Electronic Supplementary Information

Phosphorus poisoning and regeneration of Cu-LTA catalyst for the

selective catalytic reduction of NO_x with NH₃

Xueyang Hu ^{a,b,c}, Jinhan Lin ^{a,b*}, Xuechao Tan ^d, Yingjie Li ^{a,b,c}, Xiaofeng Liu ^{a,c}, Yan Zhang ^{a,b}, Wenpo

Shan a,b *

^a Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban

Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, Xiamen 361021,

China

^bZhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban

Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of

Sciences, Ningbo 315800, China

° University of Chinese Academy of Sciences, Beijing 100049, China

^d Center for Ordered Nanoporous Materials Synthesis, Division of Environmental Science and

Engineering, POSTECH, Pohang, 37673, South Korea

*Corresponding author: jhlin@iue.ac.cn (Jinhan Lin); wpshan@iue.ac.cn (Wenpo Shan)

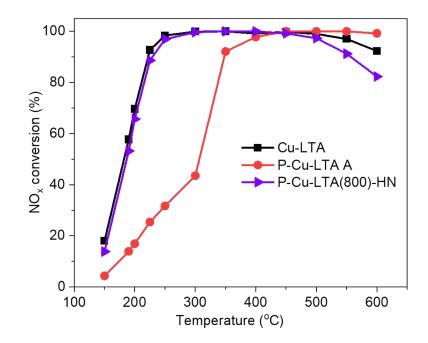
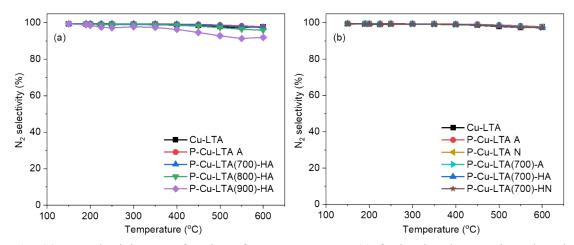



Fig. S1. NO_x conversion of fresh, phosphorus-poisoned, and regenerated Cu-LTA catalysts.

Fig. S2. N_2 selectivity as a function of temperature over (a) fresh, phosphorus-poisoned, and regenerated Cu-LTA catalysts at different hydrothermal temperatures and (b) fresh, phosphorus-poisoned, and regenerated Cu-LTA catalysts under different atmospheres. The feed gas contained 500 ppm NH₃, 500 ppm NO, 5% O₂, 10% H₂O, and N₂ balance, at a GHSV of 100,000 h⁻¹.

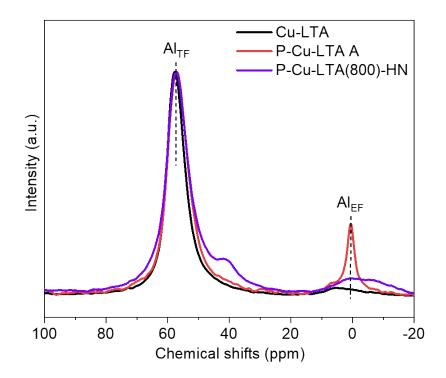


Fig. S3. ²⁷Al solid-state NMR spectra of fresh, phosphorus-poisoned, and regenerated Cu-LTA catalysts.