1 M KOH > 90% 1200 1400 16 105 Bi-ene-NW Flow cell (1) 1 M KOH -0.7 91% 518.7 600 > 18 h 106			electrolyte	exchange		(formate)				@ 100	
Bi-BiOx nanodots Flow cell (1) 1 M KOH 96% 960 1000 20 h @ 102 Bi-BiOx nanodots Flow cell (1) 1 M KOH 96% 960 1000 300 mA Richly lattice-distorted Flow cell (1) 1 M KOH 91% 200 800 26 h @ 103 Bi nanosheet Flow cell (1) 1 M KOH 91% 200 800 26 h @ 103 Bi -DV Flow cell (1) 1 M KOH 95.8% 655 800 11 h @ 104 Bi-DV Flow cell (1) 1 M KOH 95.8% 655 800 11 h @ 104 Bi@Bi_2O_2CO_3 3 Flow cell (1) 1 M KOH > 90% 1200 1400 16 105 Bi-ene-NW Flow cell 1 M KOH -0.7 91% 518.7 600 > 18 h 106			cell (4)	resin						mA	
Bi-BiOx nanodots Flow cell (1) 1 M KOH 96% 960 1000 20 h @ 102 Bi-BiOx nanodots Flow cell (1) 1 M KOH 96% 960 1000 20 h @ 102 Richly lattice-distorted Flow cell (1) 1 M KOH 91% 200 800 26 h @ 103 Bi nanosheet Flow cell (1) 1 M KOH 91% 200 800 26 h @ 103 Bi DV Flow cell (1) 1 M KOH 91% 200 800 10 h @ 100 Bi-DV Flow cell (1) 1 M KOH 95.8% 655 800 11 h @ 104 Bi@Bi_2O_2CO_3 3 Flow cell (1) 1 M KOH >90% 1200 1400 16 105 Bi-ene-NW Flow cell (1) 1 M KOH -0.7 91% 518.7 600 >18 h 106										cm ⁻²	
Richly lattice-distorted Flow cell (1) 1 M KOH 91% 200 800 26 h @ 103 Bi nanosheet (formate) 1 M KOH 91% 200 800 26 h @ 103 Bi nanosheet Flow cell (1) 1 M KOH 91% 200 800 26 h @ 103 Bi DV Flow cell (1) 1 M KOH 95.8% 655 800 11 h @ 104 Bi-DV Flow cell (1) 1 M KOH 95.8% 655 800 11 h @ 104 Bi@Bi ₂ O ₂ CO ₃ 3 Flow cell (1) 1 M KOH > 90% 1200 1400 105 Bi-ene-NW Slow cell (1) 1 M KOH -0.7 91% 518.7 600 > 18 h 106	Bi-BiO _x nanodots		Flow cell (1)	1 M KOH		96%	960	1000		20 h @	102
Richly lattice-distorted Flow cell (1) 1 M KOH 91% 200 800 26 h @ 103 Bi nanosheet (formate) 1 M KOH 91% 200 800 26 h @ 103 Bi-DV Flow cell (1) 1 M KOH 95.8% 655 800 11 h @ 104 Bi-DV Flow cell (1) 1 M KOH 95.8% 655 800 11 h @ 104 Bi@Bi ₂ O ₂ CO ₃ 3 Flow cell (1) 1 M KOH >90% 1200 1400 16 105 Bi-ene-NW Flow cell (1) 1 M KOH -0.7 91% 518.7 600 >18 h 06 Bi-ene-NW Flow cell (1) 1 M KOH -0.7 91% 518.7 600 >18 h 06						(formate)				300	
Richly lattice-distorted Flow cell (1) 1 M KOH 91% 200 800 26 h @ ¹⁰³ Bi nanosheet (formate) (formate) 400 mA mA mA Bi-DV Flow cell (1) 1 M KOH 95.8% 655 800 11 h @ ¹⁰⁴ Bi-DV Flow cell (1) 1 M KOH 95.8% 655 800 11 h @ ¹⁰⁴ Bi@Bi_2O_2CO_3 3 Flow cell (1) 1 M KOH >90% 1200 1400 16 ¹⁰⁵ Bi-ene-NW Flow cell (1) 1 M KOH -0.7 91% 518.7 600 >18 h ¹⁰⁶ Bi-ene-NW Flow cell 1 M KOH -0.7 91% 518.7 600 >18 h ¹⁰⁶										mA	
Richly lattice-distorted Flow cell (1) 1 M KOH 91% 200 800 26 h @ 103 Bi nanosheet (formate) (formate) (formate) 400 mA										cm ⁻²	
Bi nanosheet (formate) 400 Bi nanosheet (formate) mA Bi DV Flow cell (1) 1 M KOH 95.8% 655 800 11 h @ 104 Bi DV Flow cell (1) 1 M KOH 95.8% 655 800 11 h @ 104 Bi @Bi 20 2 CO 3 3 Flow cell (1) 1 M KOH > 90% 1200 1400 16 105 Bi @Bi 20 2 CO 3 3 Flow cell (1) 1 M KOH -0.7 91% 518.7 600 > 18 h 106 Bi ene-NW Flow cell 1 M KOH -0.7 91% 518.7 600 > 18 h 106	Richly lattice-distorted		Flow cell (1)	1 M KOH		91%	200	800		26 h @	103
Bi-DV Flow cell (1) 1 M KOH 95.8% 655 800 11 h @ 104 Bi-DV Flow cell (1) 1 M KOH 95.8% 655 800 11 h @ 104 Bi@Bi_2O_2CO_3 3 Flow cell (1) 1 M KOH >90% 1200 1400 16 105 Biene-NW Flow cell 1 M KOH -0.7 91% 518.7 600 >18 h 106 Bi-ene-NW Flow cell 1 M KOH -0.7 91% 518.7 600 >18 h 105	Bi nanosheet					(formate)				400	
Bi-DV Flow cell (1) 1 M KOH 95.8% 655 800 11 h @ 104 Bi-DV Flow cell (1) 1 M KOH 95.8% 655 800 11 h @ 104 Bi@Bi_2O_2CO_3 3 Flow cell (1) 1 M KOH >90% 1200 1400 16 105 Bi@Bi_2O_2CO_3 3 Flow cell (1) 1 M KOH -0.7 91% 518.7 600 >18 h 106 Bi-ene-NW Flow cell 1 M KOH -0.7 91% 518.7 600 >18 h 106										mA	
Bi-DV Flow cell (1) 1 M KOH 95.8% 655 800 11 h @ 104 (formate) (formate) 200 mA mA mA mA Bi@Bi_2O_2CO_3 3 Flow cell (1) 1 M KOH > 90% 1200 1400 16 105 Bi-ene-NW Flow cell 1 M KOH -0.7 91% 518.7 600 > 18 h 106 Bi-ene-NW Flow cell 1 M KOH -0.7 91% 518.7 600 > 18 h 106										cm ⁻²	
Bi@Bi2O2CO3 3 Flow cell (1) 1 M KOH > 90% 1200 1400 16 105 Bi-ene-NW Flow cell 1 M KOH -0.7 91% 518.7 600 > 18 h 106 Bi-ene-NW Flow cell 1 M KOH -0.7 91% 518.7 600 > 18 h 106 (formate) (formate) (formate) 06 200 106	Bi-DV		Flow cell (1)	1 M KOH		95.8%	655	800		11 h @	104
Bi@Bi2O2CO3 3 Flow cell (1) 1 М КОН > 90% 1200 1400 16 105 Bi-ene-NW Flow cell 1 М КОН -0.7 91% 518.7 600 > 18 h 106 Grow cell 1 М КОН -0.7 91% 518.7 600 > 18 h 106						(formate)				200	
cm ⁻² Bi@Bi ₂ O ₂ CO ₃ 3 Flow cell (1) 1 M KOH > 90% (formate) 1200 1400 16 ¹⁰⁵ Bi-ene-NW Flow cell 1 M KOH -0.7 91% (formate) 518.7 600 > 18 h ¹⁰⁶ @ 200 (formate) (formate) (formate) (formate) (formate) (formate)										mA	
Bi@Bi2O2CO3 3 Flow cell (1) 1 M KOH > 90% 1200 1400 16 105 Bi-ene-NW Flow cell 1 M KOH -0.7 91% 518.7 600 > 18 h 106 (formate) (formate) @ 200 00 00 00 00 00										cm ⁻²	
(formate) Bi-ene-NW Flow cell 1 M KOH −0.7 91% 518.7 600 > 18 h ¹⁰⁶ (formate) @ 200	Bi@Bi ₂ O ₂ CO ₃	3	Flow cell (1)	1 M KOH		> 90%	1200	1400		16	105
Bi-ene-NW Flow cell 1 M KOH −0.7 91% 518.7 600 > 18 h ¹⁰⁶ (formate) @ 200						(formate)					
(formate) @ 200	Bi-ene-NW		Flow cell	1 M KOH	-0.7	91%	518.7	600		> 18 h	106
						(formate)				@ 200	

								mA	
								cm ⁻²	
			1 M KHCO ₃	-1.2	90%			110 h	
					(formate)			@ 200	
								mA	
								cm ⁻²	
SAA-Zn ₁ Bi	1	MEA (5)	5 М КОН	-0.86	> 90%	1323			107
					(formate)				
			1 M KOH	-0.75	96.5%	~700 mA		250 h	
					(formate)	cm ⁻² @		@ 400	
						-0.86 V		mA	
								cm ⁻²	
s-SnLi		Flow cell	1 M KOH	-1.2	92%	1000	1600		108
					(formate)				
		MEA (5)	0.1 M KHCO ₃		71±10%	183 mA		150 h	
					(formate)	cm⁻² @		@ 120	
						-4.6 V		mA	
								cm ⁻²	
								> 24 h	
								@ 300	
								mA	
								cm ⁻²	
Bi/C/30%PTFE	0.65 ±	Flow cell	1 M KOH	-0.7	86%	709		6 h @	109
	0.05				(formate)			-6 V	
Sn-ene QDs	2	Custom-	1 M KOH		90.1%	914	1000	100 h	110
		designed			(formate)			@ 200	
		flow cell (1)			· · · · ·			mA	
		\-/						cm ⁻²	
D-Bi HPE		Flow cell	Catholvte:	-0.98	> 99.5%	1010		10 h @	111
			3 M KCl		(formate)			-0.9 V	
					· · · · · · · · · · · · · · · · · · ·			••• •	

			Anolyte:						
					01%		500		112
РОД-Ы					91/0		500		
					(Iormate)				
		Flow cell	1 М КОН		93% @ 200				
					mA cm ²				
					(formate)				
Bi/C-GDE	0.75	MEA	1 M KOH		91.6 %	274.8	600		113
					(formate)				
HS2-Bi	1	Flow cell	1 M KOH	-1.1	97%	667.7		36 h @	114
					(formate)			120	
								mA	
								cm⁻²	
BOC-NS	2	Flow cell (1)	1 M KOH	-1.55	93%	930	1000	24 h @	115
					(formate)			200	
								mA	
								cm⁻²	
Bi-based GDE		Homemade	pH = 2.94,		95%		500	20 h @	116
		plexiglass cell	0.5 M K ₂ SO ₄		(formate)			200	
								mA	
								cm ⁻²	
Sb ₂ Bi ₆	2.8	Flow cell (1)	1 M KOH	-1	> 90%	734	800	10 h @	78
					(formate)			100	
								mA	
								cm ⁻²	
In ₂ O ₃ -C	1	Flow cell (1)	1 M KOH	-3.4	80.5%	805	1000	15 h @	117
					(formate)			200	
								mA	
								cm ⁻²	
BiS-1	1	Flow cell	1 M KOH		95.2%	1904	2000		118

$ \begin{array}{ c c c c c c } & & & & & & & & & & & & & & & & & & &$					(formate)				
Image: series of the			0.5 M K ₂ SO ₄		93.9%	1878			-
0.05 M H2SQ4 + 0.5 M K2SQ4 93.2% (formate) 1212 MEA Anolyte: 0.5 M KOH > 90% (formate) 630 700 150 h @ 200 mA cm² MEA Anolyte: 0.5 M KOH > 90% (formate) 630 700 150 h @ 200 Li-Bi2S3 Coelectrolysis cell of anodic cathodic 1 M KOH 3.14 86.05% 1600 200 h Coolectrolysis cell of anodic cathodic 1 M KOH 3.14 86.05% 1600 200 h Coolectrolysis cell of anodic coolectrolysis 1 M KOH 3.14 86.05% 1600 200 h Coolectrolysis 1 M KOH 3.14 86.05% 1600 200 h 119 CeOlog-CuSAc Flow cell (1) 1 M KOH 3.14 86.05% 1600 200 h 119 CeOg-CuSAc Flow cell (1) 1 M KOH 3.14 86.05% 1600 200 h 119 Cu-NC@CuPc-COF Flow cell (1) 1 M KOH 70.3% (CH ₄) 281.2 500 70 h @ 400 mA cm² 100 Cu-NC@CuPc-COF Flow cell 1 M KOH					(formate)				
+ 0.5 M K2504 (formate) MEA Anolyte: 0.5 M KOH > 90% 630 700 150 h (200 h MEA Anolyte: 0.5 M KOH > 90% 630 700 150 h (200 h Li-Bi253 Coelectrolysis 1 M KOH 3.14 86.05% 1600 200 h (200 h Li-Bi253 Coelectrolysis 1 M KOH 3.14 86.05% 1600 200 h (200 h CeO2-CU _{3AC} Flow cell (1) 1 M KOH 3.14 86.05% 1600 200 h (200 h CeO2-CU _{3AC} Flow cell (1) 1 M KOH 3.14 86.05% 1600 200 h CeO2-CU _{3AC} Flow cell (1) 1 M KOH 3.14 86.05% 1600 200 h Al_O3 - CUNPS Flow cell (1) 1 M KOH 70.3% (CH4) 281.2 500 70 h @ 400 mA (m ²) Cu-NC@CUPC-COF Flow cell (1) 1 M KOH -1.2 74.3% @ 538 ± 31 m (-1.2 500 70 h (M m (M m) 121 m (M m) Cu-NC@CUPC-COF Flow cell (1) 0.5 M K2504 64% (CH4) 296 500 9 h @ 122 m<			0.05 M H ₂ SO ₄		93.2%	1212			-
MEA Anolyte: 0.5 M KOH >90% 630 700 150 h (formate) (formate) (formate) mA 200 MEA NAUNTE: 0.5 M KOH 150 h (formate) 150 h (formate) mA Li-Bi2S3 Coelectrolysis 1 M KOH 3.14 86.05% 1600 200 h 119 Cell of anotic			+ 0.5 M		(formate)				
MEA Anolyte: 0.5 M KOH > 90% 630 700 150 h MKOH (formate) (K ₂ SO ₄						
M KOH (formate) @ 200 mA MCH Solution Solution mA mA Li-Bi ₂ S ₃ Coelectrolysis 1 M KOH 3.14 86.05% 1600 200 Li-Bi ₂ S ₃ Coelectrolysis 1 M KOH 3.14 86.05% 1600 200 200 MOR and		MEA	Anolyte: 0.5		> 90%	630	700	150 h	
Li-Bi2S3 Coelectrolysis 1 M KOH 3.14 86.05% 1600 204 1600 204 1600 204 1600 1000			М КОН		(formate)			@ 200	
Li-Bi2S3 Coelectrolysis 1 M KOH 3.14 86.05% 1600 200 h 119 Li-Bi2S3 Coelectrolysis 1 M KOH 3.14 86.05% 1600 200 h 119 MOR and								mA	
Li-Bi ₂ S ₃ Coelectrolysis 1 M KOH 3.14 86.05% 1600 200 h 119 cell of anodic mA cell of anodic (formate) 1000 02 00 119 MOR and mA cathodic mA cell of anodic mA cell of anodic mA cell of anodic mA cell of anodic cell of anodic cell of anodic cell of anodic mA cell of anodic mA cell of anodic mA cell of anodic								cm ⁻²	
Li-Bi2S3 Coelectrolysis 1 M KOH 3.14 86.05% 1600 200 h ¹¹³ Cell of anodic - <								(0.5 M	
Li-Bi ₂ S ₃ Coelectrolysis 1 M KOH 3.14 86.05% 1600 200 h ¹¹⁹ cell of anodic (formate) @ 200 MOR and cathodic Co ₂ RR CeO ₂ -Cu _{SAC} Flow cell (1) 1 M KOH 70.3% (CH ₄) 281.2 500 70 h @ ¹²⁰ 400 mA cm ⁻² Al ₂ O ₃ -CuNPs Flow cell (1) 1 M KOH -1.2 74±3% @ 538 ± 31 Cu-NC@CuPc-COF Flow cell (1) 1 M KOH -1.2 74±3% @ 538 ± 31 -1 V (CH ₄) -1 V (CH ₄) 296 500 9 h @ ¹²¹ -1 V (CH ₄) 296 500 9 h @ ¹²² 200								КОН)	
cell of anodic (formate) @ 200 MOR and mA cathodic cm ⁻² Co2_RR Flow cell (1) 1 M KOH 70.3% (CH ₄) 281.2 500 70 h @ 400 Al ₂ O ₃ -CuNPs Flow cell (1) 1 M KOH 70.3% (CH ₄) 281.2 500 70 h @ 400 Cu-NC@CuPc-COF Flow cell (1) 1 M KOH 81.3% (C ₂₊) 731.7 1000 70 h @ Cu-NC@CuPc-COF Flow cell 1 M KOH -1.2 74±3% @ 538 ± 31 >70 120 Cu-NC@CuPc-COF Flow cell 1 M KOH -1.2 74±3% @ 538 ± 31 >70 121 Cu-NC@CuPc-COF Flow cell 1 M KOH -1.2 74±3% @ 538 ± 31 >70 121 -1 V (CH ₄) -1.2 74±3% @ 538 ± 31 >70 121 -1 V (CH ₄) -1.2 74±3% @ 530 9 h @ 122 200 200 -1 V -1 V -1 V -1 V 200	Li-Bi ₂ S ₃	Coelectrolysis	1 M KOH	3.14	86.05%		1600	200 h	119
MOR and cathodic cm ⁻² Co2vR Flow cell (1) 1 M KOH 70.3% (CH ₄) 281.2 500 70 h @ 400 Al2O3-CUNPS Flow cell (1) 1 M KOH 81.3% (C2+) 731.7 1000 70 h @ 400 CU-NC@CUPC-COF Flow cell (1) 1 M KOH -1.2 74±3% @ 538 ± 31 70.7 100 121 CU-NC@CUPC-COF Flow cell (1) 1 M KOH -1.2 74±3% @ 538 ± 31 >70.7 121 COF-NS Flow cell (1) 0.5 M K2SO4 64% (CH ₄) 296 500 9 h @ 122 COF-NS Flow cell (1) 0.5 M K2SO4 64% (CH ₄) 296 500 9 h @ 122		cell of anodic			(formate)			@ 200	
cathodic c02R rm² CeO2-CU _{SAC} Flow cell (1) 1 M KOH 70.3% (CH4) 281.2 500 70 h @ 400 Al2O3-CUNPS Flow cell (1) 1 M KOH 81.3% (C2+) 731.7 1000 70 h @ 400 CU-NC@CUPC-COF Flow cell 1 M KOH -1.2 74±3% @ 538 ± 31 -700 121 CU-NC@CUPC-COF Flow cell (1) 1 M KOH -1.2 74±3% @ 538 ± 31 -700 121 COF-NS Flow cell (1) 0.5 M K2SO4 64% (CH4) 296 500 9 h @ 122 COF-NS Flow cell (1) 0.5 M K2SO4 -1 206 200 122		MOR and						mA	
CeO2-Cu _{SAC} Flow cell (1) 1 M KOH 70.3% (CH4) 281.2 500 70 h @ 400 Al2O3-CuNPS Flow cell (1) 1 M KOH 81.3% (C2+) 731.7 1000 70 h @ 400 Al2O3-CuNPS Flow cell (1) 1 M KOH 81.3% (C2+) 731.7 1000 70 h @ 400 Cu-NC@CuPc-COF Flow cell 1 M KOH -1.2 74±3% @ 538 ± 31 570 121 COF-NS Flow cell (1) 0.5 M K2SO4 64% (CH4) 296 500 9 h @ 122 200 100 1.02 54% (CH4) 296 500 9 h @ 122		cathodic						cm ⁻²	
CeO2-Cu _{SAC} Flow cell (1) 1 M KOH 70.3% (CH4) 281.2 500 70 h @ 120 Al2O3-CuNPs Flow cell (1) 1 M KOH 81.3% (C2+) 731.7 1000 70 h @ 400 Cu-NC@CuPc-COF Flow cell 1 M KOH -1.2 74±3% @ 538 ± 31 >70 >70 120 Cu-NS Flow cell (1) 0.5 M K2SO4 64% (CH4) 296 500 9 h @ 122 200 120 120 120 120 120 121		CO₂RR							
400 mA mA1203-CUNPs Flow cell (1) 1 M KOH 81.3% (C2+) 731.7 1000 70 h @ Al203-CUNPs Flow cell (1) 1 M KOH 1.000 70 h @ 400 CU-NC@CUPC-COF Flow cell 1 M KOH -1.2 74±3% @ 538 ± 31 >70 121 CU-NC@CUPC-COF Flow cell (1) 1 M KOH -1.2 74±3% @ 538 ± 31 >70 121 COF-NS Flow cell (1) 0.5 M K2SO4 64% (CH4) 296 500 9 h @ 122 200 200 122 200 200 122	CeO ₂ -Cu _{SAC}	Flow cell (1)	1 M KOH		70.3% (CH ₄)	281.2	500	70 h @	120
M2_03-CuNPs Flow cell (1) 1 M KOH 81.3% (C2+) 731.7 1000 70 h @ Al2O3-CuNPs Flow cell (1) 1 M KOH 81.3% (C2+) 731.7 1000 70 h @ Cu-NC@CuPc-COF Flow cell 1 M KOH -1.2 74±3% @ 538 ± 31 700 121 Cu-NC@CuPc-COF Flow cell 1 M KOH -1.2 74±3% @ 538 ± 31 >70 121 COF-NS Flow cell (1) 0.5 M K2SO4 64% (CH4) 296 500 9 h @ 122 200 124 124 124 124 124 124 124 COF-NS Flow cell (1) 0.5 M K2SO4 64% (CH4) 296 500 9 h @ 122 200 124 124 124 124 124 124 124 200 124 124 124 124 124 124 124								400	
Al2O3-CuNPs Flow cell (1) 1 M KOH 81.3% (C2+) 731.7 1000 70 h @ Al2O3-CuNPs Flow cell (1) 1 M KOH 81.3% (C2+) 731.7 1000 70 h @ Cu-NC@CuPc-COF Flow cell 1 M KOH -1.2 74±3% @ 538 ± 31 > 70 121 Cu-NC@CuPc-COF Flow cell 1 M KOH -1.2 74±3% @ 538 ± 31 > 70 121 CU-NC@CuPc-COF Flow cell (1) 0.5 M K2SO4 64% (CH4) 296 500 9 h @ 122 COF-NS Flow cell (1) 0.5 M K2SO4 64% (CH4) 296 500 9 h @ 122 200 200 122 200 200 200 200 200								mA	
Al2O3-CuNPs Flow cell (1) 1 M KOH 81.3% (C2+) 731.7 1000 70 h @ Al2O3-CuNPs Flow cell (1) 1 M KOH 81.3% (C2+) 731.7 1000 70 h @ Cu-NC@CuPc-COF Flow cell 1 M KOH -1.2 74±3% @ 538 ± 31 > 70 121 Cu-NC@CuPc-COF Flow cell 1 M KOH -1.2 74±3% @ 538 ± 31 > 70 121 COF-NS Flow cell (1) 0.5 M K2SO4 64% (CH4) 296 500 9 h @ 122 200 200 122 200 200 122 200 200 122								cm ⁻²	
400 mA mA cm ⁻² Cu-NC@CuPc-COF Flow cell 1 M KOH −1.2 74±3% @ 538 ± 31 > 70 ¹²¹ -1 V (CH ₄) -1 V (CH ₄) min @ -1 V -1 V -1 V -1 V COF-NS Flow cell (1) 0.5 M K ₂ SO ₄ 64% (CH ₄) 296 500 9 h @ ¹²² 200 -120 -120 -120 -120 -120 -120 -120	Al ₂ O ₃ -CuNPs	Flow cell (1)	1 M KOH		81.3% (C ₂₊)	731.7	1000	70 h @	-
MA ma Cu-NC@CuPc-COF Flow cell 1 M KOH -1.2 74±3% @ 538 ± 31 > 70 121 -1 V (CH4) -1 V (CH4) -1 V (CH4) min @ -1 V COF-NS Flow cell (1) 0.5 M K2SO4 64% (CH4) 296 500 9 h @ 122 200 -12 -12 -12 -12 -12 -12								400	
Cu-NC@CuPc-COF Flow cell 1 M KOH -1.2 74±3% @ 538 ± 31 > 70 121 -1 V (CH4) -1 V (CH4) min @ -1 V -1 V -1 V -1 V -1 V COF-NS Flow cell (1) 0.5 M K2SO4 64% (CH4) 296 500 9 h @ 122 200 -120 -120 -120 -120 -120 -120								mA	
Cu-NC@CuPc-COF Flow cell 1 M KOH -1.2 74±3% @ 538 ± 31 > 70 121 -1 V (CH ₄) -1 V (CH ₄) -1 V -1 V -1 V -1 V -1 V COF-NS Flow cell (1) 0.5 M K ₂ SO ₄ 64% (CH ₄) 296 500 9 h @ 122 200 -1 V								cm ⁻²	
−1 V (CH₄) min @ −1 V −1 V COF-NS Flow cell (1) 0.5 M K₂SO₄ 64% (CH₄) 296 500 9 h @ ¹²² 200	Cu-NC@CuPc-COF	Flow cell	1 M KOH	-1.2	74±3% @	538 ± 31		> 70	121
COF-NS Flow cell (1) 0.5 M K ₂ SO ₄ 64% (CH ₄) 296 500 9 h @ ¹²² 200 20 20					−1 V (CH₄)			min @	
COF-NS Flow cell (1) 0.5 M K ₂ SO ₄ 64% (CH ₄) 296 500 9 h @ ¹²² 200 200								-1 V	
200	COF-NS	Flow cell (1)	0.5 M K ₂ SO ₄		64% (CH ₄)	296	500	9 h @	122
								200	

									mA	
									cm⁻²	
Cu ₂ O@RF		Flow cell (1)	1 M KHCO ₃		51% (CH ₄)	561	1100			123
us-Cu-np	5	Flow cell	1 M KOH	-1.2	68% (CH ₄)	475			8	124
		(1.05)								
Cu NC		Flow cell	1 M KOH + 2	-1.66	85% (CH ₄)	1200	1500		800	125
			M KCl						min @	
									200	
									mA	
									CM-2	
CuBIM		Flow cell	1 M KOH		51.7% (CH ₄)	672	1600		7 h @	126
									1300	
									mA	
C- C-						402 7	000		20 h @	127
CO ₁ CU	T	Flow Cell (U.6)	0.5 IVI KHCO ₃		60% (CH ₄)	482.7	800		10 n @	127
									400 mA	
									cm ⁻²	
									for 4	
									min	
									follow	
									ed by	
									1 mA	
									cm ⁻²	
									for 1	
									min	
OD-La _{0.10} -CuO _x	1	Flow cell	1 M KCl		80% (C ₂₊	240	500	23	16 h @	128
					with 51.8%				300	
					C ₂ H ₄)				mA	
									cm ⁻²	

			1 M KOH		61.5% (CH ₄)	270	500	28.2	8 h @ 400 mA cm ⁻²	
CN/Cu ₂ O/CN		Flow cell	1 М КОН		61% (CH ₄)	561	1000		12 h @ 400 mA cm ⁻²	129
CoTAPc/GCNT	1	Flow cell	1 M KOH 1 M KHCO ₃ 0.5 M K ₂ SO ₄		12.8% 10.5% 12.1% (CH ₃ OH)		800			130
Cu-Pt _{NPs} Cu-Pt ₁		Flow cell Flow cell	1 M KOH 1 M KOH	-1.2	57.7% (CH ₄) 70.4% (C ₂₊)					131
Cu-Pt _{NPs}		MEA (5)	0.5 M KOH		58.9% (CH ₄)		400		16 h @ 200 mA cm ⁻²	
Cu-Pt ₁		MEA (5)	0.5 М КОН		71.8% (C ₂₊)				28 h @ 200 mA cm ⁻²	
Cu-mono		Flow cell (1)	0.05 M H ₂ SO ₄ + 2.5 M KCl		82% (C ₂₊) 62% (C ₂ H ₄)		500		3.5 h @ 200 mA cm ⁻²	132
Cu-btca MOF		Flow cell (1)	Anolyte: 0.5 M H_2SO_4 Catholyte: 3 M KCl +	-2.5	81.9% (C ₂₊ with 51.2% C ₂ H ₄)	245.7	600		350 min @ 300 mA	133

			0.05 M H ₂ SO ₄						cm ⁻²	
I-OD-Cu		Flow cell	1 М КОН	-0.84	79% (C ₂₊	340	500		30 h @	134
					with 49.1%				-1.05	
					C ₂ H ₄ , 22.1%				V	
					C ₂ H ₅ OH)					
Cu		Flow cell	3 M KCl +		82% (C ₂₊)	328	500	23		135
			0.05 M H ₂ SO ₄							
4.73 %Cd-CuO		Flow cell	1 М КОН	–2.2 V vs.	56.64% (C ₂₊)	339.84	700		2	136
				Ag/Ag+						
Cu@F-MC		Flow cell	1 М КОН		64% (C ₂₊)	320	500			137
					40%	217.5				
					(C ₂ H ₅ OH)					
		MEA (4)	1 M KHCO ₃						70 h	
									(0.1 M	
									KHCO ₃	
)	
CuAg-4.33%		Flow cell	1 М КОН		77.9±0.8%	333.5	500		40 h @	138
					(C ₂₊)				300	
									mA	
									cm⁻²	
$Sc_{0.09}$ -Cu ₂ O		Flow cell	1 М КОН		71.9% (C ₂₊)	575.2	800		5 h @	139
									600	
									mA	
									cm ⁻²	
$Cu_2P_2O_7$	1±0.1	MEA	0.1 M KOH	3.36	73.6% (C ₂₊)	263	600		30 h @	140
									200	
									mA	
									cm ⁻²	
Sn ₁ Cu-SAA	1	Flow cell	1 М КОН		79.3% (C ₂₊)	701	1000		16 h @	141
									800	

									mA	
									cm⁻²	
Cu/CeZr		Flow cell	Catholyte: 1	-1.9	67.2% (C ₂₊)	413				142
			M KCl							
			Anolyte: 1 M							
			КОН							
		MEA		3.7					18 h @	
									300	
									mA	
									cm ⁻²	
AgSA-Cu/Cu ₂ O		Flow cell	1 M KOH		90.2% (C ₂₊)	426.6			10 h @	143
									-1.6 V	
Cu _{PEG}		Flow cell	1 M KOH		90.3% (C ₂₊)	451.5	800		24 h @	144
									500	
									mA	
									cm ⁻²	
CuO@K ₂ CO ₃	1	Flow cell	1 M KOH		82.8±2.2%	1656	2200		80 h @	145
					(C ₂₊)				400	
									mA	
									cm ⁻²	
									80 h @	
									2000	
									mA	
									cm⁻²	
		MEA	1 M KOH		81.4±5.9%	1302.4		30.9%	110 h	
					(C ₂₊)			@ 1000	@ 1.000	
								mA cm ⁻²	1000	
									mA	
					05.0.0.00				cm⁻²	
In ₂ O ₃ @K ₂ CO ₃					85.2±2.9%	426	500			

Sn0_@K,CO3 SN0_@K,CO3 SN0_@K,CO3 SN0_B SN0_B<						(HCOOH)					
Bi2O3@K2CO3 Second Seco	SnO ₂ @K ₂ CO ₃					88.0±1.6%	704	800			-
Bio 2 @ K, CO 3 I 144.8 1200 Cu 3 N, -50-µA 1 Flow cell 1 M KOH -1.15 81.742.3% 307.9 900 1000 146 Cu 3 N, -50-µA 1 Flow cell 1 M KOH -1.15 81.742.3% 307.9 900 1000 146 Cu 20-Cu ⁰ 1 Flow cell 1 M KOH -1.15 81.742.3% 307.9 900 1000 146 Cu 20-Cu ⁰ 1.5 MEA 0.1 M KHCO3 3.8 80% @ 2.7 800 1000 160 147 Cu 20-Cu ⁰ 1.5 MEA 0.1 M KHCO3 3.8 80% @ 2.7 800 1000 160 147 Cu 20-Cu ⁰ Flow cell 1 M KOH -1 85.6% (C ₂ ,) 800 1000 100 146 147 Qu 20-Cu ⁰ Flow cell 1 M KOH -1 85.6% (C ₂ ,) 803 500 100 100 100 100 116 116 Cu 20-Cu ⁰ GAS Flow cell 1 M KOH <td></td> <td></td> <td></td> <td></td> <td></td> <td>(HCOOH)</td> <td></td> <td></td> <td></td> <td></td> <td></td>						(HCOOH)					
Cu3,x-50-μA 1 Flow cell 1 M KOH -1.15 81.7±2.3% 307±9 900 -1.000 146 Cu3,x-50-μA 1 Flow cell 1 M KOH -1.15 81.7±2.3% 307±9 900 - 600 146 Cu3,x-50-μA (2*0.5) - - 6 - 5 6 - 5 6 - 5 6 - 5 6 - 5 6 - 5 6 - 5 6 - 6 0 - 5 6 - 7 405±37 405±33 - 6m2 - 7 405±37 405±37 405±37 - 500 147 60 147 - 7 7 7 - 8 60 - 160 149 - 160 140 - 160 617 50 720±61 9 140 120 - 120 - 120 - 140 <td>Bi₂O₃@K₂CO₃</td> <td></td> <td></td> <td></td> <td></td> <td>95.4±0.3%</td> <td>1144.8</td> <td>1200</td> <td></td> <td></td> <td></td>	Bi ₂ O ₃ @K ₂ CO ₃					95.4±0.3%	1144.8	1200			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						(HCOOH)					
$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu ₃ N _x -50-μA	1	Flow cell	1 M KOH	-1.15	81.7±2.3%	307±9	900		10000	146
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			(2*0.5)			(C ₂₊ with				s @	
$ \begin{array}{ c c c c c } & & & & & & & & & &$						56±1%				350	
L 45±3.7% 405±33 Cm ² Cu ₂ O-Cu ⁰ 1.5 MEA 0.1 M KHCO ₃ 3.8 80% @ 2.7 800 1000						C_2H_4)				mA	
Cu2O-Cu ⁰ 1.5 MEA 0.1 M KHCO3 3.8 80% @ 2.7 800 1000 350 h ¹⁴⁷ @ 250 mA						45±3.7%	405±33			cm ⁻²	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu ₂ O-Cu ⁰	1.5	MEA	0.1 M KHCO ₃	3.8	80% @ 2.7	800	1000		350 h	147
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						kPa (C ₂₊)				@ 250	
$ \begin{array}{c c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$										mA	
Pyr-Cu ₂ O/Cu Flow cell 1 M KOH -1 85.6% (C ₂₊) 454 530 8 148 Cu _{1.7} Clu/GAs Flow cell 1 M KOH -1.1 68.7% 339.8 500 60 149 Agcu SANP 0.5 Flow cell 1 M KOH -0.65 94±4% (C ₂₊) 677 ± 57 720 ± 61 9.75 150 Cu@BN 1 Flow cell Anolyte: 0.5 -2.5 83.4% (C ₂₊) 1000 1400 5 h @ 151 Cu@BN 1 Flow cell Anolyte: 0.5 -2.5 83.4% (C ₂₊) 1000 1400 5 h @ 151 Cu@BN 1 Flow cell Anolyte: 0.5 -2.5 83.4% (C ₂₊) 1000 1400 5 h @ 151 Cu@BN 1 Flow cell Anolyte: 0.5 -2.5 83.4% (C ₂₊) 1000 1400 mA cm² KCl (0.5*2) M H ₂ SO ₄ (C ₂₊) 480.5 600 43.3% 10 h @ 152 KCl M										cm ⁻²	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Pyr-Cu ₂ O/Cu		Flow cell	1 M KOH	-1	85.6% (C ₂₊)	454	530		8	148
$ \begin{array}{ c c c c c c } \hline SANP & 0.5 & Flow cell & 1 M KOH & -0.65 & 94±4% (C_{2*}) & 677 \pm 57 & 720 \pm 61 & 9.75 & ^{150} \\ \hline Cu@BN & 1 & Flow cell & Anolyte: 0.5 & -2.5 & 83.4% (C_{2*}) & 1000 & 1400 & -5 & 8 & 9.75 & 1200 & 1200 & 1200 & -5 & -5 & -5 & -5 & -5 & -5 & -5 & $	Cu _{1.7} Clu/GAs		Flow cell	1 M KOH	-1.1	68.7%	339.8	500		60	149
AgCu SANP 0.5 Flow cell 1 M KOH -0.65 94±4% (C2+) 677 ± 57 720 ± 61 9.75 ¹⁵⁰ Cu@BN 1 Flow cell Anolyte: 0.5 -2.5 83.4% (C2+) 1000 1400 5 h @ ¹⁵¹ (0.5*2) M H2SO4 -2.5 83.4% (C2+) 1000 1400 5 h @ ¹⁵¹ M KCI Catholyte: 3 M KCI mA cm ⁻² mA cm ⁻² HEB-Cu NPs Flow cell 1 M KCI 88.62% 480.5 600 43.3% 10 h @ ¹⁵² M KCI MEA (1) 0.1 M KOH 86.14% 450 500 28% 50 h @ cm ⁻² MEA (1) 0.1 M KOH 86.14% 450 500 28% 50 h @ cell) mA cm ⁻² MEA (1) 0.1 M KOH KCI KC2+ KC1 200 cell) mA cm ⁻² MEA (1) KCH KC1 KC2+ KC2+ KC1 Cell) mA cm ⁻²						(C ₂ H ₅ OH)					
Cu@BN 1 Flow cell Anolyte: 0.5 -2.5 83.4% (C2+) 1000 1400 5 h @ 151 (0.5*2) M H2SO4 Catholyte: 3 mA 1200 mA 1200 mA M KCI M KCI Flow cell 1 M KCI 88.62% 480.5 600 43.3% 10 h @ 152 HEB-Cu NPs Flow cell 1 M KCI 88.62% 480.5 600 43.3% 10 h @ 152 MEA (1) 0.1 M KOH 86.14% 450 500 28% 50 h @ cm ⁻² MEA (1) 0.1 M KOH 86.14% 450 500 28% 50 h @ cm ² MEA (1) 0.1 M KOH 86.14% 450 500 28% 50 h @ cm ² MEA (1) 0.1 M KOH 86.14% 450 500 28% 50 h @ cell) mA C2+) Image: C2+ Image: C	AgCu SANP	0.5	Flow cell	1 M KOH	-0.65	94±4% (C ₂₊)	677 ± 57	720 ± 61		9.75	150
(0.5*2) M H₂SO4 1200 Catholyte: 3 mA M KCI cm² HEB-Cu NPs Flow cell 1 M KCI 88.62% 480.5 600 43.3% 10 h @ 152 M KCI (C2+) 300 mA 100 152 M KA M KCI K K 100 152 M KA K K K 100 100 100 MEA (1) 0.1 M KOH 86.14% 450 500 28% 50 h @ (C2+) K K K K 100 100 100 100 MEA (1) 0.1 M KOH K K 450 500 28% 50 h @ 100 K K K K K K 100	Cu@BN	1	Flow cell	Anolyte: 0.5	-2.5	83.4% (C ₂₊)	1000	1400		5 h @	151
Catholyte: 3 mA M KCl cm ⁻² HEB-Cu NPs Flow cell 1 M KCl 88.62% 480.5 600 43.3% 10 h @ ¹⁵² M KCl (C ₂₊) 300 mA mA mA M KCl 88.62% 480.5 600 43.3% 10 h @ ¹⁵² M KCl 88.62% 480.5 500 28% 50 h @ mA M KCl KCl <td></td> <td></td> <td>(0.5*2)</td> <td>M H₂SO₄</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1200</td> <td></td>			(0.5*2)	M H ₂ SO ₄						1200	
M KCl cm ⁻² HEB-Cu NPs Flow cell 1 M KCl 88.62% 480.5 600 43.3% 10 h @ ¹⁵² (C ₂₊) (C ₂₊) 300 mA mA mA MEA (1) 0.1 M KOH 86.14% 450 500 28% 50 h @ MEA (1) 0.1 M KOH 86.14% 450 500 28% 50 h @ (C ₂₊) (C ₂₊) (C ₂₊) (full- 200 cm ⁻²				Catholyte: 3						mA	
HEB-Cu NPs Flow cell 1 M KCl 88.62% 480.5 600 43.3% 10 h @ ¹⁵² (C2+) 300 mA mA mA mA mA MEA (1) 0.1 M KOH 86.14% 450 500 28% 50 h @ (C2+) (C2+) (C2+) (full- 200 cell) mA max max max cm ⁻² cell) mA cm ⁻²				M KCl						cm ⁻²	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HEB-Cu NPs		Flow cell	1 M KCl		88.62%	480.5	600	43.3%	10 h @	152
MEA (1) 0.1 M KOH 86.14% 450 500 28% 50 h @ (C2+) (full- 200 cell) mA cm ⁻² cell) mA						(C ₂₊)				300	
MEA (1) 0.1 M KOH 86.14% 450 500 28% 50 h @ (C2+) (full- 200 cell) mA cm ⁻²										mA	
MEA (1) 0.1 M KOH 86.14% 450 500 28% 50 h @ (C ₂₊) (full- 200 cell) mA cm ⁻²										cm ⁻²	
(C ₂₊) (full- 200 cell) mA cm ⁻²			MEA (1)	0.1 M KOH		86.14%	450	500	28%	50 h @	
cell) mA cm ⁻²						(C ₂₊)			(full-	200	
cm ⁻²									cell)	mA	
										cm ⁻²	

Cu-TAPT		Flow cell	1 М КОН	-0.8	84.9±1% (C ₂₊ with	233 (ethanol)			30	153
					54.3±3%	()				
					C₂H₅OH)					
CuO/AgIO ₃		Flow cell	0.5 M K ₂ SO ₄		82% (C ₂₊)	1024	1300		8 h @	154
					47.9%	574.8			900	
					(C ₂ H ₄)				mA	
									cm⁻²	
Cu HPE		Custom-	0.05 M H ₂ SO ₄		73.4% (C ₂₊)	2200	3000	29.04	100 h	155
		made	+ 3 M KCl (pH						@	
		electrolytic	0.71)						2000	
		cell							mA	
									cm⁻²	
Cu HFPE		Two	Anolyte: 0.5		84% (C ₂₊)	2500	4300		240 h	156
		compartment	M K ₂ SO ₄ +		@ pH = 1, 2,				@ at	
		electrolysis	0.05		3				3000	
		cell	$M H_2SO_4$						mA	
			Catholyte:						cm ⁻²	
			0.05 M H ₂ SO ₄							
			+ 3 M KCl							
0.7% Mo ₁ Cu	1	Flow cel	1 M KOH		84% (C ₂₊)	1330	1800		40 h @	157
									800	
									mA	
									CM⁻²	150
NP Cu		microfluidic	1 М КОН		80% at 300					130
		flow			mA cm ⁻²					
		electrolyzer		4 5 2	(C ₂₊)		4000			
	0.2-			-1.52	> /0%		1000			
200	0.5		4. NA 141-00	4.0	(C_{2+})	450				159
300 nm Cu layer on a		Flow cell	1 M KHCO ₃	-1.8	//% (C ₂₊)	450	575			

GDL									
PANI/CuO NSs-25	0.88	Flow cell	1 M KOH		61% (C ₂₊)	244.0	600		160
					50% (C ₂ H ₄)	200.1			
high-CN Pot-Cu	3	Flow cell	1 M KOH	-1.27	82.5% (C ₂₊)	514.3		15	161
low-CN Pul(3)-Cu		(0.5*2)		-1.87	56.7% (CH ₄)	234.4		15	••
Cu-DAT		Flow cell	1 M KOH		85.7% (C ₂₊)		800	24 h @	162
		(0.5*2)						300	
								mA	
								cm ⁻²	
P-Cu ₂ O-240	0.5	Flow cell (1)	1 М КОН		75.3 ± 3.1%		1200	20 h @	163
					(C ₂₊)			500	
								mA	
								cm⁻²	
Cu ₂ O-2	~0.4	Flow cell (2)	2 М КОН		~79% (C ₂₊)	692 ± 34	1000	3 h @	164
								700	
								mA	
								cm ⁻²	
La-Cu HS	1	Flow cell (1)	0.05 M H ₂ SO ₄		86.2% (C ₂₊)	813 @	1000	40 h @	165
			+		@ 900 mA	1000 mA		900	
			3 M KCl		cm⁻²	cm ⁻²		mA	
								cm ⁻²	
OD-Cu-HIL PNPs	0.5	Flow cell	1 М КОН		85.1% (C ₂₊)	779	1000	14 h @	166
								400	
								mA	
								cm⁻²	
DPVP-CuNP	0.24	Flow cell (4)	0.5 M KOH	-0.8	> 80% (C ₂₊)	640	800	10 h @	167
								800	
								mA	
								cm ⁻²	
Cu-BIF/Cl	2.5	Flow cell (1)	1 M KOH	-1.75	72.12% (C ₂₊)	539	1147.1	50	168

Cu ₂ O/Al ₂ O ₃		Flow cell			74.7% (C₂+) 40.1% (C₂H₅OH)	1016.4	1600	34	82 h @ 500 mA cm ⁻²	169
CuBtz		Flow cell	1 M KOH	-1.6	61.6% (C ₂₊)	938			> 50	170
Cu-Cul	2±0.1	Flow cell	1 M KOH	-1	48%	591			85 h @	171
					(C ₂ H ₄)				550	
				-0.87	71% (C ₂₊)				mA	
									cm ⁻²	
C/Cu/HKUST-1/PTFE	0.6	Flow cell	1 M KOH	-1.3	48%	491 mA	1200			172
					(C ₂ H ₄)	cm ⁻² @ 4.3				
						V				
		MEA (5)	0.1 M KHCO ₃	3.8	54%	220	255	\sim 15%	65 h @	
					(C ₂ H ₄)			(0.1 M	250	
								KHCO₃)	mA	
								\sim 25%	cm ⁻²	
								(1 M		
								КОН)		
Tension-strained Cu		Flow cell	0.05 M H ₂ SO ₄		79%	157.6	500		100 h	173
			1 M KCl		(C ₂ H ₄)				@ 400	
									mA	
									cm ⁻²	
CeO ₂ /CuO NSs		Flow cell	1 M KOH		66.6%	467	800		6 h @	174
					(C ₂ H ₄)				600	
									mA	
									cm ⁻²	
Cu@PAAz	1.5	Flow cell	1 M KOH		84.5% (C ₂₊)	845	1200		10 h @	175
					68.9%	689			600	
					(C ₂ H ₄)				mA	
									cm ⁻²	

С Г	 О Г		1 14 1/011	0.02	01 50/	1100		42.20/	FO L @	176
Cu-5	0.5	Flow cell	I M KOH	-0.93	81.5%	1100		42.2%	50 n @	170
					(C ₂ H ₄)			(nait)	600	
									mA	
									cm ⁻²	
Cu _x O _y /CN		Flow cell (1)	1 M KOH		44% (C ₂ H ₄)	220	500		21 h @	1//
									300	
									mA	
									cm ⁻²	
p-Cu		Flow cell	Catholyte: 1	-1.28	90% (C ₂₊)	450 (C ₂₊)	700		105 h	178
			M KCl		72% (C ₂ H ₄)	359 (C ₂ H ₄)			@ 500	
			Anolyte: 1 M						mA	
			КОН						cm ⁻²	
		MEA (5)	0.1 M KHCO ₃	3.14	64% (C ₂ H ₄)	480	1000	23.4	77 h @	
									800	
									mA	
									cm ⁻²	
TA-Cu	0.22	Flow cell	1 M KOH	-1.2	63.6%	497.2			10	179
					(C ₂ H ₄)					
Ag-Cu ₂ O-0.10	1	Flow cell	Catholyte: 3		73.6%	429.1	700		9 h @	180
			M KCl		(C ₂₊)	(C ₂ H ₄)			600	
			Anolyte: 3 M		55%				mA	
			КОН		(C ₂ H ₄)				cm ⁻²	
			3 М КОН		67.48%					
					(C ₂ H ₄)					
CuNFC	2	Flow cell (1)	1 M KOH		65.7%	394.2	1000		7000 s	181
					(C ₂₊)				@ 600	
									mA	
									cm ⁻²	
		MEA (1)	1 M KOH						10 h @	
		. ,	-						-3 V	
									- ·	

L ₆₀ —Cu		Flow cell	1 M KOH		57%	456	900			182
					(C ₂ H ₄)					
					78.32%					
					(C ₂₊)					
CuNCN	0.7	Flow cell (1)	1 M KOH	-1.4	77%	400			15	183
					(C ₂ H ₄)					
	2	AEM-MEA		3.6	66.8%				80	
					(C ₂ H ₄)					
ImF-Mo₃P		Custom-	1 M KOH	-0.8	91%	361	517	49	100	184
		designed			(C ₃ H ₈)					
		flow		-0.9	76%					
		electrolyser		-1	64%					
		(5)								
Cu _{0.9} Zn _{0.1}	1-4.5	Flow cell	Catholyte: 3		69 ± 2%		600	> 30%		185
			M KCl + 1 M							
			H_2SO_4							
			Anolyte: 0.5							
			M H ₂ SO ₄							
			(pH=4)							
			Catholyte: 3		81 ± 2%					
			M KCl + 1 M							
			КОН							
			Anolyte: 1 M							
			KHCO ₃							
			(pH=7)							
			0 75 М КОН		91 + 2%					
			(pH=13.5)		$(C_{2\nu})$					
		MFA	(pr. 10.0)	-37	90% (C ₂₁)			28-32%	> 150	
				0.7	70% (C ₂ +)			20 02/0	h @	
									·· e	

					@ 800 mA				150	
					cm ⁻² 30 s				mA	
					and 1 mA				cm ⁻²	
					cm⁻² 30 s					
CIBH	3.33	Flow cell	7 М КОН		75% (C ₂ H ₄)	1340	1500	46 ± 3%		186
								(half)		
								20%		
								(full)		
		MEA	0.1 M KHCO ₃						60	
[Cu ₃ (_{μ3} -OH)(_{μ3} -	0.25	Flow cell	1 M KHCO ₃		80% (C ₂₊	224	500		36 h @	187
$trz)_{3}(OH)_{2}(H_{2}O)_{4}]$					with 50%				280	
					C ₂ H ₄)				mA	
									cm ⁻²	
CuO/Ni SAs _{1.82}	1.5	Flow cell	1 M KOH	-0.892	81.4% (C ₂₊)	1120.8	1500		3 h @	188
					54.1%	811.5			1000	
					(C ₂ H ₄)				mA	
					28.8%	432			cm⁻²	
					(C₂H₅OH)					
		MEA (4)	1 M KOH	3.521~3.5	82.7% (C ₂₊)		3000		25	
				67	52% (C ₂ H ₄)		(total)			
					26.4%					
					(C ₂ H ₅ OH)					
Cu(100)-rich films (HRS-	0.9	Flow cell	2 М КОН		86.5% (C ₂₊			36.5	4.5 h	189
Cu)					with 58.6%				@	
					C_2H_4)				-0.75	
									V	
		MEA (4)	0.1 M KHCO ₃		55.8%				4.5 h	
					(C ₂ H ₄)				@ 120	
									mA	
									cm ⁻²	

		MEA (25)			50.9%	244.32	12000		3.5 h	
					(C_2H_4)		(480 mA			
					(<u> </u>		cm ⁻²)			
cCOF/PFSA		MEA (4)	1 M KOH	-3.09	90.3% (C ₂₊)	680.4	900	25.9	760 h	190
					70.5%	493.5		17.2	@ 200	
					(C ₂ H ₄)				mA	
									cm ⁻²	
		MEA (25)	1 M KOH	-3.05	55.2%		20 A	21.2		
					(C ₂ H ₄)		(total)			
		Cell stack (six	1 M KOH	-15.7	50.5%		600			
		10 cm ² MEA)			(C ₂ H ₄)					
3D Cu–CS-GDL		Flow cell	1 M KOH	-0.87	88.2% (C ₂₊)	793.8	1000		24 h @	191
					51.4%	462.6			900	
					(C ₂ H ₅ OH)				mA	
									cm ⁻²	
CeO ₂ /CuO		Flow cell	0.5 mM	-1.5	89.8% (C ₂₊)				25 h @	192
			H_2SO_4 and 3		48.5%	344			-1.53	
			M KCl		(C₂H₅OH)					
Cu=N	1	Flow cell	1 M KOH	-0.82	75% (C ₂₊)					193
					45%	406				
					(C₂H₅OH)					
		MEA (5)	0.1 M KHCO_3	-4.17 ±					300 h	
				0.12					@ 400	
									mA	
									cm⁻²	
1.83%F-Cu ₂ O OIHs	1	Flow cell (1)	3 М КОН	-1.8	55.2%	210	600	29.1		194
					(C₂H₅OH)					
		MEA			49.6%				60 h @	
									100	
									mA	

									cm ⁻²	
Commercial Cu		Flow cell	1 M KOH		37.5%	300	800			195
					(C ₂ H ₅ OH)					
Au–Cu Janus	2 ±	Flow cell	1 M KOH	-0.87	72.1%	107			10 h @	196
nanocrystals (Au-Cu $_{ m I}$)	0.1%				(CH₃OH)				630	
									mA	
									cm ⁻²	
Au–Cu _{II}				-0.78	67.3% (C ₂₊)	431			7.5 h	
				-0.83	78.1%				@ 630	
					(C ₂ H ₅ OH)				mA	
									cm ⁻²	
Au–Cu _{III}				-0.87	80% (C ₂₊)	576.1			10 h @	
					63% (C ₂ H ₄)				600	
									mA	
									cm ⁻²	
Cu ₂ O@Cu-TCPP(Co)	0.6	Flow cell	1 M KCl		69 ± 4%				20 h @	197
					(C ₂₊)				300	
					54 ± 2%	$2/0 \pm 8$			mA	
		5 1	Cathalata 1		(C ₂ H ₄)	(C ₂ H ₄)				109
Cu NCS@Cu-BTC		Flow cell	Catholyte: 1		92.3% (C ₂₊)	276.9	500		10 h @	190
		(0.5*2)	IVI KCI						300	
									ma cm ⁻²	
		NAEA (1)			00.1% (C_)	260.2	E00	21 7	50 h @	
		MEA (1)			90.1% (C ₂₊)	500.2	500	51.7	200	
									200 mA	
									cm ⁻²	
									(0 0 1	
									(0.0.1 М	
									кон)	
		MEA (25)	0.1 M KOH		> 80% (C ₂₊)	7.97 A	12.5 A			
---------------------	------------------	---------------	--------------------------------------	-------	---------------------------------	-----------------------	--------	-------	------------------	-----
Pd-Cu		Flow cell	1 M KOH		80.8% (C ₂₊)	> 980	1600		20 h @	199
									800	
									mA	
									cm ⁻²	
Cu/Pd-1%	1.75	Flow cell	1 M KOH		66.2% (C ₂₊)	463.2	700		5 h @	200
									500	
									mA	
									cm⁻²	
Cu/PPy		Flow cell	1 M KOH		80% (C ₂₊)	560	1000		50 h @	201
									200	
									mA	
									cm ⁻²	
AEI-OD-Cu	CuO:	Flow cell (1)	1 M KOH	-0.66	81% (C ₂₊	647	1000		9 h @	202
	0.52				with 62%				400	
	AEI: 5				C ₂ H ₄ +				mA	
	μL				18.1%				cm⁻²	
	mL ⁻¹				C₂H₅OH)					
	CuO:				85.1% (C ₂₊					
	0.52				with 65%					
	AEI:				C_2H_4)					
	10 µL									
	mL ⁻¹									
Cu–Au/Ag nanoframes	0.05	Flow cell (1)	1 M KOH	-0.65	77±2% (C ₂₊)	308			31 h @	203
									–1.2 V	
Cu@PIL	1	Flow cell	0.5 M K ₂ SO ₄		82.2% (C ₂₊)	822	1500	34.5%	8 h @	204
		(0.5*2)	+ H ₂ SO ₄		75.8%	1137			600	
		-	(pH=1.8)	-1.71		1140 (C ₂₊			mA	
						with 570			cm ⁻²	
						C ₂₊				

						alcohol)		
Cu/Ag s-GDE	Cu:	Flow cell	0.5 M KOH	3.28	85.7% (C ₂₊)			205
(1.00 :	0.4							
0.05)	Ag:							
Cu/Ag s-GDE	0.04			3.32	84.8% (C ₂₊)			
(1.00 :								
0.25)								
Cu/Ag s-GDE				3.37	83.9% (C ₂₊)			
(1.00 :								
0.50)								
Cu/Ag s-GDE				3.4	82.5% (C ₂₊)			
(1.00 :								
0.75)								
Cu/Ag s-GDE				3.44	80.6% (C ₂₊)			
(1.00 :								
1.00)								
Cu GDE				3.59	70.3% (C ₂₊)			
Cu/Fe-N-C s-GDE	Cu:	Flow cell	0.5 M KOH	2.89	87.3% (C ₂₊)	437.2		24 h @ 205
	0.8							680
	Fe-N-							mA
	C: 0.8							cm⁻²
								120 h
								@ 430
								mA
								cm⁻²
		MEA	0.1 M KHCO ₃	4	86% (C ₂₊)	299		80 min
					47% (C ₂ H ₄)			@ 500
								mA
								cm ⁻²
Doubly loaded Cu/Fe-		Flow cell	0.5 M KOH	3.38	89.3% (C ₂₊)	1071.7	16.9	

N. 0. 005					62 50/	764 7				
N-C S-GDE					63.5%	/61./				
					(C ₂ H ₄)					
$Cu_2Mg(111)$	1	Flow cell (1)	1 M KOH		76.2 ± 4.8%	720 ± 34	1500		15 h @	206
					(C_2H_5OH)				600	
									mA	
									cm ⁻²	
dCu ₂ O/Ag _{2.3%}	0.44	MEA	1 M KOH	-0.87	48.1%	326.4	800	22.3	12 h @	207
					(C_2H_5OH)				800	
									mA	
									cm⁻²	
Cu₃Sn	3	MEA (5)	1 M KOH	3	40%	360		17	48 h @	208
					(C₂H₅OH)				900	
									mA	
									cm ⁻²	
Ag _{0.015} In _{0.985} Se _{0.734}	0.8	Flow cell	1 M KOH	-0.6	79.3%	164.7	740.3		14	209
nanosheets				-1	61.9%	458.2				
					(C ₂ H ₅ OH)					
		MEA (1)	1 M KOH	3	68.7%	186.6	710.0	26.1	22	
				4.5	55.3%	392.3				
					(C₂H₅OH)					
CuAgNb	0.5	microfluidics	1 M KOH		\sim 75% (C ₂₊)		600			210
		flow cell (1)								
Cu ₂ O/Ag		Flow cell	1 M KHCO ₃		80.8% (C ₂₊)	565.6	1200			211
wr-Cu	1	Flow cell	1 M KOH	-0.91	85.8% (C ₂₊)		800		15 h @	212
					49.7% (C ₂₊	397.6			800	
					alcohol)				mA	
									cm ⁻²	
Nanoporous Cu	1	Flow cell	1 M KOH	-0.67	62% (C ₂₊)	653			> 2 h	213
·									@ 200	
									mA	

									cm ⁻²	
Cu-nanorod(nr)/CC3	1	Flow cell (1.05)	1 M KOH	-0.9	76.1% (C ₂₊)	1293.7	1700		1	214
E-SC/Cu ₂ O	1	Flow cell	2 М КОН	-0.9	88.1% (C ₂₊)	825.94			55 h @	215
				-1.1	80%	1239.92			500	
									mA	
									cm ⁻²	
CuGa	1	Flow cell	1 M KOH	-1.07	81.5% (C ₂₊)	900	1100		12 h @	216
									900	
									mA	
									cm⁻²	
Cu CF	3	Flow cell	1 M KOH	-1.31	>80% (C ₂₊)	565.7	700			217
		(1)	3 М КОН	-0.86	86.9% (C ₂₊)	608.2				
		MEA (4)	1 M KOH	-2.8	90.4% (C ₂₊)	341.6	800	34.7	400 h	
					48.1%				@ 200	
					(C ₂ H ₅ OH)				mA	
									cm ⁻²	
		MEA (25)	1 M KOH	-2.88	48.1%		400	19.2	10 h @	
					(C_2H_5OH)				400	
									mA	
									cm ⁻²	
		Solid-	proton-	-3.9	44.4%	355.2	800		50 h @	
		electrolyte	conducting		(C₂H₅OH)				600	
		reactor	electrolyte +						mA	
			0.5 M H ₂ SO ₄						cm ⁻²	
N-Cu	0.5	Flow cell	1 M KOH	-1.15	73.7% at	909	1500		6 h @	218
		(1)			1100 mA				400	
					cm ⁻² (C ₂₊)				mA	
									cm ⁻²	210
F-Cu	0.25±	Flow cell	0.75 M KOH	-0.89	≥80%	1280	1600		40 h @	219

	0.05				(C ₂₊ with			400	
					65%C ₂ H ₄ +			mA	
					12%C₂H₅OH			cm ⁻²	
)				
			2.5 M KOH	-0.54	84%	672			
					(C ₂₊ with				
					60%C ₂ H ₄ +				
					$16\%C_2H_5OH$				
)				
Cu-GDL		Gas diffusion	1 M KCl +		87% (C ₂₊)	1600	1800	10 h @	220
		flow reactor	1 M HCl +					600	
			1 M KOH					mA	
								cm⁻²	
								30 h @	
								200	
								mA	
								cm⁻²	
Cu ₂ O-Cu		Flow cell	1 M KOH	-1.27	77.4% (C ₂₊)	449.4	700	5 h @	221
nanocubes								500	
								mA	
								cm ⁻²	
Porous Cu	0.6	Flow cell	1 M KOH	-0.67	62% (C ₂₊)	653		2 h @	213
								400	
								mA	
								cm⁻²	
Ni SAC + Cu-R		Flow cell	1 M KHCO ₃	-1.4 to	90% (CO)		600	14 h @	222
				-1.5				500	
								mA	
								cm ⁻²	
CuO nanosheets	1.75	MEA (4)	0.1 M KOH		82.7%		900		223

					(C ₂₊ with					
					52.5% C ₂ H ₄)					
		MEA (100)			55% (C ₂ H ₄)	330	1000			••
		MEA stack			50% (C ₂ H ₄)	200	1000			
		(four 100								
		cm²)								
RhCu	0.35	Flow cell	1 M KOH	-	74±3%		1000		35 h @	224
				0.65±0.01	(C ₂₊)				1000	
				-0.66	61.2%	653			mA	
					(C ₂ H ₄)				cm ⁻²	
		MEA		3.8	58.2%	590		37.2%		
					(C ₂ H ₄)			(half)		
								17.6%		
								(full)		
ZnO/RhCu cs-GDE		MEA		3.7	85.4%	1256		21.4%		-
					(C ₂₊)			(full)		
					68.8%	1012				
					(C ₂ H ₄)					
Cu-poly-1	1	MEA	1 M KHCO ₃	-3.98	71.08% (C ₂₊)	355.4	550			225
					41.8% (C ₂₊)	229.9				
Cu/ionomer	3.33	Flow cell	7 М КОН	-0.68	87.5% (C ₂₊)	1023.75	1550		60 h	186
				-0.88	79.5% (C ₂₊)	1089.15			(-3.90	
				-0.91	78.2% (C ₂₊)	1212.1			V cell	
									voltag	
									e, 0.1	
									М	
									KHCO₃	
)	
T-Cu	1	Flow cell	1 M KOH	-4.1±1.2	78% (C ₂₊	1810	4000	42	10 h @	226
					with 67%				100	

					C ₂ H ₄ + 5%				mA	
					C_2H_5OH)				cm ⁻²	
		MEA (5)	0.1 M KHCO ₃	-3.78±0.2	50±11%	120			> 400	
				1	(C ₂ H ₄)				h @	
									200	
									mA	
									cm ⁻²	
Cu-Cl-Cs	1	Flow cell (1)	1 М КОН	-4.24	35.4 ± 0.9%	2124 ± 54	8000		4800 s	227
					(C₂H₅OH)				@	
				-1.34	45.4 ± 2.3%	1816 ± 92	••		4000	
					(C₂H₅OH)				mA	
				-4.24	67.5 ± 5.4 %	3330 ±	••		cm ⁻²	
					@ 4000 mA	252 @				
					cm ⁻² (C ₂₊)	6000 mA			20 h @	
						cm ⁻²			1000	
									mA	
									cm ⁻²	
Li _{2-x} CuO ₂	1	Flow cell (1)	1 М КОН	-3.3	45.4 ± 2.3%	706 ± 32	2000			228
-10-					(C₂H₅OH)	@ 2000				
				-0.85	90.6 ± 7.6%	mA cm ⁻²			10	-
					(C ₂₊ with					
					50.9 ± 3.6%					
					C ₂ H ₄ , 27.1 ±					
					2.5%					
					C₂H₅OH,					
					10.1 ± 1%					
					CH₃COOH)					
BaO/Cu	1	Flow cell	1 M KOH	-0.75	61% (C ₂₊	244	500	30	20 h @	229
		(2*2)			alcohols)				400	
									mA	
									•••••	

									cm ⁻²	
6.2% Pd-Cu/PTFE		Flow cell	0.5 M K ₂ SO ₄		89 ± 4%	440	750		4.5 h	230
					(C ₂₊)				@ 500	
									mA	
									cm⁻²	
Cu-Cul composite	2.0±0.	Flow cell	1 M KOH	-1	66% (C ₂₊)	591	894		85 h @	171
	1								-0.8 V	
Mg-Cu		Flow cell	1 М КОН	-0.77	80% (C ₂₊)	520	1000		48 h @	231
									650	
									mA	
									cm ⁻²	
Cu(100)-rich Cu	1	MEA	0.1 M KHCO ₃	-3.8	83% (C ₂₊)	415	500	25	60 h @	232
									300	
									mA	
									cm⁻²	
n-butylamine modified		Flow cell	0.5 M K ₂ SO ₄ +		81.8% (C ₂₊)		410			233
Cu		(1.05)	0.005 M		52.6% (C ₂₊					
			H ₂ SO ₄		alcohols)					
		MEA (2*2)	0.1 M KHCO ₃	-4.2	43.7% (C ₂₊		340		80	
					alcohols)					224
4.4-shell Cu	1	Flow cell (1)	1 М КОН		58.7 ± 3.0%	528.3	900		11 h @	234
					(C ₂₊)				300	
									mA	
									CM⁻²	225
p-CuO _x -Cu NWs-Ag	1	Flow cell	1 M KHCO ₃	-1.48	76% (C ₂₊)	380	500			235
		(1*0.5)								226
r-cuAg		FIOW CEII	Catholyte:	-1.9	\sim 80% (C ₂₊)	684 (C ₂₊)			5 n @	230
			$0.05 \text{ M} \text{ H}_2\text{SO}_4$		56.5% (C ₂₊	480 (C ₂₊			350	
			+ 3 IVI KCI		oxygenates)	oxygenate			mA	
			Anolyte: 0.05			S)			cm⁻₂	

			M H ₂ SO ₄					8 h @	
								pulsed	
								CO ₂	
								electro	
								lysis	
								(350	
								mA	
								cm ⁻²	
								for 100	
								s and 1	
								mA	
								cm ⁻²	
								for 1s)	
3-shell HoMSs		Flow cell	0.5 M KHCO ₃ -0.88	77% (C ₂₊)	513.7±0.7			8 h @	237
								300	
								mA	
								cm ⁻²	
Ga ₁ -F/Cu ₂ O		Flow cell	1 M KOH	72.8±3.2%	456	800		10 h @	238
				(C ₂₊)				600	
								mA	
								cm ⁻²	
PT/Cu		Flow cell	2 М КОН	87.4% (C ₂₊)		2000		150 h	239
								@ 200	
								mA	
								cm ⁻² in	
								1 M	
								КОН	
		MEA	1 M KOH	> 80% (C ₂₊)		1200	21		
PFSA@Cu/PTFE	1	MEA	0.1 M KHCO ₃	84% (C ₂₊)	790	1100	23	100 h	240
								@ 250	

									mΔ	
									cm ⁻²	
Ni SAC/Cu(111)	2	Flow cell (0.5)	1 M KHCO ₃		60% (C₂H₄)	372	600		14 h @	222
, , ,		ζ,	5		124/				500	
									mA	
									cm ⁻²	
SS-Cu	1	Flow cell (1)	1 М КОН	-0.58	~80%	~568				241
					(C ₂ H ₄)					
	1	pure-H ₂ O-fed			52% (C ₂₊)		500	18.2		
		(alkali-cation-								
		free) MEA (1)								
		Electrolyser		-4.4 V for	~50%		10000		1000	
		stack (six		each set of	(C ₂ H ₄)		(total)			
		MEA, 30)		MEA cells						
Cu ₂ O-Cu nanocubes	1	Flow cell	1 M KOH	-1.27	55% (C ₂ H ₄)	449.4 (C ₂₊)	700		5 h @	221
									500	
									mA	
									cm ⁻²	
La(OH) ₃ -modified Cu		Flow cell	1 M KOH	-1.25	71.2% (C ₂₊	712.6	1200		8 h @	242
					with 40.8%				1000	
					C ₂ H ₄)				mA	
									cm ⁻²	
GDE-Nafion	1	Flow cell (1)	1 M KOH	-2.75	75.2% (C ₂₊)	968.6	1160		12 h @	243
									300	
									mA	
									cm ⁻²	
Cu-FEP	0.4	Flow cell	1 M KOH	-0.76	\sim 77% (C ₂₊)	> 600	800		16 h @	244
									200	
									mA	
									cm ⁻²	

CuNNs		Flow cell (1)	3 M KCI		90.69±2.15 % (C ₂₊)	1270	1600		8 h @ 800 mA cm ⁻² 5 h @ 1200 mA cm ⁻²	245
CuO-C(O)	1	Flow cell	1 М КОН		\sim 77.4% (C ₂₊ with \sim 60% C ₂ H ₄)	387	600		10 h @ 500 mA cm ⁻²	246
Cu-based GDE	1	Flow cell (1)	1 M KOH	-1.44	65.1 (C ₂₊)	885	1360			247
Fe9.0%-a/c-SnSe/SnSe ₂	0.4	Flow cell (0.5*0.5)	1 М КОН	-0.6	62.7% (C ₂ H ₅ OH)	239	893.9		40	248
		MEA (1)		3 4	63.5 60	201.2 425.1	719.3	24.1	20	
Cu-DMAP/P-H		Flow cell	1 M KOH	-0.59	47% (C₂H₅OH)		500		24 h @ 150 mA cm ⁻²	249
Cu ₅ Ga ₁		Flow cell	1 M KOH		~83% (C ₂₊ with ~53% C ₂ H ₄) @ 50% CO ₂		500			250
					> 80% (C ₂₊)		1500		65 h @ 500 mA cm ⁻²	

		MEA (1)	1 M KOH		80% (C ₂₊)		1500			
K-F-Cu-CO ₂	1	Flow cell (1)	1 M KOH	-0.53	52.9%	423	1200		12 h @	251
					(C₂H₅OH)				800	
				-0.68	43.9%	439			mA	
					(C ₂ H ₅ OH)				cm ⁻²	
Cu		Flow cell	0.01 M H ₂ SO ₄		42.4% (C ₂₊)	308	1200		10800	252
			in seawater						s @	
									100	
									mA	
									cm ⁻²	
Cu-Cul	2.0±0.	Flow cell	1 M KOH	-1	40% (C ₂₊)	591	1833			171
	1									
LSC-D520	0.5	MEA (2*2)		3.57	89.4 ±	536 ± 4.14	700	28.6	10 h @	253
					0.69% (C ₂₊)				2000	
									mA	
CuONPs	1.7	In-house-	1 M KCl	–1.76 V vs.	40% @	1700	2400	7.2	2 h @	254
		built three-		Ag/AgCl	-1.69 V vs				1600	
		compartment			Ag/AgCl				mA	
		electrochemi			(C ₂₊)				cm ⁻²	
		cal cell								
Cu-bpa	1	Flow cell	1 M KOH	-0.83	58.2% (CH ₄)	232.8	500			255
Cu-bpe	-			-0.85	65.9%	197.7	500			
					(C ₂ H ₄)					
Cu-PzH		Flow cell	1 M KOH	-1	60% (C ₂ H ₄)	346.46				256
[Cu ₂ (ophen) ₂]		Flow cell	1 M KOH		55% (C ₂ H ₄)	319	580		50 h @	257
(Cuophen)									-1.4 V	
Cu(OH)BTA	1	Flow cell	1 M KOH	-0.87	57% (C ₂ H ₄)	285	500			258
					73% (C ₂₊)					
		MEA (4)	0.1 M KHCO ₃	3.8	54% (C ₂ H ₄)	130		31.3	67 h @	

								(half)	950	
									mA	
									cm ⁻²	
Cu@AIL	1	Flow cell	1 M KOH	-1.31	71.6% (C ₂₊)	1290	1800		18 h @	259
					81.4% (C ₂₊		900		600	
					with 34.8%				mA	
					C ₂ H ₄ +				cm ⁻²	
					38.6%					
					C₂H₅OH)					
ED-Cu nanoribbon	1.2	Flow cell (1)	1 M KOH		82.1% (C ₂₊	505 (C ₂ H ₄)	700		40 h @	260
					with 67.2%				700	
					C ₂ H ₄)				mA	
									cm ⁻²	
CuO/Al ₂ CuO ₄ -23	0.6	Flow cell (1)	1 M KOH	-2.031	70.1%	421	1000			261
					(C ₂ H ₄)					
Cu ₂		Flow cell	1 M KOH		51% (C ₂ H ₄)	469.4				262
Cu-NN		MEA	0.5 M KHCO ₃	-3.55	83% (C ₂ H ₄)		1000	39.6	120	263
Cu-NN+PFSA ionomer					89 ± 3%	536		30.5		
					(C ₂ H ₄)					
Abrupt Cu	1	Flow cell	10 M KOH	-3.8	66% (C ₂ H ₄)	495	750		150	264
interface										
TS-Cu	1	Flow cell	1 M KOH	-0.9	72% (C ₂ H ₄)		1000		100 h	265
		MEA	1 M KOH	3.5	72% (C ₂ H ₄)	576	1000		230 h	
Cu tuned with		Flow cell	1 M KHCO ₃	-0.83	72% (C ₂ H ₄)	232		20		266
molecular		(1)								
		MEA (5)	0.1 M KHCO ₃	-3.65	64% (C ₂ H ₄)	384			190	
cAA-CuNW		Flow cell	1 M KOH	-1.55	60.7%	539	888		8 h @	267
					(C ₂ H ₄)				300	
									mA	

									cm ⁻²	
Cu _{TPA}		Flow cell	3 М КОН	-1.25	90.9% (C ₂₊)	486.1			10	268
L-Cu _x O-HC		Flow cell	1 M KOH	-2.8	81% (C ₂₊)	665.9	900		12 h @	269
									600	
									mA	
									cm⁻²	
m-CuO		Flow cell (1)	1 M KOH	-1.5	77.2% (C ₂₊)				20000	270
					55% (C ₂₊	209 (C ₂₊			S	
					alcohol)	alcohol)				
c-CuO					76% (C ₂₊)					
					52% (C ₂ H ₄)					
C-Cu ₂ O NPs	1	Flow cell	1 M KOH		76.9% (C ₂₊)	615.2	900		20 h @	271
		(3*1)			57.4%	459.2			300	
					(C ₂ H ₄)				mA	
									cm⁻²	
Cu-QAPPT	0.25	MEA	0.1 M KHCO ₃	3.68	48% (C ₂ H ₄)	308	1000		5 h @	272
				3.54	49.7%	420		16.8	200	
					(C ₂ H ₄)				mA	
									cm ⁻²	
CAL-modified		Flow cell	1 M H ₃ PO ₄ +		40% (C ₂₊)	480	1500		/	273
Cu		(1, 50 sccm	3 M KCl							
		CO ₂)	-,							
		Slim flow cell		4.2	25% (C ₂ H ₄)	300	1200		12 h @	
		(1, 50 sccm							1200	
		CO ₂)							mA	
		Slim flow cell			48% (C ₂₊)	288			cm ⁻²	
		(1, 5 sccm								
		CO ₂)	_,							
		Slim flow cell			50% (C ₂₊)	600				
		(1, 3 sccm								

$C_{\rm H}$ CPE homomodo 0.5 M/HCO 1.04 62.8% (C) 2200 2500 168 h	274
$cu GPL$ nomentade 0.5 W KHCO ₃ = 1.94 02.8% (c_{2+}) 2500 5500 108 H	
Cell MA	
CM ⁻²	
Catholyte: -0.95 65% (C ₂₊) 2000	
3.5 M KCl	
Anolyte:	
3.5 M KOH	
cavity Cu 0.8 Flow cell (1) 1 M KOH -0.59 75.6 ± 1.8% 605 ± 14 12 h @	275
(C ₂₊) 200	
mA	
cm ⁻²	
CuTA 1.2 Flow cell (1) 1 M KOH 86.1 ± 3.1% 602.7 (C ₂₊ 1000 15 h @	276
(C ₂₊ with with 500	
60.8 ± 2.3% 425.6 mA	
C_2H_4 , 18.6 ± C_2H_4) cm ⁻²	
2.0%	
C ₂ H ₅ OH)	
CO ₂ RR synthesized MEA (5) 0.15 M -0.7 90% (C ₂₊) 520 780 37 65 h @	277
faceting KHCO ₃ 350	
mA	
cm ⁻²	
Flow cell (1) 7 M KOH -0.63 280 300 20 h @	
350	
mA	
cm ⁻²	
CoPc@HC/Cu CoPc Flow cell 0.5 M H ₃ PO ₄ 82% (C ₂₊ 656 (C ₂₊ 900 12 h @	278
@HC: + 0.5 M with with 350	
0.5 KH ₂ PO ₄ + 61% C ₂ H ₄) 488 C ₂ H ₄) mA	

	Cu: 1		2.5 M KCl		76 ± 2% (C ₂₊ with 55 + 3%	608 (C ₂₊ with 440 C ₂ H ₄)		cm ⁻²
					C₂H₄)	110 02114)		
Cu ₉ Ga₄	1	Flow cell	1 M KOH		71% at 1700	1207	2600	279
					mA cm ⁻²			
					(C ₂₊)	1258		
					52.4% at			
					2400 mA			
					cm ⁻² (C ₂₊)			
		MEA (5)		-4 ± 0.4	~55% (C ₂₊)		1500	> 55 h
							(total)	@ 300
								mA
								cm ⁻²
		MEA (25)		~4			50000	3 h @
							(total)	2000
								mA
								cm ⁻²
e-alloyed CuAl		Flow cell	1 M KOH		~86% (C ₂₊)	516	600	50 h @ ²⁸⁰
								400
								mA
								cm ⁻²
								5 h @
								600
								mA
								cm ⁻²
			3 М КОН		48~52%			50 h @
					(C ₂ H ₄)			150
								mA
								cm ⁻²

			3 M KOH + 3		73 ± 4%					
			ΜΚΙ		(C ₂ H ₄)					
CoCu SAA	0.5	Flow cell (2)	1 M KHCO ₃	-1.07	34.4%	282	700	22.5	3 h @	281
					(C ₂ H ₄)			(half)	300	
									mA	
									cm ⁻²	
I-Cu HPF		Self-made	3 M KI	-1.27	63.8% (C ₂₊)		3000		120 h	282
		quartz cell							@	
									2000	
									mA	
									cm⁻²	
POD-Cu		Flow cell	1 M KCl	-2.34 V vs	80.3% (C ₂₊	511 mA			4 h @	283
				NHE	with 38.3%	cm ⁻² @			300	
					C ₂ H ₄ , 30.1%	–2.45 V			mA	
					ethanol,				cm ⁻²	
					10.1%					
					acetate)					
Nano Cu with I_2	0.8	Flow cell (1)	0.3 M KI in		> 70% (C ₂₊)		600		8 h @	284
			$0.05 \text{ M} \text{ H}_2\text{SO}_4$						500	
									mA	
									cm⁻²	
Sm-CuO _x		Flow cell	1 M KOH		80% (C ₂₊)	1000	1250			285
Eu-CuO _x					75% (C ₂₊)	937.5	1250			
Gd-CuO _x					74% (C ₂₊)	925	1250			
6.5% Gd ₁ /CuO _x	1	Flow cell	2 М КОН	-0.8	81.4% (C ₂₊)	444.3			40 h @	286
									500	
									mA	
									cm ⁻²	
CuO/3DOM SiO ₂		Flow cell	1 M KOH		11.8% (n-	35.4	500		120 h	287
					propanol)				@ 100	

mA
cm⁻²

Catalysts	Catalyst loading (mg cm ⁻ ²)	Electrolysis window (cm²)	Electrolyte	Potential (V vs RHE) / Cell voltage (V)	FE _{main product}	Ĵ _{main product} (mA cm⁻ ²)	Maximu m operation current (mA cm ⁻²)	Energy efficienc y (%)	Stability (h)	Ref
Cu NC	0.5	Flow cell (1) solid electrolyte reactor system (4)	0.5 M KHCO ₃ porous solid Dowex 1 × 4 copolymer		43% (acetate) 30% (acetate)	194.4 250	700	11.1	150 h @ 100 mA cm ⁻² 10 h @ 700 mA cm ⁻²	288
N ₂ SN/CuAu _{1%}	1	Flow cell (1)	1 M KOH		79% (C ₂₊) 58% (acetate)	423 (C ₂₊) 308 (acetate)	700			289
	1	MEA (1)	1 M KOH		89% (C ₂₊) 55% (acetate)	397 (C ₂₊) 219 (acetate)	1000	24%	500 min @ 100 mA cm ⁻² 400 min @ 200 mA cm ⁻² 200 min @ 300 mA cm ⁻²	
Cu		MEA	1 М КОН		> 80% (C ₂₊)	506	600		120 h @ 200 mA cm ⁻²	290
Cu GDE	0.8	double walled electrolysis cell	Catholyte: 1 M KOH) Anolyte: 1 M H ₃ PO ₄		87% (C ₂₊) 35% (C ₂ H ₄)		4000		5 h @ 1000 mA cm ⁻² 10 h @ 500 mA cm ⁻² 50 h @ 200 mA cm ⁻²	291

Table S2. Summary of catalysts performances for CORR at ampere-level current.

CuPc	2.0±0.1	MEA	0.1 M KOH		84.2% (C ₂₊)	605	1400	33.5	100 h @ 300	292
								(C ₂₊)	mA cm ⁻²	
								27.3		
								(acetate)		
20Cu-Ti ₄ O ₇		Flow cell	1 M KOH	-0.8	96.4% (C ₂₊)	432.6	470.3 @	45.1	1000 min	293
							-0.8 V			
Ag-doped	0.8	PSE cell	porous		55 ± 2%	> 371	1000		150 h @ 400	294
Cu ₂ O		(2.25)	styrene-		(acetate)				mA cm ⁻²	
			divinylbenzen							
			e sulfonated							
			copolymer							
Ni-doped Cu	0.5	Flow cell	1 M KOH	-0.77	56%	200	600		40 h @ 300 mA	295
NWs					(ethanol)				cm ⁻²	
		MEA	1 M KOH	2.7	54%			21	300 h @ 300	
					(ethanol)				mA cm ⁻²	
CuPd _{0.6}	0.5	Flow cell	2 M KOH		59.5%	286 mA	700		16 h @ 100 mA	296
					(acetate)	cm ⁻² @			cm ⁻²	
						-0.86 V				
		Flow cell	2 М КОН						200 h @ 100	-
									mA cm ⁻²	
									(hydrophobize	
									d GDE)	
		MEA	2 М КОН					26.6	500 h @ 100	-
									mA cm ⁻²	
CuPd	0.5	Flow cell	1 M KOH	-1	70 ± 5%	425				297
					(acetate)					
		MEA (5)		-3.4 ± 0.2	~50%	250	500	27.6	500 h @ 500	•
					(acetate)				mA cm ⁻²	
CuO	1.75	MEA (4)	0.1 M KOH		44.6%	1226.5	1800			223
nanosheets					(acetate)					

		0.6 MPa pure	1 M KOH		92.4% (C ₂₊)	2080	3000		40 h @ 1000	
		CO (30 sccm							mA cm ⁻²	
		CO)								
		0.6 MPa pure			90% @ 40 A		3500	40		
		CO (60 sccm			(C ₂₊)					
		CO)								
		Electrolyser			> 65% @		3100			
		stack (100)			250 A (C ₂₊)					
Cu(25 nm)-	~0.3	Solid	porous solid	-4.45	56.6%		500	26.6	120 h @ 100	298
CN-3		electrolyte	electrolyte		(acetate)				mA cm ⁻²	
		electrolyser								
		(1)								
		Flow cell	1 M KOH	-0.87	62.8%	188				
					(acetate)					
GD-Cu		Flow cell	3 М КОН		56 ± 2%	222 ± 7	500		40 h @ 400 mA	299
					(acetate)				cm ⁻²	
C ₁₈ S–CuNPs	0.8	Flow cell	1 M KOH		70%	280	600		35 h @ 100 mA	300
					(acetate)				cm ⁻² in MEA	
CuAu _{1%}	0.5	Flow cell (1)	1 M KOH		39%	217	700		130 min @ 200	301
					(acetate)				mA cm ⁻²	
Cl-aCu HPE		Home-made	Catholyte: 3 M	-0.95	90.5% (C ₂₊)	1800	2000	32.3	200 h in 3 M	39
		gas-tight	KCI						KCl @ 2000 mA	
		two-	Anolyte: 1 M						cm⁻²	
		compartmen	КОН							
		t quartz								
		electrolyzer								
Cu ₃ Ag ₇	1	Flow cell (1)	1 M KOH		60% (C ₂₊)		600		25	302
OD-Cu		Flow cell	1 M KOH		91% (C ₂₊)	630	1000		1 h @ 500 mA	303
									cm ⁻²	
Cu/30Ag	1	Flow cell (1)	1 M KOH		60.77 ±	486.16 ±	800			304

					1.52% (Oxygenates) 66.81% (Oxygenates)	12.16 801.72	1400			
									cm ⁻²	
Cu nanoparticles		MEA (4)	0.5 М КОН	2.78 ± 0.01	87 ± 1% (C ₂₊)	435	5000		150 h @ 1000 mA cm ⁻²	305
		Five MEA (Five 100 cm ²)	0.5 М КОН		96% (C ₂₊)		4000		32 h @ 100000 mA	
Cu(100)-rich Cu	1	MEA	1 M KOH	-2.3	93% (C ₂₊)	465	700	41	150 h @ 500 mA cm ⁻²	232
Cu(OD) _{0.8} Ag _{0.}	0.8	MEA (1)	1 M KOH		83% (C ₂₊)		15000		103 h @ −2.98 ± 0.09 V	306
CuO-XA-9	0.4	MEA	1 M KOH		78% (C ₂₊)	780				307
CuO-Nafion	-			2.4	90% (C ₂₊)	900	1000		110 h @ 200 mA cm ⁻²	
Ag-Ru-Cu		MEA (5)	1 М КОН	3.15	93% (C ₂₊)	540	600		100 h @ 300 mA cm ⁻²	308
					37 ± 3% (<i>n</i> - propanol)	153 ± 12				-
	Cu: 6	MEA (15)		-2.60 ± 0.0 2	93% (C ₂₊ with 36 ± 3% <i>n</i> -propanol)	279 (C ₂₊ with 108 <i>n</i> - propanol)		37	150 h @ 4.5 A	

00-01-05	2	Flow cell	1 M KOH	-0 66 V @	96%	2804	3000		10 h @ 2000	309
OD Cu Cs	2	now cen	IWIKOII	2000 m A		2004	5000		m^{-2}	
				2000 MA	(C ₂₊)	(C ₂₊)			IIIA CIII -	
				Cm ²		1205				
~ /==										210
Cu/5Zn	1	Flow cell	1 M KOH		50.7%	557.7	2500		30 h @ 300 mA	310
					(C ₂₊ alcohol)				cm ⁻²	
					49	441				
					37	928				
CuO-S20		Flow cell	1 M KOH		94.7%	698	2000		30 h @ 700 mA	311
					(C ₂₊)	(ethanol)			cm⁻²	
					47.1%	942				
					(alcohol)	(alcohol)				
					@ 2000 mA					
					cm ⁻²					
					98.3%					
					(C ₂₊)					
					42.5%					
					(ethanol)					
					55.1% (n-					
					propanol)					
					@ 700 mA					
					cm ⁻²					
		MEA	1 M KOH		45.8%		2000	42	100 h @ 500	-
					(ethanol)			(C ₂₊)	mA cm ⁻²	
					56.6%			25		
					(alcohol)			(alcohol)		
Pb-rich Cu		Flow cell	1 M KOH		47 ± 3% (n-			25	10	312
					propanol)			(half)		
		MEA (5)			> 30% (n-	378	1000	18	100 h @ 300	-

					propanol)	(total)	(total)		mA cm ⁻²	
Cu-HDD		MEA	1 M KOH	-0.71~0.77	> 90% (C ₂₊)	(******)	1000		300 h @ 500	313
					(2)				mA cm ⁻²	
			solid-state	3.94	~90% (C ₂₊)				20 h @ 1000	-
			electrolyte						mA cm ⁻²	
Cu-s		MEA (1)	1 M KOH	2~2.6	> 80% (C ₂₊)		1000		180 h @ 100	314
									mA cm ⁻²	
Oxide-	1	MEA (1)	1 M KOH	-0.72	> 91% (C ₂₊)	830	1000	11.5	1 h in 2 M KOH	303
derived Cu								(acetate)	@ 500 mA cm ⁻²	
OD-	CuO:	Flow cell	1 M KOH	-0.7	71% (C ₂₊)	1251				315
Cu/MgAINS	2.91									
	MgAINS									
	: 0.29									
CuSn	3.6	MEA	3 М КОН		47 ± 3% (n-		800	24		316
					propanol)					
		MEA (16)							120 h @ 150	
									mA cm ⁻²	
R-Cu/Au		Flow cell	1 M KOH	-0.78	~46.6% (n-	~ 124	508		8 h @ -0.58 V	317
					propanol)					
Cu cube-1		Flow cell	1 M KOH		~70% (C ₂₊)		1000			318
Cu needle-2		Flow cell	0.1 M KOH		>80% (C ₂₊)	400	1000			
		MEA	0.1 M KOH		13.2%	66	1000			
			0.3 M KOH		36.8%	184				
			0.5 M KOH		81.8%	409				
			1 M KOH		85.3%	426.5				
			2 M KOH		87.8%	439				-
		MEA (anode:	2 М КОН	~2.4 V @	90%	902	2500		20 h @ 1000	
		NiFe on Ni		1000 mA	75.4%	1885			mA cm ⁻²	
		foam)		cm ⁻²						

Cu₅Ga1		Flow cell	1 M KOH	2.7 V @ 1000 mA cm ⁻²	85% (C ₂₊)		1300		120 h @ 300	250
									mA cm ⁻²	
		MEA (1)	2 М КОН	3	90% (C ₂₊)		2500	30% (full)		
Ag-doped Cu	1	Flow cell	1 M KOH	-0.56	80% (C ₂₊)	308 ± 6				319
				-0.46	33 ± 1% (n- propanol)	36 ± 2		21		
Cu	1	Flow cell	1 M KOH	-0.72	65% (C ₂ H ₄)	808	1500	35~44		320
			5 М КОН	-0.6	58% (C ₂ H ₄)	728	1500			
TBA ⁺ -coated Cu	1.25	Flow cell	1 M KOH	-0.65	78% (C ₂₊ with 40% C ₂ H ₄)	765				321
	0.75			-0.75	76% (C ₂₊) 48% (C ₂ H ₄)	1097 (C ₂₊) 694 (C ₂ H ₄)				
	1.5				76% (C ₂₊) 48% (C ₂ H ₄)	1097 (C ₂₊) 694 (C ₂ H ₄)			10 h @ 1200 mA cm ⁻²	
Cu₃N-HDD		Flow cell	1 M KOH		92.9% (C ₂₊) @ 1000 mA cm ⁻²		1200			18
		Cell 2 in the tandem MEA	1 M KOH		93.5% (C ₂₊)		800			

		cells								
Cu	1	Flow cell (4)	1 M KOH	-0.69	55.5±2.2%	495				322
					(C ₂ H ₄)					
TCNQ-		Flow cell	1 M LiOH		75% (C ₂ H ₄)	375	600			323
modified Cu		MEA	1 M LiOH		> 70% (C ₂ H ₄)	442		32	> 100 h @ 500	
									mA cm ⁻²	
CuCube		custom-built	1 M KOH		88% (C ₂₊)				36 h @ -0.8 V	324
HFGDE		flow cell			64% (C ₂ H ₄)	418			vs RHE	
			2 M KOH		68% (C ₂ H ₄)	551				
			5 M KOH		92% (C ₂₊)					
					66% (C ₂ H ₄)	732				
Cu GDE	0.9 ±	Flow cell (1)	1 M KOH	-0.75	> 80% (C ₂₊)	1280			8 h @ 200 mA	325
	0.1				46% (C ₂ H ₄)	(C ₂₊)			cm ⁻²	

References:

- 1 Z. Chen, X. Zhang, W. Liu, M. Jiao, K. Mou, X. Zhang and L. Liu, *Energy Environ. Sci.*, 2021, **14**, 2349-2356.
- 2 Y. Sun, X. Liu, J. Tian, Z. Zhang, Y. Li, Y. Xie, M. Hao, Z. Chen, H. Yang and G. I. Waterhouse, ACS Nano, 2025, **19**, 4528-4540.
- 3 G. H. Jeong, Y. C. Tan, J. T. Song, G. Y. Lee, H. J. Lee, J. Lim, H. Y. Jeong, S. Won, J. Oh and S. O. Kim, *Chem. Eng. J.*, 2021, **426**, 131063.
- 4 T. Zheng, K. Jiang, N. Ta, Y. Hu, J. Zeng, J. Liu and H. Wang, *Joule*, 2019, **3**, 265-278.
- 5 H. Li, L. Fang, T. Wang, R. Bai, J. Zhang, T. Li, Z. Duan, K. J. Chen and F. Pan, *Adv. Mater.*, 2024, 2416337.
- 6 Q. Hao, H. X. Zhong, J. Z. Wang, K. H. Liu, J. M. Yan, Z. H. Ren, N. Zhou, X. Zhao, H. Zhang and D. X. Liu, *Nat. Synth.*, 2022, **1**, 719-728.
- 7 Y. Li, N. M. Adli, W. Shan, M. Wang, M. J. Zachman, S. Hwang, H. Tabassum, S. Karakalos, Z. Feng and G. Wang, *Energy Environ. Sci.*, 2022, **15**, 2108-2119.
- 8 Y. Lin, C. Xia, Z. Zhu, J. Wang, H. Niu, S. Gong, Z. Li, N. Yang, J. Song Chen and R. Wu, *Angew. Chem. Int. Ed.*, 2024, **137**, e202414569.
- B. Chen, B. Li, Z. Tian, W. Liu, W. Liu, W. Sun, K. Wang, L. Chen and J. Jiang, *Adv. Energy Mater.*, 2021, 11, 2102152.
- 10 Y. Li, X. Cao, Q. Chen, R. Pan, J. Zhang, G. Meng, Y. Yang, Y. Li, J. Mao and W. Chen, *Small*, 2024, **20**, 2405367.
- 11 S. Wang, Z. Qian, Q. Huang, Y. Tan, F. Lv, L. Zeng, C. Shang, K. Wang, G. Wang and Y. Mao, *Adv. Energy Mater.*, 2022, **12**, 2201278.
- 12 Y. Chen, J. Zhang, J. Tian, Y. Guo, F. Xu, Y. Zhang, X. Wang, L. Yang, Q. Wu and Z. Hu, *Adv. Funct. Mater.*, 2023, **33**, 2214658.
- 13 J. R. Huang, X. F. Qiu, Z. H. Zhao, H. L. Zhu, Y. C. Liu, W. Shi, P. Q. Liao and X. M. Chen, *Angew. Chem. Int. Ed.*, 2022, **61**, e202210985.
- 14 H. Zheng, H. Wu, L. Qiu, M. Yu, J. Zhou, H. Xu, C. Lv, P. Tian, J. Wang and L. Ling, *ACS Appl. Nano Mater.*, 2024, **7**, 27275-27286.
- 15 W. Zhang, A. Mehmood, G. Ali, H. Liu, L. Chai, J. Wu and M. Liu, *Angew. Chem. Int. Ed.*, 2025, e202424552.
- 16 L. Zhang, J. Feng, S. Liu, X. Tan, L. Wu, S. Jia, L. Xu, X. Ma, X. Song and J. Ma, *Adv. Mater.*, 2023, **35**, 2209590.
- 17 Y. Ma, T. Xiao, K. Zhu, W. Zhang, Z. Yin, A. Dong, Z. Sun, D. Zhao and W. Li, *Angew. Chem. Int. Ed.*, 2025, **64**, e202416629.
- 18 M. Wen, N. Sun, L. Jiao, S. Q. Zang and H. L. Jiang, *Angew. Chem. Int. Ed.*, 2024, **136**, e202318338.
- 19 F. Wu, S. Q. Wang, S. Kunze, X. P. Gao, P. Q. Yin and Y. E. Wu, *Rare Metals*, 2024, 43, 4612-4619.
- 20 S. Li, S. Zhao, X. Lu, M. Ceccato, X. M. Hu, A. Roldan, J. Catalano, M. Liu, T. Skrydstrup and K. Daasbjerg, Angew. Chem. Int. Ed., 2021, **60**, 22826-22832.
- 21 G. Lu, X. Wang, J. Timoshenko, B. R. Cuenya, G. Zhao, X. Huang, W. Schuhmann and M. Muhler, *Adv. Funct. Mater.*, 2024, 2419075.
- 22 Z. Yao, H. Cheng, Y. Xu, X. Zhan, S. Hong, X. Tan, T. S. Wu, P. Xiong, Y. L. Soo and M. M. J. Li, *Nat. Commun.*, 2024, **15**, 9881.
- 23 Z. Min, C. Shao, B. Chang, N. Wang, Y. Zhao, S. Gao, X. G. Zhang, M. Fan, S. Zhang and J. Wang, *Chem. Eng. J.*, 2024, **502**, 157813.
- 24 C. Wang, Y. Liu, H. Ren, Q. Guan, S. Chou and W. Li, ACS Catal., 2022, 12, 2513-2521.

- 25 Z. Ma, B. Wang, X. Yang, C. Ma, W. Wang, C. Chen, F. Liang, N. Zhang, H. Zhang and Y. Chu, *J. Am. Chem. Soc.*, 2024, **146**, 29140-29149.
- 26 J. Chen, C. Hu, Y. Liu, Y. Wei, K. Shen, L. Chen and Y. Li, Angew. Chem. Int. Ed., 2024, e202422775.
- 27 X. Du, P. Zhang, G. Zhang, H. Gao, L. Zhang, M. Zhang, T. Wang and J. Gong, *Nat. Sci. Rev.*, 2024, **11**, nwad149.
- 28 Q. Zhang, C. B. Musgrave III, Y. Song, J. Su, L. Huang, L. Cheng, G. Li, Y. Liu, Y. Xin and Q. Hu, *Nat. Synth.*, 2024, **3**, 1231-1242.
- 29 H. Chen, K. Yang, T. Shao, D. Liu, H. Feng, S. Chen, C. A. Ortiz-Ledón, J. Duan and Q. Li, *Electrochim. Acta*, 2023, **469**, 143249.
- 30 X. Lv, Q. Liu, H. Yang, J. Wang, X. Wu, X. Li, Z. Qi, J. Yan, A. Wu and T. Cheng, *Adv. Funct. Mater.*, 2023, **33**, 2301334.
- 31 B. Zhang, J. Zou, Z. Chen, W. Yan, W. Liu, C. Dong, D. Cai, Q. Zhang, Y. Wang and S. Xie, *Next Nanotechnology*, 2023, **2**, 100014.
- 32 J. D. Yi, X. Gao, H. Zhou, W. Chen and Y. Wu, Angew. Chem. Int. Ed., 2022, 61, e202212329.
- 33 J. Xue, X. Dong, C. Liu, J. Li, Y. Dai, W. Xue, L. Luo, Y. Ji, X. Zhang and X. Li, *Nat. Commun.*, 2024, **15**, 5998.
- 34 H. Han, S. Lee, J. Im, M. Lee, T. Lee, S. T. Hyun, J. Hong, T. Seok and D. Choo, *Chem. Eng. J.*, 2024, **479**, 147603.
- 35 Z. Yin, H. Peng, X. Wei, H. Zhou, J. Gong, M. Huai, L. Xiao, G. Wang, J. Lu and L. Zhuang, *Energy Environ. Sci.*, 2019, **12**, 2455-2462.
- 36 S. Verma, X. Lu, S. Ma, R. I. Masel and P. J. Kenis, *Phys. Chem. Chem. Phys.*, 2016, **18**, 7075-7084.
- 37 S. Li, X. Dong, Y. Zhao, J. Mao, W. Chen, A. Chen, Y. Song, G. Li, Z. Jiang and W. Wei, *Angew. Chem. Int. Ed.*, 2022, **134**, e202210432.
- 38 M. Fang, L. Xu, H. Zhang, Y. Zhu and W. Y. Wong, J. Am. Chem. Soc., 2022, 144, 15143-15154.
- 39 X. Dong, S. Li, C. Zhu, J. Mao, G. Wu, G. Li, G. Feng, A. Chen, Y. Wei and X. Liu, *Appl. Catal. B-Environ.*, 2023, **336**, 122929.
- 40 H. Li, H. Li, P. Wei, Y. Wang, Y. Zang, D. Gao, G. Wang and X. Bao, *Energy Environ. Sci.*, 2023, **16**, 1502-1510.
- 41 D. Kim, S. Yu, F. Zheng, I. Roh, Y. Li, S. Louisia, Z. Qi, G. A. Somorjai, H. Frei and L. W. Wang, *Nat. Energy*, 2020, **5**, 1032-1042.
- 42 B. Endrődi, E. Kecsenovity, A. Samu, T. Halmágyi, S. Rojas-Carbonell, L. Wang, Y. Yan and C. Janáky, *Energy Environ. Sci.*, 2020, **13**, 4098-4105.
- 43 S. Li, X. Dong, G. Wu, Y. Song, J. Mao, A. Chen, C. Zhu, G. Li, Y. Wei and X. Liu, *Nat. Commun.*, 2024, **15**, 6101.
- 44 G. Wen, B. Ren, X. Wang, D. Luo, H. Dou, Y. Zheng, R. Gao, J. Gostick, A. Yu and Z. Chen, *Nat. Energy*, 2022, **7**, 978-988.
- 45 S. Li, W. Chen, X. Dong, C. Zhu, A. Chen, Y. Song, G. Li, W. Wei and Y. Sun, *Nat. Commun.*, 2022, **13**, 3080.
- 46 Z. Min, B. Chang, C. Shao, X. Su, N. Wang, Z. Li, H. Wang, Y. Zhao, M. Fan and J. Wang, *Appl. Catal. B-Environ.*, 2023, **326**, 122185.
- 47 X. Zhou, A. Zhang, B. Chen, S. Zhu, Y. Cui, L. Bai, J. Yu, Y. Ge, Q. Yun and L. Li, *Adv. Mater.*, 2023, **35**, 2304414.
- 48 J. Pei, L. Yang, J. Lin, Z. Zhang, Z. Sun, D. Wang and W. Chen, *Angew. Chem. Int. Ed.*, 2024, **136**, e202316123.
- 49 K. Ye, G. Zhang, X. Y. Ma, C. Deng, X. Huang, C. Yuan, G. Meng, W. B. Cai and K. Jiang, *Energy Environ. Sci.*, 2022, **15**, 749-759.
- 50 Y. Ma, W. Niu, W. Shi, X. Huang, Y. Liu, J. Chen, L. Xue and B. Zhang, *J. Mater. Chem. A*, 2023, **11**, 12114-12120.

- 51 S. H. Yang, W. Jung, H. Lee, S. H. Shin, S. J. Lee, M. S. Cha, W. Choi, S. G. Oh, K. B. Lee and U. Lee, *ACS Energy Lett.*, 2023, **8**, 1976-1984.
- 52 S. Chen, T. Luo, X. Li, K. Chen, Q. Wang, J. Fu, K. Liu, C. Ma, Y. R. Lu and H. Li, *Nano Energy*, 2024, **128**, 109873.
- 53 Z. Mei, K. Chen, Y. Tan, Q. Liu, Q. Chen, Q. Wang, X. Wang, C. Cai, K. Liu and J. Fu, *Chin. J. Catal.*, 2024, 62, 190-197.
- 54 Y. Song, J. Min, Y. Guo, R. Li, G. Zou, M. Li, Y. Zang, W. Feng, X. Yao and T. Liu, *Angew. Chem. Int. Ed.*, 2024, **63**, e202313361.
- 55 D. Chen, F. Wang, Y. Liu, W. Lyu, X. Zhao, R. Fang, L. Chen and Y. Li, *Angew. Chem. Int. Ed.*, 2025, e202421149.
- 56 Y. Sun, J. Chen, X. Du, J. Cui, X. Chen, C. Wu, X. Yang, L. Liu and J. Ye, *Angew. Chem. Int. Ed.*, 2024, **136**, e202410802.
- 57 A. Wang, W. Ge, W. Sun, X. Sheng, L. Dong, W. Zhang, H. Jiang and C. Li, *Angew. Chem. Int. Ed.*, 2025, 64, e202412754.
- 58 H. Chen, Q. Huang, K. Yang, S. Chen, H. Feng, C. Jia, Q. Li, C. Zhao and J. Duan, *Nano Energy*, 2024, **131**, 110265.
- 59 K. Pellumbi, D. Krisch, C. Rettenmaier, H. Awada, H. Sun, L. Song, S. A. Sanden, L. Hoof, L. Messing and K. junge Puring, *Cell Rep. Phys. Sci.*, 2023, **4**, 101746.
- 60 X. Kong, J. Zhao, Z. Xu, Z. Wang, Y. Wu, Y. Shi, H. Li, C. Ma, J. Zeng and Z. Geng, *J. Am. Chem. Soc.*, 2023, **145**, 14903-14911.
- 61 Y. Pan, X. Q. Li, G. Y. Duan, J. Fang and B. H. Xu, *Appl. Catal. B-Environ.*, 2025, **361**, 124681.
- 62 S. Yuan, R. Wang, R. Xue, L. Wu, G. Zhang, H. Li, Q. Wang, J. Yin, L. Luo and S. Shen, *ACS Energy Lett.*, 2024, **9**, 5945-5954.
- 63 P. Li, J. Liu, Y. Wang, X. D. Zhang, Y. Hou, Y. Zhang, X. Sun, X. Kang, Q. Zhu and B. Han, *J. Am. Chem. Soc.*, 2024, **146**, 26525-26533.
- 64 L. P. Chi, Z. Z. Niu, Y. C. Zhang, X. L. Zhang, J. Liao, Z. Z. Wu, P. C. Yu, M. H. Fan, K. B. Tang and M. R. Gao, *Proc. Nat. Acad. Sci.*, 2023, **120**, e2312876120.
- 65 X. Zhang, X. Yan, P. Chen, P. Zhang, X. Kang, J. Ma, C. Chen and B. Han, *Angew. Chem. Int. Ed.*, 2024, 63, e202315822.
- 66 C. Zhang, X. Hao, J. Wang, X. Ding, Y. Zhong, Y. Jiang, M. C. Wu, R. Long, W. Gong and C. Liang, *Angew. Chem. Int. Ed.*, 2024, **63**, e202317628.
- 67 Q. Huang, Z. Qian, N. Ye, Y. Tan, M. Li, M. Luo and S. Guo, *Adv. Mater.*, 2024, 2415639.
- 68 J. Lu, Y. Ren, J. Liang, L. Zou, Y. Gao, F. Li, J. Gao and J. Liu, *Small*, 2024, **20**, 2402879.
- 69 Y. Li, J. Li, W. Ai, J. Chen, T. Lu, X. Liao, W. Wang, R. Huang, Z. Chen and J. Wu, *Angew. Chem. Int. Ed.*, 2024, **63**, e202407772.
- 70 X. Wang, S. Liu, H. Zhang, S. Zhang, G. Meng, Q. Liu, Z. Sun, J. Luo and X. Liu, *ChemComm.*, 2022, **58**, 7654-7657.
- 71 Y. Wang, H. Xu, Y. Liu, J. Jang, X. Qiu, E. P. Delmo, Q. Zhao, P. Gao and M. Shao, *Angew. Chem. Int. Ed.*, 2024, **63**, e202313858.
- W. Fang, W. Guo, R. Lu, Y. Yan, X. Liu, D. Wu, F. M. Li, Y. Zhou, C. He, C. Xia, H. Niu, S. Wang, Y. Liu, Y. Mao, C. Zhang, B. You, Y. Pang, L. Duan, X. Yang, F. Song, T. Zhai, G. Wang, X. Guo, B. Tan, T. Yao, Z. Wang and B. Y. Xia, *Nature*, 2024, 626, 86-91.
- 73 M. Li, K. Yang, Y. Sun, T. Gao, Z. Nie, S. Chen, Q. Li and J. Duan, *Adv. Energy Mater.*, 2024, **14**, 2303073.
- 74 Y. Jiang, J. Shan, P. Wang, L. Huang, Y. Zheng and S. Z. Qiao, ACS Catal., 2023, **13**, 3101-3108.
- 75 P. X. Lei, S. Q. Liu, Q. R. Wen, J. Y. Wu, S. Wu, X. Wei, R. Feng, X. Z. Fu and J. L. Luo, *Angew. Chem. Int. Ed.*, 2025, **64**, e202415726.
- 76 J. Xu, S. Yang, L. Ji, J. Mao, W. Zhang, X. Zheng, H. Fu, M. Yuan, C. Yang and H. Chen, *Nano Res.*, 2023, 16, 53-61.

- 77 H. Shen, Y. Zhao, L. Zhang, Y. He, S. Yang, T. Wang, Y. Cao, Y. Guo, Q. Zhang and H. Zhang, *Adv. Energy Mater.*, 2023, **13**, 2202818.
- 78 W. Yang, C. Si, Y. Zhao, Q. Wei, G. Jia, G. Cheng, J. Qin and Z. Zhang, *Appl. Catal. B-Environ.*, 2022, **316**, 121619.
- 79 Q. Wei, J. Qin, G. Jia, Y. Zhao, Z. Guo, G. Cheng, W. Ma, W. Yang and Z. Zhang, J. Phys. Chem. Lett., 2022, **13**, 9058-9065.
- 80 J. Wang, W. Tang, Z. Zhu, Y. Lin, L. Zhao, H. Chen, X. Qi, X. Niu, R. Wu and J. S. Chen, *Angew. Chem. Int. Ed.*, 2025, e202423658.
- 81 Y. Zang, T. Liu, H. Li, P. Wei, Y. Song, C. Cheng, D. Gao, Y. Song, G. Wang and X. Bao, *Chem. Eng. J.*, 2022, **446**, 137444.
- 82 Z. Chen, D. Zhang, Q. Li, H. Zhang, Y. Zhao, Q. Ke, Y. Yan, L. Liu, M. Liu and X. He, *Appl. Catal. B-Environ.*, 2024, **341**, 123342.
- 83 Z. Chen, D. Zhang, Y. Zhao, D. Jia, H. Zhang, L. Liu and X. He, *Chem. Eng. J.*, 2023, **464**, 142573.
- 84 M. Zhang, A. Cao, Y. Xiang, C. Ban, G. Han, J. Ding, L. Y. Gan and X. Zhou, *Nano-Micro Lett.*, 2024, **16**, 1-15.
- 85 X. Chen, R. Lu, C. Li, W. Luo, R. Yu, J. Zhu, L. Lv, Y. Dai, S. Gong and Y. Zhou, *Nat. Commun.*, 2025, **16**, 1-13.
- 86 C. Peng, S. Yang, G. Luo, S. Yan, N. Chen, J. Zhang, Y. Chen, X. Wang, Z. Wang and W. Wei, *Chem*, 2023, 9, 2830-2840.
- 87 K. Yang, M. Li, T. Gao, G. Xu, D. Li, Y. Zheng, Q. Li and J. Duan, *Nat. Commun.*, 2024, **15**, 7060.
- 88 Y. Wei, X. Wang, J. Mao, Y. Song, H. Zhu, X. Liu, C. Luo, S. Li, A. Chen and G. Li, *Angew. Chem. Int. Ed.*, 2025, e202423370.
- 89 A. Chen, X. Dong, J. Mao, W. Chen, C. Zhu, S. Li, G. Wu, Y. Wei, X. Liu and G. Li, *Appl. Catal. B-Environ.*, 2023, **333**, 122768.
- 90 L. Fan, C. Xia, P. Zhu, Y. Lu and H. Wang, *Nat. Commun.*, 2020, **11**, 3633.
- 91 J. Zhang, T. Fan, P. Huang, X. Lian, Y. Guo, Z. Chen and X. Yi, Adv. Funct. Mater., 2022, 32, 2113075.
- 92 I. Grigioni, L. K. Sagar, Y. C. Li, G. Lee, Y. Yan, K. Bertens, R. K. Miao, X. Wang, J. Abed and D. H. Won, ACS Energy Lett., 2020, 6, 79-84.
- 93 T. Zheng, C. Liu, C. Guo, M. Zhang, X. Li, Q. Jiang, W. Xue, H. Li, A. Li and C. W. Pao, Nat. Nanotechnol., 2021, 16, 1386-1393.
- 94 X. Yu, Y. Xu, L. Li, M. Zhang, W. Qin, F. Che and M. Zhong, *Nat. Commun.*, 2024, **15**, 1711.
- 95 H. Shen, H. Jin, H. Li, H. Wang, J. Duan, Y. Jiao and S. Z. Qiao, *Nat. Commun.*, 2023, **14**, 2843.
- 96 S. Ruan, B. Zhang, J. Zou, W. Zhong, X. He, J. Lu, Q. Zhang, Y. Wang and S. Xie, *Chin. J. Catal.*, 2022, **43**, 3161-3169.
- 97 X. Jiang, L. Lin, Y. Rong, R. Li, Q. Jiang, Y. Yang and D. Gao, *Nano Res.*, 2023, 16, 12050-12057.
- 98 B. Liu, Y. Xie, X. Wang, C. Gao, Z. Chen, J. Wu, H. Meng, Z. Song, S. Du and Z. Ren, *Appl. Catal. B-Environ.*, 2022, **301**, 120781.
- 99 J. Zhu, J. Li, R. Lu, R. Yu, S. Zhao, C. Li, L. Lv, L. Xia, X. Chen and W. Cai, *Nat. Commun.*, 2023, **14**, 4670.
- 100 Y. Xing, H. Chen, Y. Liu, Y. Sheng, J. Zeng, Z. Geng and J. Bao, *ChemComm.*, 2021, **57**, 1502-1505.
- 101 L. Lin, X. He, X. G. Zhang, W. Ma, B. Zhang, D. Wei, S. Xie, Q. Zhang, X. Yi and Y. Wang, *Angew. Chem. Int. Ed.*, 2023, **135**, e202214959.
- 102 Y. Li, R. Chen, J. Liu, L. Cheng, J. Zhao, Y. Lu, J. Feng, Z. Gong and C. Li, *Chem. Eng. Sci.*, 2023, **267**, 118354.
- 103 Z. Wang, X. Zu, X. Li, L. Li, Y. Wu, S. Wang, P. Ling, Y. Zhao, Y. Sun and Y. Xie, *Nano Res.*, 2022, **15**, 6999-7007.
- 104 Y. Xie, C. Wang, Y. Chen, H. Zhao, G. Jing and B. Lv, J. Environ. Sci., 2025, 150, 267-276.
- 105 X. D. Liang, Q. Z. Zheng, N. Wei, Y. Y. Lou, S. N. Hu, K. M. Zhao, H. G. Liao, N. Tian, Z. Y. Zhou and S. G. Sun, *Nano Energy*, 2023, **114**, 108638.

- 106 M. Zhang, W. Wei, S. Zhou, D. D. Ma, A. Cao, X. T. Wu and Q. L. Zhu, *Energy Environ. Sci.*, 2021, **14**, 4998-5008.
- 107 H. Shen, T. Wang, H. Jiang, P. Zhao, Z. Chen, Y. Feng, Y. Cao, Y. Guo, Q. Zhang and H. Zhang, *Appl. Catal. B-Environ.*, 2023, **339**, 123140.
- 108 S. Yan, C. Peng, C. Yang, Y. Chen, J. Zhang, A. Guan, X. Lv, H. Wang, Z. Wang and T. K. Sham, *Angew. Chem. Int. Ed.*, 2021, **133**, 25945-25949.
- 109 Z. Xing, X. Hu and X. Feng, ACS Energy Lett., 2021, 6, 1694-1702.
- 110 M. Zhang, S. Zhou, W. Wei, D. D. Ma, S. G. Han, X. Li, X. T. Wu, Q. Xu and Q. L. Zhu, *Chem. Catalysis*, 2022, **2**, 3528-3545.
- 111 A. Chen, C. Zhu, J. Mao, S. Li, G. Wu, Y. Wei, X. Liu, X. Dong, Y. Song and G. Li, *Appl. Catal. B-Environ.*, 2024, **343**, 123493.
- 112 S. He, F. Ni, Y. Ji, L. Wang, Y. Wen, H. Bai, G. Liu, Y. Zhang, Y. Li and B. Zhang, *Angew. Chem. Int. Ed.*, 2018, **130**, 16346-16351.
- 113 G. Diaz-Sainz, M. Alvarez-Guerra and A. Irabien, J. CO₂ Util., 2022, 56, 101822.
- 114 B. Yang, J. Zeng, Z. Zhang, L. Meng, D. Shi, L. Chen and Y. Huang, J. Energy Chem., 2024, 90, 233-243.
- 115 T. Fan, W. Ma, M. Xie, H. Liu, J. Zhang, S. Yang, P. Huang, Y. Dong, Z. Chen and X. Yi, *Cell Rep. Phys. Sci.*, 2021, **2**, 100353.
- 116 Q. Chen, A. Kube, D. Schonvogel, D. Kopljar, E. Klemm and K. A. Friedrich, *Chem. Eng. J.*, 2023, **476**, 146486.
- 117 W. Wang, X. Wang, Z. Ma, Y. Wang, Z. Yang, J. Zhu, L. Lv, H. Ning, N. Tsubaki and M. Wu, ACS Catal., 2022, **13**, 796-802.
- 118 Z. Jiang, S. Ren, X. Cao, Q. Fan, R. Yu, J. Yang and J. Mao, *Angew. Chem. Int. Ed.*, 2024, **136**, e202408412.
- 119 S. Liu, B. Tian, X. Xu, X. Wang, P. Ran, Y. Sun, J. Wu, A. Qiu, F. Wang and L. Tang, ACS Catal., 2024, 14, 9476-9486.
- 120 Y. Zhang, F. Chen, X. Y. Yang, Y. R. Guo, X. H. Zhang, H. Dong, W. H. Wang, F. Lu, Z. M. Lu, H. Liu, Y. Xiao and Y. h. Cheng, *Nat. Commun.*, 2025, **16**, 1956.
- 121 M. Zhang, M. Lu, M. Y. Yang, J. P. Liao, Y. F. Liu, H. J. Yan, J. N. Chang, T. Y. Yu, S. L. Li and Y. Q. Lan, eScience, 2023, **3**, 100116.
- 122 Z. Zhu, Y. Zhu, Z. Ren, D. Liu, F. Yue, D. Sheng, P. Shao, X. Huang, X. Feng and A. X. Yin, *J. Am. Chem. Soc.*, 2024, **146**, 1572-1579.
- 123 Q. Fan, T. Xiao, H. Liu, T. Yan, J. Lin, S. Kuang, H. Chi, T. J. Meyer, S. Zhang and X. Ma, *ACS Cent. Sci.*, 2024, **10**, 2331-2337.
- 124 Y. Zhang, D. Zhou, M. Wang, Z. Zhang, S. Jia, M. He, C. Chen, H. Wu and B. Han, *CCS Chem.*, 2024, **6**, 2876-2881.
- 125 M. Salehi, H. Al-Mahayni, A. Farzi, M. McKee, S. Kaviani, E. Pajootan, R. Lin, N. Kornienko and A. Seifitokaldani, *Appl. Catal. B-Environ.*, 2024, **353**, 124061.
- 126 B. Liu, S. Hu, Y. Chen, Z. Zhang, H. Liu, X. Kang, J. Liu, S. Li and Y. Luo, *Angew. Chem. Int. Ed.*, 2024, e202423915.
- 127 J. Li, M. Wei, B. Ji, S. Hu, J. Xue, D. Zhao, H. Wang, C. Liu, Y. Ye and J. Xu, *Angew. Chem. Int. Ed.*, 2025, e202417008.
- 128 Z. Guo, H. Zhu, Z. Yan, L. Lei, D. Wang, Z. Xi, Y. Lian, J. Yu, K. L. Fow and H. Do, *Appl. Catal. B-Environ.*, 2025, **364**, 124839.
- 129 T. Yan, Y. Jin, Q. Fan, H. Liu, X. Li, T. Zhang, H. Wang, J. Lin, H. Chi and S. Zhang, *Small*, 2025, **21**, 2408600.
- 130 H. Yang, N. Guo, S. Xi, Y. Wu, B. Yao, Q. He, C. Zhang and L. Wang, Nat. Commun., 2024, 15, 7703.
- 131 T. Hou, J. Zhu, H. Gu, X. Li, Y. Sun, Z. Hua, R. Shao, C. Chen, B. Hu and L. Mai, *Angew. Chem. Int. Ed.*, 2025, e202424749.

- 132 D. Kim, S. Park, J. Lee, Y. Chen, F. Li, J. Kim, Y. Bai, J. E. Huang, S. Liu and E. D. Jung, *J. Am. Chem. Soc.*, 2024, **146**, 27701-27712.
- 133 J. Yu, J. Xiao, L. Guo, Z. Xie, K. Wang, Y. Wang, F. Hao, Y. Ma, J. Zhou and P. Lu, ACS Nano, 2024, **18**, 33602-33613.
- 134 Z. Yan, M. Liu, Z. Guo, Q. Chen, Z. Xi, X. Z. Sun, J. Yu and T. Wu, Adv. Funct. Mater., 2025, 2420493.
- 135 W. Yang, Y. Zhao, Y. Chen, H. Ren, J. Sun, Z. Shi, X. Jin, Z. Zhang and X. Wang, *Angew. Chem. Int. Ed.*, 2025, e202422082.
- 136 G. Mei, Y. Zhai, W. Guo, D. Liu, Z. Fang, G. Xie, Z. Duan, X. Lang, Z. Zhu and X. Lu, *Chem. Eur. J.*, 2025, **31**, e202403261.
- 137 Y. Ma, T. Xiao, K. Zhu, D. Zhao and W. Li, *Carbon Future*, 2025, **2**, 9200034.
- 138 Z. Zhai, D. Li, X. Lu, H. Cai, Q. Hu, H. Yang and C. He, Carbon Ener., 2024, 6, e648.
- 139 R. Chen, Y. Jiang, Y. Zhu, L. Zhang, Y. Li and C. Li, Adv. Funct. Mater., 2024, 2415940.
- 140 J. Sang, P. Wei, T. Liu, H. Lv, X. Ni, D. Gao, J. Zhang, H. Li, Y. Zang and F. Yang, *Angew. Chem. Int. Ed.*, 2022, **134**, e202114238.
- 141 Y. Liu, Z. Yue, C. Jin, L. Zheng, J. Shi, D. Li, Y. Wang, J. Bai, K. Leng and W. Wang, Small, 2025, 2409259.
- 142 Z. Huang, L. Zhou, W. Gui, C. Guan, J. Chen, M. Kuang and J. Yang, Adv. Funct. Mater., 2025, 2422012.
- 143 Z. Zhang, Q. Fang, X. Yang, S. Zuo, T. Cheng, Y. Yamauchi and J. Tang, Adv. Mater., 2025, 2411498.
- 144 Y. Wang, Y. Cheng, S. Liu, Y. Yin, J. Yang, H. Wang, K. Li, M. Zhou, J. Jiao and P. Zhang, *Angew. Chem. Int. Ed.*, 2025, e202420661.
- 145 X. Ma, T. Yang, D. He, X. Gao, W. Jiang, D. Li, Y. Sun, X. Lin, J. Xu and H. Wang, *Nat. Synth.*, 2025, **4**, 53-66.
- 146 C. Peng, G. Luo, Z. Xu, S. Yan, J. Zhang, M. Chen, L. Qian, W. Wei, Q. Han and G. Zheng, *Adv. Mater.*, 2021, **33**, 2103150.
- 147 X. He, L. Lin, X. Li, M. Zhu, Q. Zhang, S. Xie, B. Mei, F. Sun, Z. Jiang, J. Cheng and Y. Wang, *Nat. Commun.*, 2024, **15**, 9923.
- 148 H. Jing, K. Lu, J. Li, Z. Wu, X. Xia, M. Xia, B. Liu, C. Su, C. Liu and J. Lei, *Appl. Catal. B-Environ.*, 2025, **365**, 124977.
- 149 K. Liu, H. Shen, Z. Sun, Q. Zhou, G. Liu, Z. Sun, W. Chen, X. Gao and P. Chen, *Nat. Commun.*, 2025, **16**, 1203.
- 150 C. Du, J. P. Mills, A. G. Yohannes, W. Wei, L. Wang, S. Lu, J.-X. Lian, M. Wang, T. Guo and X. Wang, *Nat. Commun.*, 2023, **14**, 6142.
- 151 Q. Liu, Y. Tan, Q. Chen, X. Zi, Z. Mei, Q. Wang, K. Liu, J. Fu, C. Ma and L. Chai, *Nano Lett.*, 2024, **24**, 13741-13746.
- 152 S. Ren, X. Cao, Q. Fan, Z. Yang, F. Wang, X. Wang, L. Bai and J. Yang, Nano-Micro Lett., 2024, 16, 262.
- 153 X. Chen, S. Jia, J. Zhai, J. Jiao, M. Dong, C. Xue, T. Deng, H. Cheng, Z. Xia and C. Chen, *Nat. Commun.*, 2024, **15**, 7691.
- 154 R. Yang, Q. Wen, Y. Yang, Y. Liu, Y. Yang, M. Wu, Y. Wei, B. Mei, Y. Liu and H. Li, *Adv. Mater.*, 2025, **37**, 2414642.
- 155 C. Zhu, G. Wu, A. Chen, G. Feng, X. Dong, G. Li, S. Li, Y. Song, W. Wei and W. Chen, *Energy Environ. Sci.*, 2024, **17**, 510-517.
- 156 S. Li, G. Wu, J. Mao, A. Chen, X. Liu, J. Zeng, Y. Wei, J. Wang, H. Zhu and J. Xia, *Angew. Chem. Int. Ed.*, 2024, **136**, e202407612.
- 157 C. Jin, Y. Lin, Y. Wang, J. Shi, R. Li, Y. Liu, Z. Yue, K. Leng, Y. Zhao and Y. Wang, *Adv. Mater.*, 2025, 2412658.
- 158 H. Xiong, J. Li, D. Wu, B. Xu and Q. Lu, Chem. Comm., 2023, 59, 5615-5618.
- 159 M. G. Kibria, C. T. Dinh, A. Seifitokaldani, P. De Luna, T. Burdyny, R. Quintero-Bermudez, M. B. Ross, O. S. Bushuyev, F. P. García de Arquer and P. Yang, *Adv. Mater.*, 2018, **30**, 1804867.
- 160 L. Ma, Q. Geng, L. Fan, J.-X. Li, D. Du, J. Bai and C. Li, Nano Res., 2023, 16, 9065-9072.

- 161 J. Jiao, X. Kang, J. Yang, S. Jia, Y. Peng, S. Liu, C. Chen, X. Xing, M. He and H. Wu, J. Am. Chem. Soc., 2024, **146**, 15917–15925.
- 162 Z. Y. Du, S. B. Li, G. H. Liang, Y. M. Xie, Y. Zhang, H. Zhang, J. H. Tian, S. Zheng, Q. N. Zheng and Z. Chen, *J. Am. Chem. Soc.*, 2024, **146**, 32870-32879.
- 163 Q. Geng, L. Fan, H. Chen, C. Zhang, Z. Xu, Y. Tian, C. Yu, L. Kang, Y. Yamauchi and C. Li, *J. Am. Chem. Soc.*, 2024, **146**, 10599-10607.
- 164 X. Z. Lv, Q. Liu, J. H. Wang, X. J. Wu, X. T. Li, Y. Yang, J. H. Yan, A. J. Wu and H. B. Wu, *Appl. Catal. B-Environ.*, 2023, **324**, 122272.
- 165 J. Feng, L. Wu, X. Song, L. Zhang, S. Jia, X. Ma, X. Tan, X. Kang, Q. Zhu and X. Sun, *Nat. Commun.*, 2024, **15**, 4821.
- 166 R. H. Chen, Q. Wu, J. C. Zhu, S. M. Wang, Z. X. Hu, J. Hu, J. F. Zhu, H. J. Zhang, B. J. Ye, Y. F. Sun and Y Xie, *J. Am. Chem. Soc.* 2025.
- 167 Q. Fan, X. Zhang, X. Ge, L. Bai, D. He, Y. Qu, C. Kong, J. Bi, D. Ding and Y. Cao, *Adv. Energy Mater.*, 2021, **11**, 2101424.
- 168 H. Guan, Y. Zhang, W. Fan, K. Yang, G. Li, S. Chen, L. Li and J. Duan, *Small*, 2025, **21**, 2406605.
- 169 Y. Zhang, F. F. Chen, G. Z. Gao, M. Q. Xu, Y. F. Song, C. Sun, X. M. Zhang, X. H. Zhang, H. Dong, W. H. Wang, F. Lu, Z. M. Lu, R. Zhang, H. Liu, H. Liu, R. K. Zheng and Y. H. Cheng, *Nano Energy*, 2025, **135**, 110657.
- 170 H. L. Zhu, H. Y. Chen, Y. X. Han, Z. H. Zhao, P. Q. Liao and X. M. Chen, *J. Am. Chem. Soc.*, 2022, **144**, 13319-13326.
- 171 H. F. Li, T. F. Liu, P. F. Wei, L. Lin, D. F. Gao, G. X. Wang and X. H. Bao, *Angew. Chem. Int. Edit.*, 2021, 60, 14329-14333.
- 172 D. H. Nam, O. Shekhah, A. Ozden, C. McCallum, F. Li, X. Wang, Y. Lum, T. Lee, J. Li, J. Wicks, A. Johnston, D. Sinton, M. Eddaoudi and E. H. Sargent, *Adv. Mater.*, 2022, **34**, 2207088.
- 173 M. R. Gao, Y. C. Li, X. L. Zhang, X. L. Tai, X. P. Yang, P. C. Yu, S. C. Dong, L. P. Chi, Z. Z. Wu and Y. C. Zhang, *Angew. Chem. Int. Edit.*, 2025, e202422054.
- 174 S. B. Yang, F. F. Sun, R. Cao and M. N. Cao, J. Mater. Chem. A, 2025, 13, 1135-1141.
- 175 C. Lu, Q. He, S. Huang, P. Shi, C. Yang, J. Zhang, J. Zhu, J. Zhang, T. Wang and X. Zhuang, *Adv. Mater.*, 2024, 2415092.
- 176 Y. Wang, J. Wang, R. Cai, J. Zhang, S. Xia, Z. Li, C. Yu, J. Wu, P. Wang and Y. Wu, *Adv. Funct. Mater.*, 2024, 2417764.
- 177 N. Zhang and Y. L. Zhang, J. Mater. Chem. A, 2025, 13, 2902-2910.
- 178 Y. C. Zhang, X. L. Zhang, Z. Z. Wu, Z. Z. Niu, L. P. Chi, F. Y. Gao, P. P. Yang, Y. H. Wang, P. C. Yu, J. W. Duanmu, S. P. Sun and M. R. Gao, *Proc. Nat. Acad. Sci.*, 2024, **121**, e2400546121.
- 179 S. H. Chen, C. L. Ye, Z. W. Wang, P. Li, W. J. Jiang, Z. C. Zhuang, J. X. Zhu, X. B. Zheng, S. Zaman, H. H. Ou, L. Lv, L. Tan, Y. Q. Su, J. Ouyang and D. S. Wang, *Angew. Chem. Int. Edit.*, 2023, **62**, e202315621.
- 180 Z. Wei, W. Wang, T. Shao, S. Yang, C. Liu, D. Si, R. Cao and M. Cao, *Angew. Chem. Int. Ed.*, 2024, **64**, e202417066.
- 181 C. Jia, X. Tan, Q. Sun, R. R. Liu, R. K. Hocking, S. H. Wang, L. Zhong, Z. Shi, S. Smith and C. Zhao, *Adv. Mater.*, 2025, 2417443.
- 182 Z. Li, W. Wei, X. Hu, Z. Zhang, Y. Hu, Y. Wu, Y. Wang, J. Xu and M. Ding, *Adv. Funct. Mater.*, 2024, 2422898.
- 183 K. H. Yue, Y. Y. Qin, H. H. Huang, Z. R. Lv, M. Z. Cai, Y. Q. Su, F. Q. Huang and Y. Yan, *Nat. Commun.*, 2024, **15**, 7820.
- 184 M. Esmaeilirad, Z. Jiang, A. M. Harzandi, A. Kondori, M. T. Saray, C. U. Segre, R. Shahbazian-Yassar, A. M. Rappe and M. Asadi, *Nat. Energy*, 2023, 8, 891-900.
- 185 J. Zhang, C. X. Guo, S. S. Fang, X. T. Zhao, L. Li, H. Y. Jiang, Z. Y. Liu, Z. Q. Fan, W. G. Xu, J. P. Xiao and M. Zhong, *Nat. Commun.*, 2023, **14**, 1298.

- 186 F. P. G. de Arquer, C. T. Dinh, A. Ozden, J. Wicks, C. McCallum, A. R. Kirmani, D. H. Nam, C. Gabardo, A. Seifitokaldani, X. Wang, Y. G. C. Li, F. W. Li, J. Edwards, L. J. Richter, S. J. Thorpe, D. Sinton and E. H. Sargent, *Science*, 2020, **367**, 661-666.
- 187 D. S. Huang, H. L. Zhu, Z. H. Zhao, J. R. Huang, P. Q. Liao and X. M. Chen, *ACS Catal.*, 2022, **12**, 8444-8450.
- 188 Y. Zhang, P. Li, C. M. Zhao, G. Zhou, F. Y. Zhou, Q. T. Zhang, C. L. Su and Y. Wu, *Sci. Bull*, 2022, **67**, 1679-1687.
- 189 G. Zhang, Z. J. Zhao, D. F. Cheng, H. M. Li, J. Yu, Q. Z. Wang, H. Gao, J. Y. Guo, H. Y. Wang, G. A. Ozin, T. Wang and J. L. Gong, *Nat. Commun.*, 2021, **12**, 5745.
- 190 M. W. Fang, X. Miao, Z. H. Huang, M. L. Wang, X. C. Feng, Z. W. Wang, Y. Zhu, L. M. Dai and L. Jiang, J. Am. Chem. Soc., 2024, **146**, 27060-27069.
- 191 J. H. Bi, P. S. Li, J. Y. Liu, S. Q. Jia, Y. Wang, Q. G. Zhu, Z. M. Liu and B. X. Han, *Nat. Commun.*, 2023, 14, 2823.
- 192 Y. Qiao, S. Shen, C. Mao, Y. Xiao, W. Lai, Y. Wang, X. Zhong, Y. Lu, J. Li and J. Ge, *Angew. Chem. Int. Ed.*, 2025, e202424248.
- 193 Z. Z. Liu, L. Song, X. M. Lv, M. T. Liu, Q. Y. Wen, L. P. Qian, H. Z. Wang, M. Y. Wang, Q. Han and G. F. Zheng, *J. Am. Chem. Soc.*, 2024, **146**, 14260-14266.
- 194 J. Zhou, B. L. He, P. Huang, D. G. Wang, Z. C. Zhuang, J. Xu, C. S. Pan, Y. M. Dong, D. S. Wang, Y. Wang, H. W. Huang, J. W. Zhang and Y. F. Zhu, *Angew. Chem. Int. Edit.*, 2025, **64**, e202418459.
- 195 C. J. Chen, L. S. Huang, Y. L. Jiang, Y. Zheng and S. Z. Qiao, *Nano Energy*, 2024, **126**, 109656.
- 196 T. Zhang, B. Zhang, Y. Zang, P. Zeng, Y. Li and H. J. Fan, Chem., 2024, 10, 2745-2760.
- 197 M. T. Ma, L. K. Xiong, Y. Dong, Q. Q. Bai, W. Hua, Z. Y. Zheng, F. Lyu, Y. B. Lian, Z. H. Wei, H. H. Yuan, Z. Y. Jiao, J. Cheng, D. Q. Song, M. Wang, Z. Y. Xing, J. Zhong, S. Han, Z. Deng and Y. Peng, *Adv. Funct. Mater.*, 2024, **34**, 2315667.
- 198 X. Cao, S. Ren, X. Zhang, Q. Fan, Q. Chen, J. Yang and J. Mao, Chem., 2024, 10, 2089-2102.
- 199 D. W. Zhou, C. J. Chen, Y. C. Zhang, M. Wang, S. T. Han, X. Dong, T. Yao, S. Q. Jia, M. Y. He, H. H. Wu and B. X. Han, *Angew. Chem. Int. Edit.*, 2024, **63**, e202400439.
- 200 X. T. Li, M. K. Qin, X. J. Wu, X. Z. Lv, J. H. Wang, Y. Wang and H. B. Wu, Small, 2023, 19, 2302530.
- 201 H. Y. Guo, Q. Huang, D. Li, S. Y. Dai, K. Yang, S. Chen, W. Ma, Q. Li and J. J. Duan, *J. Mater. Chem. A*, 2024, **13**, 348-355.
- 202 Y. Zhao, X. L. Zu, R. H. Chen, X. D. Li, Y. W. Jiang, Z. Q. Wang, S. M. Wang, Y. Wu, Y. F. Sun and Y. Xie, J. Am. Chem. Soc., 2022, **144**, 10446-10454.
- 203 L. K. Xiong, X. Zhang, H. Yuan, J. Wang, X. Z. Yuan, Y. B. Lian, H. D. Jin, H. Sun, Z. Deng, D. Wang, J. P. Hu, H. M. Hu, J. Choi, J. Li, Y. F. Chen, J. Zhong, J. Guo, M. H. Rummerli, L. Xu and Y. Peng, *Angew. Chem. Int. Edit.*, 2021, 60, 2508-2518.
- 204 Z. Tan, J. Zhang, Y. Yang, J. Zhong, Y. Zhao, Y. Teng, B. Han and Z. Chen, *Nat. Commun.*, 2025, **16**, 1843.
- 205 T. Y. Zhang, J. C. Bui, Z. Y. Li, A. T. Bell, A. Z. Weber and J. J. Wu, Nat. Catal., 2022, 5, 202-211.
- 206 C. Peng, J. X. Ma, G. Luo, S. Yan, J. B. Zhang, Y. S. Chen, N. Chen, Z. Q. Wang, W. Wei, T. K. Sham, Y. Zheng, M. Kuang and G. F. Zheng, *Angew. Chem. Int. Edit.*, 2024, **63**, e202316907.
- 207 P. T. Wang, H. Yang, C. Tang, Y. Wu, Y. Zheng, T. Cheng, K. Davey, X. Q. Huang and S. Z. Qiao, *Nat. Commun.*, 2022, **13**, 3754.
- 208 L. M. Shang, X. M. Lv, L. X. Zhong, S. Z. Li and G. F. Zheng, Small Methods, 2022, 6, 2101334.
- 209 X. Y. Wang, Z. W. Jiang, P. Wang, Z. Chen, T. Sheng, Z. C. Wu and Y. J. Xiong, *Angew. Chem. Int. Edit.*, 2023, **62**, e202313646.
- 210 H. B. Li, X. Y. Li, P. T. Wang, Z. Zhang, K. Davey, J. Q. Shi and S. Z. Qiao, J. Am. Chem. Soc., 2024, 146, 22850-22858.
- 211 X. J. Wu, X. T. Li, J. B. Lv, X. Z. Lv, A. J. Wu, Z. F. Qi and H. B. Wu, Small, 2024, 20, 2307637.

- 212 P. S. Li, J. H. Bi, J. Y. Liu, Q. G. Zhu, C. J. Chen, X. F. Sun, J. L. Zhang, Z. M. Liu and B. X. Han, *Chem Sci.*, 2023, **14**, 310-316.
- 213 J. J. Lv, M. Jouny, W. Luc, W. L. Zhu, J. J. Zhu and F. Jiao, Adv. Mater., 2018, 30, 1803111.
- 214 C. J. Chen, X. P. Yan, Y. H. Wu, S. J. Liu, X. D. Zhang, X. F. Sun, Q. G. Zhu, H. H. Wu and B. X. Han, *Angew. Chem. Int. Edit.*, 2022, **61**, e202202607.
- 215 J. Q. Feng, Y. L. Wang, G. L. Li, Q. Z. Xue, M. Wang, X. F. Sun, S. J. Zeng and X. P. Zhang, *Appl. Catal. B-Environ.*, 2025, **366**, 125014.
- 216 P. S. Li, J. H. Bi, J. Y. Liu, Y. Wang, X. C. Kang, X. F. Sun, J. L. Zhang, Z. M. Liu, Q. G. Zhu and B. X. Han, *J. Am. Chem. Soc.*, 2023, **145**, 4675-4682.
- 217 M. W. Fang, M. L. Wang, Z. W. Wang, Z. X. Zhang, H. C. Zhou, L. M. Dai, Y. Zhu and L. Jiang, *J. Am. Chem. Soc.*, 2023, **145**, 11323-11332.
- 218 M. Zheng, P. T. Wang, X. Zhi, K. Yang, Y. Jiao, J. J. Duan, Y. Zheng and S. Z. Qiao, *J. Am. Chem. Soc.*, 2022, **144**, 14936-14944.
- 219 W. C. Ma, S. J. Xie, T. T. Liu, Q. Y. Fan, J. Y. Ye, F. F. Sun, Z. Jiang, Q. H. Zhang, J. Cheng and Y. Wang, *Nat. Catal.*, 2020, **3**, 478-487.
- 220 M. X. Sun, J. M. Cheng and M. Yamauchi, *Nat. Commun.*, 2024, **15**, 491.
- 221 Q. Q. Wu, R. A. Du, P. Wang, G. I. N. Waterhouse, J. Li, Y. C. Qiu, K. Y. Yan, Y. Zhao, W. W. Zhao, H. J. Tsai, M. C. Chen, S. F. Hung, X. Wang and G. X. Chen, *ACS Nano*, 2023, **17**, 12884-12894.
- 222 M. Liu, Q. Y. Wang, T. Luo, M. Herran, X. Y. Cao, W. R. Liao, L. Zhu, H. M. Li, A. Stefancu, Y. R. Lu, T. S. Chan, E. Pensa, C. Ma, S. G. Zhang, R. Y. Xiao and E. Cortés, *J. Am. Chem. Soc.*, 2023, **146**, 468-475.
- 223 P. F. Wei, D. F. Gao, T. F. Liu, H. F. Li, J. Q. Sang, C. Wang, R. Cai, G. X. Wang and X. H. Bao, *Nat. Nanotechnol.*, 2023, **18**, 299-306.
- 224 Z. Li, P. Wang, X. Lyu, V. K. R. Kondapalli, S. Xiang, J. D. Jimenez, L. Ma, T. Ito, T. Zhang and J. Raj, *Nat. Chem. Eng.*, 2024, **1**, 159-169.
- 225 T. T. Zhao, X. P. Zong, J. D. Liu, J. L. Chen, K. Q. Xu, X. Wang, X. J. Chen, W. T. Yang, F. M. Liu, M. Yu and F. Y. Cheng, *Appl. Catal. B-Environ.*, 2024, **340**, 123281.
- 226 Z. Z. Liu, X. M. Lv, S. Y. Kong, M. T. Liu, K. H. Liu, J. B. Zhang, B. W. Wu, Q. Zhang, Y. Tang, L. P. Qian, L. J. Zhang and G. F. Zheng, *Angew. Chem. Int. Edit.*, 2023, **62**, e202309319.
- 227 C. Peng, S. T. Yang, G. Luo, S. Yan, M. Shakouri, J. B. Zhang, Y. S. Chen, Z. Q. Wang, W. Wei, T. K. Sham and G. F. Zheng, *Small*, 2023, **19**, 2207374.
- 228 C. Peng, X. R. Zhu, Z. K. Xu, S. Yan, L. Y. Chang, Z. Q. Wang, J. B. Zhang, M. H. Chen, T. K. Sham, Y. F. Li and G. F. Zheng, *Small*, 2022, **18**, 2106433.
- A. N. Xu, S. F. Hung, A. Cao, Z. B. Wang, N. Karmodak, J. E. Huang, Y. Yan, A. S. Rasouli, A. Ozden, F. Y. Wu, Z. Y. Lin, H. J. Tsai, T. J. Lee, F. W. Li, M. C. Luo, Y. H. Wang, X. Wang, J. Abed, Z. Y. Wang, D. H. Nam, Y. C. Li, A. H. Ip, D. Sinton, C. F. Dong and E. H. Sargent, *Nat. Catal.*, 2022, 5, 1081-1088.
- 230 Y. Xie, P. F. Ou, X. Wang, Z. Y. Xu, Y. C. Li, Z. Y. Wang, J. E. Huang, J. Wicks, C. McCallum, N. Wang, Y. H. Wang, T. X. Chen, B. T. W. Lo, D. Sinton, J. C. Yu, Y. Wang and E. H. Sargent, *Nat. Catal.*, 2022, 5, 564-570.
- 231 M. C. Xie, Y. Shen, W. C. Ma, D. Y. Wei, B. Zhang, Z. H. Wang, Y. H. Wang, Q. H. Zhang, S. J. Xie, C. Wang and Y. Wang, *Angew. Chem. Int. Edit.*, 2022, **61**, e202213423.
- 232 K. L. Yao, J. Li, A. Ozden, H. B. Wang, N. Sun, P. Y. Liu, W. Zhong, W. Zhou, J. S. Zhou, X. Wang, H. Q. Liu, Y. C. Liu, S. H. Chen, Y. F. Hu, Z. Y. Wang, D. Sinton and H. Y. Liang, *Nat. Commun.*, 2024, **15**, 1749.
- 233 Y. H. Wu, C. J. Chen, S. J. Liu, Q. L. Qian, Q. G. Zhu, R. J. Feng, L. H. Jing, X. C. Kang, X. F. Sun and B. X. Han, *Angew. Chem. Int. Edit.*, 2024, **63**, e202410659.
- Y. K. Xiao, M. Wang, H. Z. Yang, H. R. Qiu, H. T. Lu, Y. Da, G. W. Chen, T. Y. Jiang, W. W. Fu, B. H. Hu, J. M. Chen, L. Chen, Y. S. Ding, B. H. Cui, C. L. Jiang, Z. J. Sun, Y. Long, H. T. Yang, Z. L. Tian, L. Wang and W. Chen, *Adv. Energy Mater.*, 2024, **14**, 2302556.

- 235 J. J. Fu, H. A. Zhang, H. T. Du, X. Z. Liu, Z. H. Lyu, Z. Jiang, F. R. Chen, L. Ding, T. Tang, W. L. Zhu, D. Su, C. Y. Ling, J. L. Wang and J. S. Hu, *J. Am. Chem. Soc.*, 2024, **146**, 23625-23632.
- 236 Y. S. Yang, J. L. Zhang, Z. H. Tan, J. Yang, S. Wang, M. L. Li and Z. Z. Su, *Angew. Chem. Int. Edit.*, 2024, 63, e202408873.
- 237 C. X. Liu, M. L. Zhang, J. W. Li, W. Q. Xue, T. T. Zheng, C. Xia and J. Zeng, *Angew. Chem. Int. Edit.*, 2022, **61**, e202113498.
- 238 J. H. Wang, Q. Y. Ji, H. Zang, Y. Zhang, C. J. Liu, N. Yu and B. Y. Geng, *Adv. Funct. Mater.*, 2024, **34**, 2404274.
- 239 J. M. Chen, H. R. Qiu, Y. L. Zhao, H. Z. Yang, L. Fan, Z. H. Liu, S. B. Xi, G. T. Zheng, J. Y. Chen, L. Chen, Y. Liu, L. J. Guo and L. Wang, *Nat. Commun.*, 2024, **15**, 5893.
- 240 P. Papangelakis, R. K. Miao, R. H. Lu, H. Q. Liu, X. Wang, A. Ozden, S. J. Liu, N. Sun, C. P. O'Brien, Y. F. Hu, M. Shakouri, Q. F. Xiao, M. S. Li, B. Khatir, J. E. Huang, Y. K. Wang, Y. C. Xiao, F. Li, A. S. Zeraati, Q. Zhang, P. Y. Liu, K. Golovin, J. Y. Howe, H. Y. Liang, Z. Y. Wang, J. Li, E. H. Sargent and D. Sinton, *Nat. Energy*, 2024, **9**, 1011-1020.
- 241 X. J. She, L. L. Zhai, Y. F. Wang, P. Xiong, M. M. J. Li, T. S. Wu, M. C. Wong, X. Y. Guo, Z. H. Xu, H. M. Li, H. Xu, Y. Zhu, S. C. E. Tsang and S. P. Lau, *Nat. Energy*, 2024, **9**, 154-162.
- 242 S. Q. Hu, Y. M. Chen, Z. Y. Zhang, S. H. Li, H. M. Liu, X. Kang, J. R. Liu, S. Y. Ge, J. W. Wang, W. Lv, Z. Y. Zeng, X. L. Zou, Q. M. Yu and B. L. Liu, *Small*, 2024, **20**, 2308226.
- 243 T. Y. Shao, K. Yang, S. Chen, M. Zheng, Y. Zhang, Q. Li and J. J. Duan, Carbon Energy, 2024, 6, e416.
- 244 T. H. Pham, J. Zhang, M. Li, T. H. Shen, Y. Ko, V. Tileli, W. Luo and A. Züttel, *Adv. Energy Mater.*, 2022, **12**, 2103663.
- 245 X. Zi, Y. J. Zhou, L. Zhu, Q. Chen, Y. Tan, X. Q. Wang, M. Sayed, E. Pensa, R. A. Geioushy, K. Liu, J. W. Fu, E. Cortes and M. Liu, *Angew. Chem. Int. Edit.*, 2023, **62**, e202309351.
- 246 R. A. Du, Q. Q. Wu, S. Y. Zhang, P. Wang, Z. J. Li, Y. C. Qiu, K. Y. Yan, G. I. N. Waterhouse, P. Wang, J. Li, Y. Zhao, W. W. Zhao, X. Wang and G. X. Chen, *Small*, 2023, **19**, 2301289.
- 247 L. Yuan, Q. Q. Wan, W. X. Jiang, J. B. Hou, X. D. Zhuang, J. L. Zhang and C. C. Ke, *Electrochim. Acta*, 2024, **475**,143662.
- 248 X. Y. Zheng, Y. Hu, X. Y. Wang, J. H. Zhu, X. Y. Zhang, T. Sheng and Z. C. Wu, *Angew. Chem. Int. Edit.*, 2024, e202415273.
- 249 W. W. Fu, Y. K. Li, J. Y. Chen, J. Y. Chen, S. B. Xi, J. Zhang and L. Wang, *Angew. Chem. Int. Edit.*, 2024, 63, e202407992.
- 250 L. Chen, J. M. Chen, W. W. Fu, J. Y. Chen, D. Wang, Y. K. Xiao, S. B. Xi, Y. F. Ji and L. Wang, *Nat. Commun.*, 2024, **15**, 7053.
- 251 C. Peng, S. T. Yang, G. Luo, S. Yan, M. Shakouri, J. B. Zhang, Y. S. Chen, W. H. Li, Z. Q. Wang, T. K. Sham and G. F. Zheng, *Adv. Mater.*, 2022, **34**, 2204476.
- 252 C. Peng, H. F. Shen, M. Zheng, M. Jaroniec, Y. Zheng and S. Z. Qiao, ACS Catal., 2024, 15, 468-476.
- 253 J. P. Sun, B. C. Wu, Z. X. Wang, H. J. Guo, G. C. Yan, H. Duan, G. C. Li, Y. Wang and J. X. Wang, *Energy Environ. Sci.*, 2025, **18**, 1027-1037.
- 254 A. Inoue, T. Harada, S. Nakanishi and K. Kamiya, *EES. Catal.*, 2023, 1, 9-16.
- 255 X. L. Zhou, J. Q. Shan, M. Zheng, H. Li, B. Y. Xia and Y. Zheng, Sci. China Mater., 2024, 67, 1858-1865.
- 256 R. Wang, J. Liu, Q. Huang, L. Z. Dong, S. L. Li and Y. Q. Lan, *Angew. Chem. Int. Edit.*, 2021, **60**, 19829-19835.
- 257 J. M. Heng, H. L. Zhu, Z. H. Zhao, D. S. Huang, J. Y. Li, P. Q. Liao and X. M. Chen, *Research-China*, 2022, 2022, 0008.
- 258 Y. X. Liang, J. K. Zhao, Y. Yang, S. F. Hung, J. Li, S. Z. Zhang, Y. Zhao, A. Zhang, C. Wang, D. Appadoo, L. Zhang, Z. G. Geng, F. W. Li and J. Zeng, *Nat. Commun.*, 2023, **14**, 474.
- 259 Z. H. Tan, J. L. Zhang, Y. S. Yang, J. J. Zhong, Y. Z. Zhao, J. Y. Hu, B. X. Han and Z. J. Chen, *J. Am. Chem. Soc.*, 2023, **145**, 21983-21990.
- 260 L. Bian, Z. Y. Zhang, H. Tian, N. N. Tian, Z. Ma and Z. L. Wang, Chin. J. Catal., 2023, 54, 199-211.
- 261 S. Sultan, H. Lee, S. Park, M. M. Kim, A. Yoon, H. Choi, T. H. Kong, Y. J. Koe, H. S. Oh, Z. Lee, H. Kim, W. Kim and Y. Kwon, *Energy Environ. Sci.*, 2022, **15**, 2397-2409.
- 262 S. H. Chen, X. B. Zheng, P. Zhu, Y. P. Li, Z. C. Zhuang, H. J. Wu, J. X. Zhu, C. H. Xiao, M. Z. Chen, P. S. Wang, D. S. Wang and Y. L. He, *Angew. Chem. Int. Edit.*, 2024, **63**, e202411591.
- 263 H. L. Wu, L. Q. Huang, J. Timoshenko, K. Qi, W. S. Wang, J. F. Liu, Y. Zhang, S. K. Yang, E. Petit, V. Flaud, J. Li, C. Salameh, P. Miele, L. Lajaunie, B. R. Cuenya, D. W. Rao and D. Voiry, *Nat. Energy*, 2024, 9, 422-433.
- 264 C. T. Dinh, T. Burdyny, M. G. Kibria, A. Seifitokaldani, C. M. Gabardo, F. P. G. de Arquer, A. Kiani, J. P. Edwards, P. De Luna, O. S. Bushuyev, C. Q. Zou, R. Quintero-Bermudez, Y. J. Pang, D. Sinton and E. H. Sargent, *Science*, 2018, **360**, 783-787.
- 265 W. S. Fang, R. H. Lu, F. M. Li, C. H. He, D. Wu, K. H. Yue, Y. Mao, W. Guo, B. You, F. Song, T. Yao, Z. Y. Wang and B. Y. Xia, *Angew. Chem. Int. Edit.*, 2024, **63**, e202319936.
- 266 F. W. Li, A. Thevenon, A. Rosas-Hernandez, Z. Y. Wang, Y. L. Li, C. M. Gabardo, A. Ozden, C. T. Dinh, J. Li, Y. H. Wang, J. P. Edwards, Y. Xu, C. McCallum, L. Z. Tao, Z. Q. Liang, M. C. Luo, X. Wang, H. H. Li, C. P. O'Brien, C. S. Tan, D. H. Nam, R. Quintero-Bermudez, T. T. Zhuang, Y. G. C. Li, Z. J. Han, R. D. Britt, D. Sinton, T. Agapie, J. C. Peters and E. H. Sargent, *Nature*, 2020, 577, 509-513.
- 267 J. Kim, T. Lee, H. D. Jung, M. Kim, J. Eo, B. Kang, H. Jung, J. Park, D. Bae, Y. Lee, S. Park, W. Kim, S. Back, Y. Lee and D. H. Nam, *Nat. Commun.*, 2024, **15**, 192.
- 268 J. P. Jiao, X. C. Kang, J. H. Yang, S. Q. Jia, X. Chen, Y. G. Peng, C. J. Chen, X. Q. Xing, Z. J. Chen, M. Y. He, H. H. Wu and B. X. Han, *Angew. Chem. Int. Edit.*, 2024, **63**, e202409563.
- 269 W. H. Guo, S. W. Zhang, J. J. Zhang, H. R. Wu, Y. B. Ma, Y. Song, L. Cheng, L. Chang, G. Li, Y. Liu, G. D. Wei, L. Gan, M. H. Zhu, S. B. Xi, X. Wang, B. I. Yakobson, B. Z. Tang and R. Q. Ye, *Nat. Commun.*, 2023, 14, 7383.
- 270 Z. Q. Li, B. Sun, D. F. Xiao, H. L. Liu, Z. Y. Wang, Y. Y. Liu, Z. K. Zheng, P. Wang, Y. Dai, B. B. Huang and H. F. Cheng, *Angew. Chem. Int. Edit.*, 2025, **64**, e202413832.
- 271 H. R. Wang, R. B. Sun, P. G. Liu, H. H. Hu, C. Ling, X. Han, Y. Shi, X. S. Zheng, G. Wu and X. Hong, *Nano Res.*, 2024, **17**, 7013-7019.
- 272 W. Z. Li, Z. L. Yin, Z. Y. Gao, G. W. Wang, Z. Li, F. Y. Wei, X. Wei, H. Q. Peng, X. T. Hu, L. Xiao, J. T. Lu and L. Zhuang, *Nat. Energy*, 2022, **7**, 835-843.
- 273 J. E. Huang, F. W. Li, A. Ozden, A. S. Rasouli, F. P. G. de Arquer, S. J. Liu, S. Z. Zhang, M. C. Luo, X. Wang, Y. W. Lum, Y. Xu, K. Bertens, R. K. Miao, C. T. Dinh, D. Sinton and E. H. Sargent, *Science*, 2021, 372, 1074-1078.
- 274 C. Zhu, Y. F. Song, X. Dong, G. H. Li, A. H. Chen, W. Chen, G. F. Wu, S. J. Li, W. Wei and Y. H. Sun, *Energy Environ. Sci.*, 2022, **15**, 5391-5404.
- 275 L. X. Liu, Y. M. Cai, H. T. Du, X. Z. Lu, X. Li, F. Q. Liu, J. J. Fu and J. J. Zhu, ACS Appl. Mater. Interfaces, 2023, **15**, 16673-16679.
- 276 M. Wu, D. J. Huang, F. L. Lai, R. O. Yang, Y. Liu, J. K. Fang, T. Y. Zhai and Y. W. Liu, *Proc. Nat. Acad. Sci.*, 2023, **120**, e2302851120.
- Y. H. Wang, Z. Y. Wang, C. T. Dinh, J. Li, A. Ozden, M. G. Kibria, A. Seifitokaldani, C. S. Tan, C. M. Gabardo, M. C. Luo, H. Zhou, F. W. Li, Y. Lum, C. McCallum, Y. Xu, M. X. Liu, A. Proppe, A. Johnston, P. Todorovic, T. T. Zhuang, D. Sinton, S. O. Kelley and E. H. Sargent, *Nat. Catal.*, 2020, 3, 98-106.
- Y. J. Chen, X. Y. Li, Z. Chen, A. Ozden, J. E. Huang, P. F. Ou, J. C. Dong, J. Q. Zhang, C. Tian, B. H. Lee, X. Y. Wang, S. J. Liu, Q. Y. Qu, S. S. Wang, Y. Xu, R. K. Miao, Y. Zhao, Y. J. Liu, C. Y. Qiu, J. Abed, H. Z. Liu, H. Shin, D. S. Wang, Y. D. Li, D. Sinton and E. H. Sargent, *Nat. Nanotechnol.*, 2024, **19**, 311-318.
- 279 S. Yan, Z. Chen, Y. S. Chen, C. Peng, X. Y. Ma, X. M. Lv, Z. H. Qiu, Y. Yang, Y. Y. Yang, M. Kuang, X. Xu and G. F. Zheng, *J. Am. Chem. Soc.*, 2023, **145**, 26374-26382.

- 280 M. Zhong, K. Tran, Y. M. Min, C. H. Wang, Z. Y. Wang, C. T. Dinh, P. De Luna, Z. Q. Yu, A. S. Rasouli, P. Brodersen, S. Sun, O. Voznyy, C. S. Tan, M. Askerka, F. L. Che, M. Liu, A. Seifitokaldani, Y. J. Pang, S. C. Lo, A. Ip, Z. Ulissi and E. H. Sargent, *Nature*, 2020, **581**, 178-183.
- 281 B. Kim, Y. C. Tan, Y. Ryu, K. Jang, H. G. Abbas, Kang, H. Choi, K. S. Lee, S. Park, W. Kim, P. P. Choi, S. Ringe and J. Oh, *ACS Energy Lett.*, 2023, **8**, 3356-3364.
- 282 C. Zhu, G. F. Wu, J. N. Mao, A. H. Chen, Y. H. Zhao, G. H. Feng, Y. H. Wei, X. H. Liu, S. J. Li, G. H. Li, X. Dong, Y. F. Song, W. Wei and W. Chen, *Chem. Eng. J.*, 2024, **485**, 150040.
- 283 Z. Z. Niu, L.P. Chi, Z. Z. Wu, P. P. Yang, M. H. Fan and M. R. Gao, Nat. Sci. Open, 2023, 2, 20220044.
- 284 Y. L. Jiang, H. B. Li, C. J. Chen, Y. Zheng and S. Z. Qiao, ACS Catal., 2024, 14, 8310-8316.
- 285 Y. Shen, Z. Wang, Y. Wang and C. Wang, J. Artif. Intell. Res., 2024, 2, 100056.
- 286 J. Q. Feng, L. M. Wu, S. J. Liu, L. Xu, X. N. Song, L. B. Zhang, Q. G. Zhu, X. C. Kang, X. F. Sun and B. X. Han, *J. Am. Chem. Soc.*, 2023, **145**, 9857-9866.
- 287 Q. Li, J. B. Wu, C. Y. Yang, S. Y. Li, C. Long, Z. C. Zhuang, Q. Li, Z. Q. Guo, X. W. Huang, Z. Y. Tang, H. G. Li, D. S. Wang and Y. D. Li, *J. Am. Chem. Soc.*, 2025.
- 288 P. Zhu, C. Xia, C. Y. Liu, K. Jiang, G. H. Gao, X. Zhang, Y. Xia, Y. J. Lei, H. N. Alshareef, T. P. Senftle and H. T. Wang, *Proc. Nat. Acad. Sci.*, 2021, **118**, e2010868118.
- 289 Q. Sun, X. Tan, C. Jia, C. L. Rong, S. H. Wang, C. Han, Y. Xiao, H. Q. Qi, S. C. Smith and C. Zhao, *Adv. Funct. Mater.*, 2024, **34**, 2406281.
- 290 S. Overa, B. S. Crandall, B. Shrimant, D. Tian, B. H. Ko, H. Shin, C. Bae and F. Jiao, *Nat. Catal.*, 2022, **5**, 738-745.
- 291 M. P. Schellekens, S. J. Raaijman, M. T. M. Koper and P. J. Corbett, Chem. Eng. J., 2024, 483, 149105.
- 292 Y. W. Rong, T. F. Liu, J. Q. Sang, R. T. Li, P. F. Wei, H. F. Li, A. Y. Dong, L. Che, Q. Fu, D. F. Gao and G. X. Wang, *Angew. Chem. Int. Edit.*, 2023, **62**, e202309893.
- 293 X. L. Hu, J. C. Xu, Y. C. Gao, Z. Y. Li, J. Shen, W. Wei, Y. S. Hu, Y. S. Wu, Y. Wang and M. Y. Ding, *Angew. Chem. Int. Edit.*, 2025, **64**, e202414416.
- 294 T. U. Wi, Y. C. Xie, Z. H. Levell, D. Y. Feng, J. Y. T. Kim, P. Zhu, A. Elgazzar, T. H. Jeon, M. Shakouri, S. Y. Hao, Z. W. Fang, C. Qiu, H. W. Lee, A. Hicks, Y. Y. Liu, C. Liu and H. T. Wang, *Nat. Synth.*, 2024, **3**, 1392-1403.
- 295 X. Zhang, C. Y. Ling, S. Y. Ren, H. C. Xi, L. Y. Ji, J. L. Wang and J. Zhu, Adv. Mater., 2025, 37, 2413111.
- 296 S. Y. Li, G. Zhang, X. Ma, H. Gao, D. L. Fu, T. Wang, J. R. Zeng, Z. J. Zhao, P. Zhang and J. L. Gong, *J. Am. Chem. Soc.*, 2024, **146**, 31927-31934.
- 297 Y. Ji, Z. Chen, R. Wei, C. Yang, Y. Wang, J. Xu, H. Zhang, A. Guan, J. Chen and T.-K. Sham, *Nat. Catal.*, 2022, **5**, 251-258.
- 298 X. P. Yan, M. L. Zhang, Y. Z. Chen, Y. H. Wu, R. Z. Wu, Q. Wan, C. X. Liu, T. T. Zheng, R. J. Feng, J. Zhang, C. J. Chen, C. Xia, Q. G. Zhu, X. F. Sun, Q. L. Qian and B. X. Han, *Angew. Chem. Int. Edit.*, 2023, **62**, e202301507.
- 299 Z. Z. Wu, X. L. Zhang, P. P. Yang, Z. Z. Niu, F. Y. Gao, Y. C. Zhang, L. P. Chi, S. P. Sun, J. W. DuanMu, P. G. Lu, Y. C. Li and M. R. Gao, *J. Am. Chem. Soc.*, 2023, **145**, 24338-24348.
- 300 E. Shirzadi, Q. Jin, A. S. Zeraati, R. Dorakhan, T. J. Goncalves, J. Abed, B. H. Lee, A. S. Rasouli, J. Wicks, J. Q. Zhang, P. F. Ou, V. Boureau, S. Park, W. Y. Ni, G. H. Lee, C. Tian, D. M. Meira, D. Sinton, S. Siahrostami and E. H. Sargent, *Nat. Commun.*, 2024, **15**, 2995.
- 301 Q. Sun, Y. Zhao, X. Tan, C. Jia, Z. Su, Q. Meyer, M. I. Ahmed and C. Zhao, *ACS Catal.*, 2023, **13**, 5689-5696.
- 302 D. Wang, H. D. Jung, S. K. Liu, J. Y. Chen, H. Z. Yang, Q. He, S. B. Xi, S. Back and L. Wang, *Nat. Commun.*, 2024, **15**, 4692.
- 303 M. Jouny, W. Luc and F. Jiao, *Nat. Catal.*, 2018, **1**, 748-755.
- 304 N. N. Meng, Z. T. Wu, Y. M. Huang, J. Zhang, M. X. Chen, H. B. Ma, H. J. Li, S. B. Xi, M. Lin, W. Y. Wu, S. H. Han, Y. F. Yu, Q. H. Yang, B. Zhang and K. P. Loh, *Nat. Commun.*, 2024, **15**, 3892.

- 305 H. F. Li, P. F. Wei, T. F. Liu, M. R. Li, C. Wang, R. T. Li, J. Y. Ye, Z. Y. Zhou, S. G. Sun, Q. Fu, D. F. Gao, G. X. Wang and X. H. Bao, *Nat. Commun.*, 2024, **15**, 4603.
- 306 J. Li, H. C. Xiong, X. Z. Liu, D. H. Wu, D. Su, B. J. Xu and Q. Lu, Nat. Commun., 2023, 14, 698.
- 307 W. H. Ren, W. C. Ma and X. L. Hu, *Joule*, 2023, **7**, 2349-2360.
- 308 X. Wang, P. F. Ou, A. Ozden, S. F. Hung, J. Tam, C. M. Gabardo, J. Y. Howe, J. Sisler, K. Bertens, F. P. G. de Arquer, R. K. Miao, C. P. O'Brien, Z. Y. Wang, J. Abed, A. S. Rasouli, M. J. Sun, A. H. Ip, D. Sinton and E. H. Sargent, *Nat. Energy*, 2022, 7, 170-176.
- 309 S. L. Chen, B. Rowley, R. Ganganahalli and B. S. Yeo, Adv. Sci., 2024, 11, 2405938.
- 310 Z. T. Wu, N. N. Meng, R. Yang, M. X. Chen, J. H. Pan, S. J. Chi, C. Wu, S. B. Xi, Y. Liu, Y. Q. Ou, W. Y. Wu, S. H. Han, B. Zhang, Q. H. Yang and K. P. Loh, *Angew. Chem. Int. Edit.*, 2024, e20242028.
- 311 J. Liu, B. Zhang, D. R. Chen, O. W. Peng, H. B. Ma, S. B. Xi, C. Wu, Q. K. Hu, K. Zhang, J. Y. Feng and K. P. Loh, Angew. Chem. Int. Edit., 2024, 63, e202412266.
- 312 W. Z. Niu, Z. Chen, W. Guo, W. Mao, Y. Liu, Y. N. Guo, J. Z. Chen, R. Huang, L. Kang, Y. W. Ma, Q. S. Yan, J. Y. Ye, C. Y. Cui, L. Q. Zhang, P. Wang, X. Xu and B. Zhang, *Nat. Commun.*, 2023, **14**, 4882.
- 313 C. M. Zhao, G. Luo, X. K. Liu, W. Zhang, Z. J. Li, Q. Xu, Q. H. Zhang, H. J. Wang, D. M. Li, F. Y. Zhou, Y. T. Qu, X. Han, Z. Z. Zhu, G. Wu, J. Wang, J. F. Zhu, T. Yao, Y. F. Li, H. J. M. Bouwmeester and Y. E. Wu, *Adv. Mater.*, 2020, **32**, 2002382.
- 314 W. C. Ma, S. J. Xie, B. Zhang, X. Y. He, X. Liu, B. B. Mei, F. F. Sun, Z. Jiang, L. Lin, Q. H. Zhang, B. Ren, G. Fu, X. L. Hu and Y. Wang, *Chem.*, 2023, **9**, 2161-2177.
- 315 S. Kwon, J. Zhang, R. Ganganahalli, S. Verma and B. S. Yeo, *Angew. Chem. Int. Edit.*, 2023, **62**, e202217252.
- 316 Y. J. Chen, X. Y. Wang, X. Y. Li, R. K. Miao, J. C. Dong, Z. L. Zhao, C. H. Liu, H. Z. Liu, J. E. Huang, J. H. Wu, S. Chu, C. Yu, J. Yu, W. Y. Ni, P. Y. Wang, R. Xia, P. F. Ou, K. Xie, B. J. Xu, Y. Hou, D. Sinton and E. H. Sargent, *Nat. Catal.*, 2025, *8*, 239-247.
- 317 C. Long, K. W. Wan, Y. Chen, L. Li, Y. H. Jiang, C. Y. Yang, Q. B. Wu, G. L. Wu, P. Xu, J. Li, X. H. Shi, Z. Y. Tang and C. H. Cui, *J. Am. Chem. Soc.*, 2024, **146**, 4632-4641.
- 318 W. Ren, H. Zhang, M. Chang, N. Chen, W. Ma, J. Gu, M. Lin and X. Hu, Chem, 2024, 11, 102352.
- 319 X. Wang, Z. Y. Wang, T. T. Zhuang, C. T. Dinh, J. Li, D. H. Nam, F. W. Li, C. W. Huang, C. S. Tan, Z. T. Chen, M. F. Chi, C. M. Gabardo, A. Seifitokaldani, P. Todorovic, A. Proppe, Y. J. Pang, A. R. Kirmani, Y. H. Wang, A. H. Ip, L. J. Richter, B. Scheffel, A. N. Xu, S. C. Lo, S. O. Kelley, D. Sinton and E. H. Sargent, *Nat. Commun.*, 2019, **10**, 5186.
- 320 J. Li, Z. Y. Wang, C. McCallum, Y. Xu, F. W. Li, Y. H. Wang, C. M. Gabardo, C. T. Dinh, T. T. Zhuang, L. Wang, J. Y. Howe, Y. Ren, E. H. Sargent and D. Sinton, *Nat. Catal.*, 2019, **2**, 1124-1131.
- 321 M. P. L. Kang, H. B. Ma, R. Ganganahalli and B. S. Yeo, ACS Catal., 2023, 14, 116-123.
- 322 J. Li, A. N. Xu, F. W. Li, Z. Y. Wang, C. Q. Zou, C. M. Gabardo, Y. H. Wang, A. N. Ozden, Y. Xu, D. E. Y. Nam, Y. W. Lum, O. S. Wicks, B. Chen, Z. Q. Wang, J. T. Chen, Y. Z. Wen, T. T. Zhuang, M. C. Luo, X. W. Du, S. K. Sham, B. Zhang, E. H. Sargent and D. Sinton, *Nat. Commun.*, 2020, **11**, 1-8.
- 323 Y. X. Liang, F. Li, R. K. Miao, S. P. Hu, W. Y. Ni, S. Z. Zhang, Y. J. Liu, Y. Bai, H. Y. Wan, P. F. Ou, X. Y. Li, N. Wang, S. Park, F. W. Li, J. Zeng, D. Sinton and E. H. Sargent, *Nat. Synth.*, 2024, **3**, 1104-1112.
- 324 H. Rabiee, J. K. Heffernan, L. Ge, X. Q. Zhang, P. H. Yan, E. Marcellin, S. H. Hu, Z. H. Zhu, H. Wang and Z. G. Yuan, *Appl. Catal. B-Environ.*, 2023, **330**, 12258.
- 325 X. F. Lu, T. Shinagawa and K. Takanabe, ACS Catal., 2023, 13, 1791-1803.