Supplementary Information (SI) for Chemical Society Reviews. This journal is © The Royal Society of Chemistry 2025

Supporting information

Supramolecular engineering in hybrid perovskite optoelectronics

Tzu-Sen Su^{1,2}, Anurag Krishna^{3,4,5}, Chenxu Zhao⁶, Junhao Chu¹, Hong Zhang^{*1,7}

¹State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, China.

²Graduate Institute of Energy and Sustainability Tech, National Taiwan University of Science and Technology,

No. 43, Keelung Rd., Sec. 4, Da'an Dist., Taipei City 106335, Taiwan.

³Imec, imo-imomec, Thin Film PV Technology, Thor Park 8320, 3600 Genk, Belgium.

⁴ Hasselt University, imo-imomec, Martelarenlaan 42, 3500 Hasselt, Belgium

⁵ EnergyVille, imo-imomec, Thor Park 8320, 3600 Genk, Belgium

⁶Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.

⁷Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China.

*Correspondence to: hzhangioe@fudan.edu.cn (H.Z.)

Supramolecular Agent	Device Structure	Enhancement ratio (%)	Control PCE (%)	PCE (%)	Voc (V)	Jsc (mA/cm²)	FF (%)	Stability	Year
Phenylalkylamine	n-i-p PSC (FTO/TiO ₂ /PVSK/ Spiro- OMeTAD/Au)	10.98	17.3	19.2	1.12	23.6	73.0	Retained 50% of PCE after more than four months' exposure to moisture air	20161
Mercapto- tetrazolium (S) and phenylammonium (N) moieties	n-i-p PSC (FTO/cp-TiO ₂ /mp- TiO ₂ /PVSK/Spiro- OMeTAD/Au)	8.85	19.2	20.9	1.15	24.0	75.0	Retained 98.1% of PCE after 1000 h under full solar light soaking at 60 °C in Ar (unencapsulated)	2018 ²
5-ammonium valeric acid iodide (AVAI)	n-i-p PSC (FTO/TiO ₂ /FAPbI ₃ / Spiro- OMeTAD/Au)	160.88	7.3	18.9	1.08	25.1	70.0	Retained 90% of PCE after 300 h under MPP tracking with white light illumination	2019 ³
Dibenzo 24-crown- 8 (DB24C8)	n-i-p PSC (FTO/cp-TiO ₂ /mp- TiO ₂ /PVSK/Spiro- OMeTAD/Au)	10.23	21.5	23.7	1.15	25.8	79.5	Retained >80% of PCE after 300 h under MPP tracking with full solar illumination (AM 1.5 G, 100 mW/cm ² in N ₂ , 25°C).	2020 ⁴

Table S1.	Summar	y of the	photovoltaic	parameters	for the re-	ported su	pramolecula	engineering	g PSCs
	-	/						0 0	2

								(unencapsulated)	
2D black phosphorene (BP)	n-i-p PSC (FTO/TiO ₂ /PVSK/ Spiro- OMeTAD/Ag)	16.99	17.0	19.8	1.12	23.9	73.8	-	20205
Chloropropyltrimet hoxysilane (CPS)	n-i-p PSC (FTO/PEDOT:PS S/ PVSK/Spiro- OMeTAD/Ag)	18.71	17.1	20.3	1.12	24.8	73.0	Retained ~85% PCE after 30 days at RH=35%	20216
18-crown-6 (18C6)	n-i-p PSC (FTO/ZnO- ZnS/TiO ₂ /PVSK/S piro- OMeTAD/Au)	20.12	17.1	20.5	1.06	24.4	79.2	Retained 92% of PCE after 1000 h under ambient condition	20217
NiP-supramolecule	n–i–p PSC (FTO/modified ZnO/mp- TiO ₂ /PVSK/phthal ocyanine/Au)	5.78	22.8	24.2	1.17	25.5	81.01	Retained 90% of PCE after 5000 h at RH=65% and room temperature; Retained 90% of PCE after 3000 h at 85 °C with RH=~55%	2021 ⁸
2- phenylethylammoni um (PEA+) and 2 (perfluorophenyl)et hylammonium (FEA+) moieties	n-i-p PSC (FTO/cp-TiO ₂ /mp- TiO ₂ /PVSK/Spiro- OMeTAD/Au)	10.20	19.6	21.6	-	-	-	Retained ~90% of PCE after 100 h of operation	20219
ortho-isomers of (phenylene)di(ethyl ammo nium) iodide (o-PDEAI ₂)	n-i-p PSC (FTO/cp-TiO ₂ /mp- TiO ₂ /PVSK/Spiro- OMeTAD/Au)	9.02	21.9	23.9	1.16	24.8	83.5	Retained 85% of PCE under an RH=40–50% (unencapsulated); Retained 75% of PCE after 1000 h at 85 °C in a nitrogen atmosphere (unencapsulated)	202110
15-crown-5 (15C5)	n-i-p PSC (FTO/cp- TiO ₂ /PVSK /Spiro-OMeTAD/ Au)	12.51	19.2	21.6	1.16	24.2	76.6	Retained >90% of PCE after 1000 h in the dark under RH= 35-40% (unencapsulated)	202111
Dibenzo-21-crown- 7 (DB21C7)	n-i-p PSC (FTO/cp-TiO ₂ /mp- TiO ₂ /PVSK/Spiro- OMeTAD/Au)	14.62	21.2	24.3	1.17	25.5	81.9	Target perovskite film was stable in air for 380 days, while the control film degraded completely within 5 days	202112
3D star-shaped polyhedral oligomeric silsesquioxane- poly(trifluoroethyl methacrylate)-b- poly(methyl methacrylate) (PPP) polymer	p-i-n PSC (ITO/NiO _X / PVSK+PPP/PCB M+C60/BCP/Cr/A u)	18.74	18.6	22.1	1.13	23.2	84.1	Retained ~93% of PCE after 6000 h under a RH= 40% (unencapsulated)	202113
β-diketone based ligand, N,N,N',N'- tetraphenylmalondi amide [TPMA]	p-i-n PSC (ITO/PEDOT:PSS / Pb-Sn PVSK/C60/ BCP/ Ag)	10.94	18.6	20.7	0.82	33.0	76.2	Retained 94% of PCE after 1000 h in N_2 glovebox and only 8% degradation after continuously heated for 100 h at 80 °C (unencapsulated)	202114
Carbazole-based material	n-i-p PSC (FTO/TiO ₂ /PVSK/	-1.03	19.5	19.3	1.18	21.7	75.0	Retained >90% of PCE after 550 h	202115

$(C_{62}H_5F_4IN_3O_5)$ (PEI)	HTMs/Au)							under MPP tracking	
(FT)								≈2600 h	
1-butyl-3-methylim idazolium-based ILs ([BMIM]X)	n-i-p PSC (FTO/SnO ₂ /(FAPb I ₃) _{0.95} (MAPbBr ₃) _{0.0} ₅ /Spiro-OMeTAD/ Au)	6.65	21.9	23.4	1.20	24.7	79.0	Retained 95% of PCE after 4080 h in ambient dry-air storage and 80% of PCE after 1400 h continuous light illumination	2022 ¹⁶
Chenodeoxycholic acid (CDCA)	n-i-p PSC (ITO/SnO ₂ /PVSK/ CDCA/Spiro- OMeTAD/Au)	11.51	20.9	23.3	1.16	25.4	78.9	Retained 92% of PCE after 1600h under ambient conditions (unencapsulated); Almost unchanged after heating at 85 ° C for 500 h in a nitrogen atmosphere (unencapsulated)	2022 ¹⁷
2, 4, 6-tris(4- aminophenyl)-s- triazine (TAPT)	p-i-n PSC (ITO/NiO _x /PTAA/ TAPT/PVSK/PCB M+C60/BCP/Cr/A u)	9.88	22.4	24.6	1.16	26.1	81.2	Retained 89.7% of PCE after 1500 h of maximum power point tracking and 91.9 % of PCE after 1065 h of 85 °C heat treatment	202318
Potassium cation- 18-crown ether-6 complexes (18C6– K ⁺)	n-i-p PSC (FTO/SnO ₂ +18C6 + K ₂ SO ₄ /PVSK/Spir o-OMeTAD/Ag)	6.52	20.3	21.6	1.13	24.1	79.5	Retained ~90% of PCE after 500h storage in dry air	202319
1-aza-18-crown-6 (A18C6)	n-i-p PSC (FTO/SnO ₂ /PVSK / A18C6/Spiro- OMeTAD/ Au)	9.91	21.9	24.1	1.17	25.0	82.2	Retained a long T 80 lifetime of 510 h under MPP tracking conditions under 1- sun equivalent illumination at around 20 °C in an inert atmosphere (unencapsulated)	2023 ²⁰
3-fluoro-4-methoxy 4',4"-bis((4-vinyl benzyl ether) methyl)) triphenylamine (FTPA)	n-i-p PSC (FTO/SnO ₂ FA _{0.95} MA _{0.05} Pb(I _{0.95} Br _{0.05}) ₃ / Spiro- OMeTAD/ Au)	7.21	22.5	24.1	1.18	24.4	83.5	Retained >95% of PCE after 1000 h under MPP tracking; Retained 95% of PCE after 2000 h at air ambient of RH~50%	2023 ²¹
biphenyl-4,4'- dithiol (P2)	n-i-p PSC (FTO/cp-TiO ₂ /Li- doped mp-TiO ₂ / PVSK/spiro- OMeTAD/ Au)	5.73	22.7	24.0	1.20	25.4	79.0	Retained ~88% of PCE after 2000 h under MPP tracking at 40 °C and 1 sun illumination	2023 ²²
1,4- diazabicyclo[2.2.2] octane (DABCO)	n-i-p PSC (ITO/ cp-SnO ₂ or DABCO- SnO ₂ /PVSK/ spiro-OMeTAD/ Ag)	15.12	20.5	23.6	1.17	24.8	81.6	Retained 87% of PCE over 1500 h under ISOS-D1 standard conditions	2023 ²³
Ammonia-docked (DCAP)	n-i-p PSC (FTO/NiO _x /Perov skite/PCBM/Ag)	12.37	22.5	25.3	1.15	25.6	85.6	Retained 81.5% of PCE after 1200h under light (1 Sun illumination) and heat (65 °C)	2024 ²⁴
15-crown-5 (15C5)	n-i-p PSC (ITO/PEDOT:PSS	12.10	19.2	21.5	1.16	24.2	76.6	Retained >90% of PCE after 1000 h in	202411

	/PVSK/P3HT/Ag)							the dark under	
								RH=35%-40%; 17% PCE loss at 85°C for 200 h	
Dibenzo-18-crown- 6 (DB18C6)	p-i-n PSC (FTO/NiO _X /2PAC z/ PVSK/Crown ethers/ PCBM/BCP/Ag)	11.91	20.8	23.3	1.13	24.6	83.5	Retained 92% of PCE after 1224 h of aging in an N_2 environment (unencapsulated) Retained 89% PCE after 1000 h of aging in RH=30%-40% (unencapsulated)	2024 ²⁵
β cyclodextrin (β- CD)	p-i-n PSC (ITO/SAM(Meo- 2PACz)/ PVSK/C60/ BCP/Ag)	10.31	19.4	21.4	1.14	23.5	80.2	Retained >73% of PCE after 320 hours of testing at 50–60 °C. (0.5% of β-CD treated condition)	2024 ²⁶
dibenzo-21-crown- [7] (DB21C7)	n-i-p PSC (FTO/TiO ₂ /PVSK/ Crown ethers/Spiro- OMeTAD/Au)	18.00	5.0	5.9	1.5	5.5	73.0	Retained ~80% of PCE over 300 h at 85 °C under nitrogen atmosphere, or ambient temperature	2024 ²⁷
Benzo-18-crown-6- ether (B18C6)	n-i-p PSC (ITO/SnO ₂ /PVSK/ PEABr/spiro- OMeTAD/ Au)	5.64	19.5	20.6	1.21	20.5	83.0	Retained 99.6% of PCE after 1080 hours of storage in air (unencapsulated)	2024 ²⁸
Alkylthiophene- substitutedpolythiop henes (PT4T-2F)	n-i-p PSC (FTO/SnO ₂ /FA _{0.83} $Cs_{0.17}Pb(I_{0.7}Br_{0.3})_3/$ Interlayer/Spiro- OMeTAD/Au)	8.11	17.8	19.2	1.23	20.9	75.1	Retained 83% of PCE over 26 days under RH=45-50%	2024 ²⁹
1-aza-15-crown5- ether (A15C5)	n-i-p PSC (FTO/SnO ₂ /PVSK /A15C5/Spiro- OMeTAD/Ag)	10.84	21.8	24.1	1.14	25.3	83.6	Retained ~96.5% of PCE after 960 h in ambient air with RH=40 \pm 10% (unencapsulated) Retained 75.3% of PCE after 360 h under N2 atmosphere and 85 °C (unencapsulated)	2024 ³⁰
15-crown-5 + CDT- S and CDT-N,	n-i-p PSC (FTO/cp-TiO ₂ /mp- TiO ₂ /PVSK/Spiro- OMeTAD/Au)	8.88	21.2	23.1	1.15	24.5	81.6	Retained 90.5% of PCE after 1000 hours of storage in the dark (unencapsulated); Retained 80.83% under MPP tracking for 1000 h (unencapsulated)	2024 ³¹
Crown ether derivative (PC15)	n-i-p PSC (ITO/SnO ₂ /PVSK/ PC15/Spiro- OMeTAD/Ag)	19.23	20.8	24.8	1.19	25.5	81.6	Retained 86% of PCE after 1500 h under MPP tracking with continuous illumination (1-sun) and a temperature of 25 ± 5 °C	2024 ³²
PEAI+DB21C7	n-i-p PSC (FTO/cp-TiO ₂ /mp- TiO ₂ /PVSK/Spiro- OMeTAD/Au)	12.54	22.6	25.4	1.18	25.8	83.4	Retained >96.6% of PCE after 1050 h of continuous operation under 1 sun illumination	2024 ³³
benzo[c][1,2,5]thiad iazol-4-	n-i-p PSC (FTO/cp-TiO ₂ /mp-	5.91	18.6	19.7	-	-	-	Retained >80% of PCE after 1000h	202434

methylammonium (BTDZ) halide (X = I, Br)	TiO ₂ /Cs _{0.05} FA _{0.90} M A _{0.05} Pb(I _{0.95} Br _{0.05}) ₃ / BTDZ/Spiro- OMeTAD/Au)							under MPP tracking	
Benzo-18-crown-6 (B18C6)	n-i-p PSC (FTO/ cp- TiO ₂ /mp- TiO ₂ /PVSK/spiro- OMeTAD/ Ag)	11.30	19.3	21.5	1.17	24.8	74.0	Retained 80% of PCE after 300 h at RH =85%	202435
P,M-(1-methylene- 3-methyl- imidazolium)[6]heli cene iodides	n-i-p PSC (FTO/ cp- TiO ₂ /mp- TiO ₂ /PVSK/spiro- OMeTAD/ Ag)	-0.48	20.9*	20.8*	1.10*	24.1*	76.8*	Retained 80% of PCE after 1000 h under MPP tracking with full solar illumination (AM 1.5 G, 100mWcm ⁻² , N2, and 25°C). (unencapsulated)	2024 ³⁶
2,2,3,3,3- pentafluoropropyla mine hydrochloride (PFPACl) and 3,3,3- triflupropylamine hydrochloride (TFPACl)	n-i-p PSC (ITO/SnO ₂ /PVSK/ spiro- OMeTAD/Au)	13.20	20.8	23.6	1.17	24.7	81.5	Retained 89.8% of PCE after 1000 h under MPP tracking with 100 mWcm ⁻² light illumination provided by white LED and in N_2 (unencapsulated)	2024 ³⁷
18-crown-6 ether (18C6)	n-i-p PSC (FTO/TiO ₂ /PVSK/ Spiro- OMeTAD/Au)	8.74	20.4	22.1	1.24	21.3	84.1	Retained 95% of PCE after 1500 h under MPP tracking	202538
Phenylethylammoni um acetate (PEAAc)	n-i-p PSC (FTO/SnO ₂ /PVSK / passivation layer/ Spiro- OMeTAD/Au)	10.18	22.6	24.9	1.19	26.5	78.7	Retained 86% of PCE after 500 h at 85 °C in a glove box without illumination (unencapsulated)	2025 ³⁹

Note: *average data; Enhancement ratio (%)= (PCE_{treated} - PCE_{control})/ PCE_{control} *100%

References:

- 1. F. Wang, W. Geng, Y. Zhou, H.-H. Fang, C.-J. Tong, M. A. Loi, L.-M. Liu and N. Zhao, *Advanced Materials*, 2016, **28**, 9986-9992.
- D. Bi, X. Li, J. V. Milić, D. J. Kubicki, N. Pellet, J. Luo, T. LaGrange, P. Mettraux, L. Emsley, S. M. Zakeeruddin and M. Grätzel, *Nature Communications*, 2018, 9, 4482.
- A. Q. Alanazi, D. J. Kubicki, D. Prochowicz, E. A. Alharbi, M. E. F. Bouduban, F. Jahanbakhshi, M. Mladenović, J. V. Milić, F. Giordano, D. Ren, A. Y. Alyamani, H. Albrithen, A. Albadri, M. H. Alotaibi, J.-E. Moser, S. M. Zakeeruddin, U. Rothlisberger, L. Emsley and M. Grätzel, *Journal of the American Chemical Society*, 2019, 141, 17659-17669.
- T.-S. Su, F. T. Eickemeyer, M. A. Hope, F. Jahanbakhshi, M. Mladenović, J. Li, Z. Zhou, A. Mishra, J.-H. Yum, D. Ren, A. Krishna, O. Ouellette, T.-C. Wei, H. Zhou, H.-H. Huang, M. D. Mensi, K. Sivula, S. M. Zakeeruddin, J. V. Milić, A. Hagfeldt, U. Rothlisberger, L. Emsley, H. Zhang and M. Grätzel, *Journal of the American Chemical Society*, 2020, 142, 19980-19991.
- 5. M. Zhang, M. Ye, W. Wang, C. Ma, S. Wang, Q. Liu, T. Lian, J. Huang and Z. Lin, *Advanced Materials*, 2020, **32**, 2000999.
- B. Wang, H. Li, Q. Dai, M. Zhang, Z. Zou, J.-L. Brédas and Z. Lin, *Angewandte Chemie International Edition*, 2021, 60, 17664-17670.
- 7. R. Chen, Y. Wu, Y. Wang, R. Xu, R. He, Y. Fan, X. Huang, J. Yin, B. Wu, J. Li and N. Zheng, *Advanced Functional Materials*, 2021, **31**, 2008760.
- 8. Z. Fang, L. Wang, X. Mu, B. Chen, Q. Xiong, W. D. Wang, J. Ding, P. Gao, Y. Wu and J. Cao, *Journal of the American Chemical Society*, 2021, **143**, 18989-18996.
- 9. M. A. Hope, T. Nakamura, P. Ahlawat, A. Mishra, M. Cordova, F. Jahanbakhshi, M. Mladenović, R. Runjhun, L. Merten, A. Hinderhofer, B. I. Carlsen, D. J. Kubicki, R. Gershoni-Poranne, T. Schneeberger, L. C. Carbone, Y. Liu,

S. M. Zakeeruddin, J. Lewinski, A. Hagfeldt, F. Schreiber, U. Rothlisberger, M. Grätzel, J. V. Milić and L. Emsley, *Journal of the American Chemical Society*, 2021, **143**, 1529-1538.

- C. Liu, Y. Yang, K. Rakstys, A. Mahata, M. Franckevicius, E. Mosconi, R. Skackauskaite, B. Ding, K. G. Brooks, O. J. Usiobo, J.-N. Audinot, H. Kanda, S. Driukas, G. Kavaliauskaite, V. Gulbinas, M. Dessimoz, V. Getautis, F. De Angelis, Y. Ding, S. Dai, P. J. Dyson and M. K. Nazeeruddin, *Nature Communications*, 2021, 12, 6394.
- P. Gao, Y. Ji, J. Song, G. Zhou, J. Lai, X. Yin, Y. Li, T. Song, Z. Zhao, Q. Chen, W. Feng, L. Chen, Y. Zhang, S. Yang, B. Sun and F. Liu, *Cell Reports Physical Science*, 2021, 2, 100450.
- H. Zhang, F. T. Eickemeyer, Z. Zhou, M. Mladenović, F. Jahanbakhshi, L. Merten, A. Hinderhofer, M. A. Hope, O. Ouellette, A. Mishra, P. Ahlawat, D. Ren, T.-S. Su, A. Krishna, Z. Wang, Z. Dong, J. Guo, S. M. Zakeeruddin, F. Schreiber, A. Hagfeldt, L. Emsley, U. Rothlisberger, J. V. Milić and M. Grätzel, *Nature Communications*, 2021, 12, 3383.
- 13. Q. Cao, Y. Li, H. Zhang, J. Yang, J. Han, T. Xu, S. Wang, Z. Wang, B. Gao, J. Zhao, X. Li, X. Ma, S. M. Zakeeruddin, W. E. I. Sha, X. Li and M. Grätzel, *Science Advances*, 2021, 7, eabg0633.
- 14. R. Wang, H. Gao, R. Yu, H. Jia, Z. Ma, Z. He, Y. Zhang, J. Yang, L. Zhang and Z. a. Tan, *The Journal of Physical Chemistry Letters*, 2021, **12**, 11772-11778.
- L. Canil, J. Salunke, Q. Wang, M. Liu, H. Köbler, M. Flatken, L. Gregori, D. Meggiolaro, D. Ricciarelli, F. De Angelis, M. Stolterfoht, D. Neher, A. Priimagi, P. Vivo and A. Abate, *Advanced Energy Materials*, 2021, 11, 2101553.
- H. Zhang, W. Yu, J. Guo, C. Xu, Z. Ren, K. Liu, G. Yang, M. Qin, J. Huang, Z. Chen, Q. Liang, D. Shen, Z. Wu, Y. Zhang, H. T. Chandran, J. Hao, Y. Zhu, C.-s. Lee, X. Lu, Z. Zheng, J. Huang and G. Li, *Advanced Energy Materials*, 2022, 12, 2201663.
- 17. H. Guo, Y. Fang, H.-B. Cheng, J. Wu, Y. Lei, S. Wang, X. Li, Y. Dai, W. Xiang, D.-J. Xue, Y. Lin and A. Hagfeldt, *Angewandte Chemie International Edition*, 2022, **61**, e202204148.
- 18. H. Chen, J. Yang, Q. Cao, T. Wang, X. Pu, X. He, X. Chen and X. Li, *Nano Energy*, 2023, 117, 108883.
- 19. Y. Huang, A. Aierken, G. Yu, W. Zhang, S. Wang, Y. Sui, J. Tang, X. Yang, Y. Zhuang, Q. Song and Z. Tang, *Organic Electronics*, 2023, **116**, 106766.
- 20. Y. Yang, T. Zhao, M.-H. Li, X. Wu, M. Han, S.-C. Yang, Q. Xu, L. Xian, X. Chi, N.-J. Zhao, H. Cui, S. Li, J.-S. Hu, B. Zhang and Y. Jiang, *Chemical Engineering Journal*, 2023, **451**, 138962.
- M. Li, R. Sun, J. Chang, J. Dong, Q. Tian, H. Wang, Z. Li, P. Yang, H. Shi, C. Yang, Z. Wu, R. Li, Y. Yang, A. Wang, S. Zhang, F. Wang, W. Huang and T. Qin, *Nature Communications*, 2023, 14, 573.
- 22. A. Krishna, V. Škorjanc, M. Dankl, J. Hieulle, H. Phirke, A. Singh, E. A. Alharbi, H. Zhang, F. Eickemeyer, S. M. Zakeeruddin, G. N. M. Reddy, A. Redinger, U. Rothlisberger, M. Grätzel and A. Hagfeldt, *ACS Energy Letters*, 2023, **8**, 3604-3613.
- 23. J. Tian, J. Wu, R. Li, Y. Lin, J. Geng, W. Lin, Y. Wang, Q. Ouyang, Z. Wu, W. Sun, L. Li, Z. Lan and Y. Lin, *Nano Energy*, 2023, **118**, 108939.
- 24. G. Xu, I. Muhammad, Y. Zhang, X. Zheng, M. Xin, H. Gao, J. Li, C. Liu, W. Chen, J. Tang, F. Yang, Y. Su, P. Han, Y. Sheng, D. Khan, X. Wang and Z. Tang, *Advanced Energy Materials*, 2024, 2405088.
- 25. Y. Sui, W. Zhou, D. Khan, S. Wang, T. Zhang, G. Yu, Y. Huang, X. Yang, K. Chang, Y. He, X. Chen, W. Chen, J. Tang, F. Yang, P. Han, H. Yan, Z. Zheng and Z. Tang, *ACS Energy Letters*, 2024, **9**, 1518-1526.
- P. Ferdowsi, S.-J. Kim, T.-D. Nguyen, J.-Y. Seo, J.-H. Yum and K. Sivula, *Journal of Materials Chemistry A*, 2024, 12, 15837-15846.
- 27. P. Ferdowsi, G. Bravetti, M. C. Schmidt, E. Ochoa-Martinez, S. Bijani, A. Rizzo, S. Colella, U. Steiner, B. Ehrler, D. J. Kubicki and J. V. Milić, *Solar RRL*, 2024, **8**, 2300655.
- 28. H. Zhong, X. Liu, X. Wang, J. Yang, Z. Zhang, J. Li, J. Liu, H. Shen and H. Lin, *Journal of Materials Chemistry A*, 2024, **12**, 24593-24600.
- 29. D. Li, J. He, G. Zhu, Z. Zhang, J. He, M. Li, F. Zhang and Y. Geng, ACS Applied Materials & Interfaces, 2024, 16, 50990-50999.
- 30. X. Chen, C. Deng, J. Wu, Q. Chen, Y. Du, Y. Xu, R. Li, L. Tan, Y. Wei, Y. Huang and Z. Lan, *Advanced Functional Materials*, 2024, **34**, 2311527.
- 31. K. Chen, Y. Zeng, X. Gao, X. Liu, L. Zhu and F. Wu, ChemSusChem, 2024, 17, e202301349.
- 32. J. Yu, G. Xie, S. Zheng, J. Chen, C. Feng, H. Li, R. Zhou, Z. Wang, L. Liu, J. Zhao, A. Liang and Y. Chen, *ACS Nano*, 2024, **18**, 22533-22547.
- C. Zhao, Z. Zhou, M. Almalki, M. A. Hope, J. Zhao, T. Gallet, A. Krishna, A. Mishra, F. T. Eickemeyer, J. Xu, Y. Yang, S. M. Zakeeruddin, A. Redinger, T. J. Savenije, L. Emsley, J. Yao, H. Zhang and M. Grätzel, *Nature Communications*, 2024, 15, 7139.

- 34. W. Luo, S. Kim, N. Lempesis, L. Merten, E. Kneschaurek, M. Dankl, V. Carnevali, L. Agosta, V. Slama, Z. VanOrman, M. Siczek, W. Bury, B. Gallant, D. J. Kubicki, M. Zalibera, L. Piveteau, M. Deconinck, L. A. Guerrero-León, A. T. Frei, P. A. Gaina, E. Carteau, P. Zimmermann, A. Hinderhofer, F. Schreiber, J.-E. Moser, Y. Vaynzof, S. Feldmann, J.-Y. Seo, U. Rothlisberger and J. V. Milić, *Advanced Science*, 2024, **11**, 2405622.
- 35. S.-J. Kim, Y. Kim, R. K. Chitumalla, G. Ham, T.-D. Nguyen, J. Jang, H. Cha, J. Milić, J.-H. Yum, K. Sivula and J.-Y. Seo, *Journal of Energy Chemistry*, 2024, **92**, 263-270.
- G. AlSabeh, M. Almalki, S. Kasemthaveechok, M. A. Ruiz-Preciado, H. Zhang, N. Vanthuyne, P. Zimmermann, D. M. Dekker, F. T. Eickemeyer, A. Hinderhofer, F. Schreiber, S. M. Zakeeruddin, B. Ehrler, J. Crassous, J. V. Milić and M. Grätzel, *Nanoscale Advances*, 2024, 6, 3029-3033.
- 37. S. Cao, Z. Bi, T. Zheng, S. Luo, L. G. Gutsev, B. R. Ramachandran, V. V. Ozerova, N. A. Emelianov, N. A. Slesarenko, Y. Zheng, B. Z. Taye, G. L. Gutsev, S. M. Aldoshin, P. A. Troshin and X. Xu, *Advanced Functional Materials*, 2024, 34, 2405078.
- 38. C. Tan, Y. Cui, R. Zhang, Y. Li, H. Wu, J. Shi, Y. Luo, D. Li and Q. Meng, ACS Energy Letters, 2025, 10, 703-712.
- Y. Zheng, Z. Zhang, S. Cao, S. Luo, Z. Bi, V. V. Ozerova, N. A. Slesarenko, N. A. Emelianov, E. Shchurik, L. G. Gutsev, B. R. Ramachandran, G. L. Gutsev, Z. Ren, G. Li, S. M. Aldoshin, P. A. Troshin and X. Xu, *Journal of Materials Chemistry A*, 2025, 13, 1384-1398.