Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Electrophotoredox Cerium-catalyzed Decarboxylative Radical Cyc lization Cascade for the Synthesis of Alkylated Benzimidazo-fuse

d Isoquinolinones

Meng Wang, ^a Dehui Wang, ^a Kun Xu^{a,*} and Chengchu Zeng^{a,*}

^{a.} College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124,

China.

kunxu@bjut.edu.cn; zengcc@bjut.edu.cn

 General information	S1 S1 S2 S3 S3 S3		
		7. Spectra of prepared compounds	S15
		8. References	S40

1. General information

Unless otherwise special indicated, all the reagents were purchased from commercial supplies unless otherwise stated. And all the solvents were used without any purification. Thin-layer chromatography (TLC) was performed on plastic plates coated with silica gel GF254 with 0.2 mm thickness (Yantai Yuanbo Biological Technology Co., Ltd.) and all compounds were visualized with a UV light at 254 nm. Flash column chromatography was performed using silica gel (200-300 mesh, Yantai Yuanbo Biological Technology Co., Ltd.). NMR spectra were recorded on a Bruker Avance III spectrometer operating at 600 MHz (¹H NMR) and 150 MHz (¹³C NMR) or at 300 MHz (¹H NMR) and 75 MHz (¹³C NMR). Chemical shifts were reported in ppm downfield and referenced as follows: ¹H: residual internal CHCl₃ (δ 7.26 ppm); ¹³C: internal CDCl₃ (δ 77.2 ppm). Coupling constants were quoted in Hz(*J*). Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet).

2. General procedure for the synthesis of starting materials

The alkene substrates were known compounds, and were synthesized according to the literature procedures^[1,2,3]. To the solution of benzimidazole (5 mmol, 1 equiv.) and DMAP (2.0 mmol, 0.4 equiv) in DCM was added Et₃N (10 mmol, 2.0 equiv) at 0 °C. Then, methacryloyl chloride (10 mmol, 2.0 equiv) was slowly added to the solution. The solution was warmed up to room temperature and stirred for 10 h. The mixture was diluted with DCM (20 mL) and saturated NaCl aqueous solution (20 mL). The organic and aqueous layers were separated. The aqueous layer was extracted with DCM (20 mL x 3 times). The combined organic layer was washed with brine, dried over Na₂SO₄. After evaporation of solvent, the crude product was purified by column chromatography on silica gel using petroleum ether/ethyl acetate (20:1-6:1) as the eluent.

3. General procedure for the synthesis of 3-27

An undivided cell was equipped with a carbon felt anode $(1.0 \times 3.0 \text{ cm}^2)$ and a nickel foam cathode $(1.0 \times 3.0 \text{ cm}^2)$. To the cell was added **1a** (0.3 mmol), **2a** (1.5 mmol), NaHCO₃ (0.5 mmol), CeCl₃ (0.03 mmol, 10 mol %), *n*-Bu₄NCl (0.3 mmol) and *CH₃CN* (10 mL) sequentially. The reaction cell was placed 0.5 cm away from the LEDs (Kessil, 390 nm, 10 W). Then, the resulting mixture was electrolyzed under constant current conditions (1 mA/cm²) at 50 °C under light irradiation (390 nm, 10 W). After the reaction (8 h), the solvent was removed by distillation. The product was then extracted with DCM (3×20 mL), dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel to afford the desired pure product.

4. CV experiments using n-Bu4NI or n-Bu4NBr as the supporting electrolyte

Figure S1. CV experiments. CV of related compound at a platinum disk electrode in CH₃CN at a scan rate of 0.1 Vs⁻¹: CeCl₃ (3 mM), *n*-Bu₄NBr (9 mM), CeCl₃ (3 mM) + *n*-Bu₄NBr (9 mM).

Figure S2. CV experiments. CV of related compound at a platinum disk electrode in CH₃CN at a scan rate of 0.1 Vs⁻¹: CeCl₃ (3 mM), *n*-Bu₄NI (9 mM), CeCl₃ (3 mM) + *n*-Bu₄NI (9 mM).
5. A photo of the reaction setup

6. Characterization data of 3-27

5-(cyclohexylmethyl)-5-methylbenzo[**4**,**5**]imidazo[**2**,**1-a**]isoquinolin-6(5H)-one (3)^[3], white solid (89.2 mg, 86%). ¹H NMR (600 MHz, CDCl₃) δ 8.49 (d, *J* = 7.7 Hz, 1H), 8.38 (d, *J* = 7.4 Hz, 1H), 7.83 (d, *J* = 7.4 Hz, 1H), 7.57 (t, *J* = 7.5 Hz, 1H), 7.49 – 7.42 (m, 4H), 2.50 – 2.47 (m,1H), 2.06 (d, 4.4 Hz, 1H), 1.72 (s, 1H), 1.67 (s, 3H), 1.48 – 1.37 (m, 3H), 1.26 (s, 2H), 1.17 (s, 1H), 0.99 (s, 1H), 0.94 (d, *J* = 9.6 Hz, 2H), 0.80 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 173.7, 145.0, 144.2, 142.0, 131.8, 127.7, 126.7, 126.09, 125.96, 125.6, 122.7, 119.9, 115.9, 77.4, 77.2, 77.0, 49.0, 48.5, 35.1, 34.4, 33.1, 31.9, 26.1.

6-(cyclohexylmethyl)-3,5-dimethylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (4)^[4], white solid (47.3 mg, 44%). ¹**H NMR (600 MHz, CDCl₃)** δ 8.37 (d, *J* = 7.1 Hz, 2H), 7.81 (d, *J* = 7.3 Hz, 1H), 7.47 – 7.38 (m, 2H), 7.30 (d, *J* = 7.7 Hz, 1H), 7.26 (s, 1H), 2.48 (s, 3H), 2.46 – 2.44 (m, 1H), 2.05 (d, *J* = 14.3 Hz, 1H), 1.65 (s, 3H), 1.47 (s, 1H), 1.43 – 1.36 (m, 2H), 1.28 (s, 1H), 1.16 (s, 1H), 0.99 (s, 1H), 0.94 (s, 2H), 0.80 (s, 3H). ¹³**C NMR (150 MHz, CDCl₃)** δ 173.8, 150.1, 144.1, 142.2, 141.9, 131.4, 128.7, 127.0, 125.9, 125.8, 125.3, 119.9, 119.6, 115.8, 77.3, 77.1, 76.9, 48.8, 48.2, 34.9, 34.3, 32.9, 31.9, 26.0, 25.94, 25.92, 22.1.

6-(cyclohexylmethyl)-3-ethyl-5-methylbenzo[**4,5**]imidazo[**2,1-a**]isoquinolin-**6(5H)-one (5)**^[5], white solid (45.8 mg, 41%). ¹H NMR (600 MHz, CDCl₃) δ 8.44 – 8.34 (m, 2H), 7.82 (d, J = 7.6 Hz, 1H), 7.51 – 7.41 (m, 2H), 7.33 (d, J = 8.0 Hz, 1H), 7.26 (s, 1H), 2.77 (d, J = 7.8 Hz, 2H), 2.46 (d, J = 14.2 Hz, 1H), 2.08 – 2.04 (m, 1H), 1.66 (s, 3H), 1.48 – 1.44 (m, 1H), 1.40 (s, 2H), 1.31 (t, J = 7.7 Hz, 3H), 1.25 (s, 2H), 1.18 (s, 1H), 0.98 (s, 1H), 0.94 (d, J = 10.1 Hz, 1H), 0.81 (d, J = 8.1 Hz, 3H). ¹³C NMR (150 MHz, CD Cl₃) δ 173.8, 150.1, 148.4, 144.1, 142.0, 131.4, 127.5, 126.0, 125.9, 125.8, 125.3, 120.1, 119.6, 115.8, 77.3, 77.1, 76.9, 48.8, 48.4, 34.9, 34.3, 33.0, 31.8, 29.3, 26.0, 25.94, 25.90, 15.5.

5-(cyclohexylmethyl)-3-methoxy-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (**6**)^[5], white solid (106.6 mg, 95%). ¹**H NMR (600 MHz, CDCl**₃) δ 8.56 (d, J = 8.2 Hz, 1H), 8.42 – 8.37 (m, 1H), 8.15 (d, J = 1.4 Hz, 1H), 8.15 – 8.15 (m, 2H), 7.89 – 7.83 (m, 1H), 7.51 – 7.44 (m, 2H), 4.00 (s, 3H), 2.50 (d, J = 14.4 Hz, 1H), 2.13 (d, J = 14.4 Hz, 1H), 1.70 (s, 3H), 1.47 – 1.37 (m, 3H), 1.24 – 1.15 (m, 2H), 0.96 – 0.90 (m, 3H), 0.84 – 0.76 (m, 3H). ¹³**C NMR (150 MHz, CDCl**₃) δ 173.0, 166.3, 148.8, 144.1, 142.1, 132.7, 131.5, 128.4, 128.1, 126.4, 126.14, 126.07, 120.10, 115.9, 77.2, 77.0, 76.8, 52.6, 48.9, 48.5, 35.0, 34.2, 33.0, 31.6, 25.9.

3-bromo-5-(cyclohexylmethyl)-5-methylbenzo[**4**,**5**]imidazo[**2**,**1-a**]isoquinolin-**6**(**5H**)-one (**7**)^[5], white solid (62.2 mg, 49%). ¹**H NMR (600 MHz, CDCl**₃) ¹**H** NMR (600 MHz, Chlorof orm-*d*) δ 8.43 - 8.30 (m, 2H), 7.83 (d, *J* = 5.6 Hz, 1H), 7.66 - 7.57 (m, 2H), 7.46 (s, 2H), 2.49 (d, *J* = 14.5 Hz, 1H), 2.04 - 1.97 (m, 1H), 1.66 (s, 3H), 1.49 (s, 1H), 1.43-1.

39 (m, 2H), 1.25 (s, 3H), 0.98 – 0.95 (m, 2H), 0.84 – 0.81 (m, 3H). ¹³C NMR (150 M Hz, CDCl₃) δ 172.7, 149.0, 144.0, 143.7, 131.4, 131.1, 129.8, 127.5, 126.3, 126.1, 125.8, 121.6, 119.8, 115.8, 77.3, 77.1, 76.9, 48.8, 48.3, 34.9, 34.2, 32.9, 31.8, 29.7, 25.94, 25.87.

Methyl 5-(cyclohexylmethyl)-5-methyl-6-oxo-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoli ne-3-carboxylate (8)^[4], white solid (59.2 mg, 49%). ¹H NMR (600 MHz, CDCl₃) δ 8.56 (d, J = 8.1 Hz, 1H), 8.39 (d, J = 4.8 Hz, 1H), 8.13 (d, J = 14.2 Hz, 2H), 7.86 (s, 1H), 7.50 – 7.45 (m, 2H), 3.99 (s, 3H), 2.52 – 2.48 (d, 8.1 Hz, 1H), 2.14 (d, J = 14.1 Hz, 1 H), 1.69 (s, 3H), 1.44 (d, J = 10.6 Hz, 1H), 1.39 (t, J = 13.0 Hz, 2H), 1.25 (s, 1H), 1.1 4 (s, 1H), 0.94 – 0.89 (m, 3H), 0.81 – 0.77 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 1 73.1, 166.3, 148.8, 144.1, 142.0, 132.7, 131.5, 128.4, 128.1, 126.4, 126.2, 126.1, 120.1, 11 5.9, 77.3, 77.1, 76.8, 52.7, 48.8, 48.5, 35.0, 34.2, 32.9, 31.7, 29.7, 25.92, 25.90, 25.85.

ethyl 5-(cyclohexylmethyl)-5-methyl-6-oxo-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline-**3-carboxylate (9),** white solid (68.7 mg, 55%), m.p. 165-166 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.56 (d, J = 8.0 Hz, 1H), 8.45 – 8.35 (m, 1H), 8.16 (s, 1H), 8.13 (d, J = 7.8 Hz, 1H), 7.87 (s, 1H), 7.48 (s, 2H), 4.46 (s, 2H), 2.59 – 2.44 (m, 1H), 2.14 (d, J = 14.6 Hz, 1H), 1.71 (s, 3H), 1.46 (s, 4H), 1.40 (t, J = 12.7 Hz, 2H), 1.26 (s, 1H), 1.16 (d, J = 8.7 Hz, 1H), 1.02 – 0.89 (m, 3H), 0.85 – 0.79 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 173.1, 165.8, 148.8, 144.1, 142.0, 133.0, 131.5, 128.4, 128.1, 126.3, 126.1, 126.0, 120.1, 115.9, 77.3, 77.1, 76.8, 61.6, 48.8, 48.5, 35.0, 34.2, 32.9, 31.7, 25.9, 14.4. HRMS (APCI) m/z: [M + H]⁺ calculated for C₂₆H₂₉N₂O₃+417.2173, Found 417.2170.

(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 5-(cyclohexylmethyl)-5-methyl-6-oxo-5,6-dihydr obenzo[4,5]imidazo[2,1-a]isoquinoline-3-carboxylate (10)^[4], white solid (56.9 mg, 36%). ¹ H NMR (600 MHz, CDCl₃) δ 8.55 (d, J = 7.2 Hz, 1H), 8.40 (d, J = 4.8 Hz, 1H), 8.14 – 8.10 (m, 2H), 7.87 (d, J = 5.3 Hz, 1H), 7.48 (d, J = 3.3 Hz, 2H), 4.99 (t, J = 11.3 H z, 1H), 2.59 – 2.44 (m, 1H), 2.20 – 2.13 (m, 2H), 2.10 – 1.96 (m, 1H), 1.76 (s, 2H), 1. 70 (s, 3H), 1.63 – 1.61 (m, 3H), 1.47 (s, 1H), 1.42 – 1.40 (m, 2H), 1.29 – 1.26 (m, 3 H), 1.18 – 1.15 (m, 1H), 0.96 (s, 9H), 0.84 – 0.79 (m, 6H). ¹³C NMR (150 MHz, CDC I₃) δ 173.5, 165.7, 149.2, 144.4, 142.4, 133.8, 133.6, 131.8, 128.7, 128.6, 128.5, 128.4, 12 6.4, 120.4, 116.3, 77.6, 77.4, 77.2, 76.1, 48.8, 47.6, 41.2, 35.2, 34.6, 34.5, 33.3, 32.4, 31. 8, 30.1, 27.2, 27.0, 26.2, 24.0, 22.4, 21.1, 17.2, 17.0.

5-(cyclohexylmethyl)-5-methyl-3-(methylsulfonyl)benzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)one (11)^[2], white solid (95.3 mg, 75%). ¹H NMR (600 MHz, CDCl₃) δ 8.71 (d, J = 7.6 Hz, 1H), 8.40 (d, J = 4.3 Hz, 1H), 8.06 (s, 1H), 8.03 (d, J = 8.6 Hz, 1H), 7.89 (s, 1H), 7.51 (d, J = 3.3 Hz, 2H), 3.15 (s, 3H), 2.53 (d, J = 14.1 Hz, 1H), 2.12 (d, J = 14.3 Hz, 1H), 1.72 (s, 3H), 1.48 – 1.38 (m, 3H), 1.29 – 1.15 (m, 3H), 0.95 – 0.94 (m, 2H), 0.8 5 – 0.75 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 172.2, 147.8, 144.0, 143.2, 142.8, 13 1.4, 127.4, 127.2, 126.6, 126.4, 126.3, 126.0, 120.3, 116.0, 77.3, 77.1, 76.9, 48.8, 48.7, 4 4.5, 35.1, 34.2, 33.0, 31.5, 25.9, 25.83, 25.77.

N-(5-(cyclohexylmethyl)-5-methyl-6-oxo-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-3-y I)acetamide (12)^[5], white solid (79.4 mg, 66%). ¹H NMR (600 MHz, CDCl₃) δ 8.42 (d, J = 8.5 Hz, 1H), 8.36 (d, J = 7.6 Hz, 1H), 7.91 (s, 1H), 7.80 (d, J = 9.5 Hz, 1H), 7.52 (s, 1H), 7.47 (d, J = 9.1 Hz, 1H), 7.42 (d, J = 9.1 Hz, 1H), 2.51 – 2.43 (m, 1H), 2.26 (s, 3H), 2.06 (d, J = 14.7 Hz, 1H), 1.66 (s, 3H), 1.47 – 1.40(d, J = 39.0 Hz, 2H), 1.29 (d, J = 11.3Hz, 2H), 1.17 (s, 1H), 1.02 (s, 1H), 0.94 – 0.91 (m, 2H), 0.82 – 0.80 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 173.5, 168.6, 149.6, 143.4, 141.1, 131.4, 126.9, 125.9, 125.4, 119.5 118.7, 117.0., 115.8, 77.3, 77.1, 76.8, 48.8, 48.6, 34.9, 34.2, 32.9, 31.9, 29.7, 25.9, 25.0.

5-(cyclopropylmethyl)-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (13)^[3], white solid (51.6 mg, 57%). ¹H NMR (600 MHz, CDCl₃) δ 8.49 (d, J = 7.9 Hz, 1H), 8.38 (d, J = 6.9 Hz, 1H), 7.83 (d, J = 6.9 Hz, 1H), 7.58 (t, J = 8.2 Hz, 1H), 7.50 (d, J = 8. 1 Hz, 2H), 7.45 - 7.41 (m, 2H), 2.20 - 2.16 (m, 1H), 2.02 - 1.99 (m, 1H), 1.77 (s, 3 H), 0.20 - 0.13 (m, 1H), 0.19 - 0.14 (m, 1H), -0.04 - -0.10 (m, 2H), -0.21 - -0.25 (m, 1H).
¹³C NMR (150 MHz, CDCl₃) δ 173.8, 150.3, 144.2, 142.2, 131.8, 131.6, 127.8, 12 6.4, 125.9, 125.7, 123.4, 119.9, 115.7, 77.4, 77.2, 77.0, 49.9, 49.7, 27.0, 7.00, 4.0, 3.8.

5-(cyclobutylmethyl)-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (14)^[3], white solid (42.7 mg, 45%). ¹H NMR (600 MHz, CDCl₃) δ 8.47 (d, J = 7.6 Hz, 1H), 8.36 (d, J = 7.2 Hz, 1H), 7.82 (d, J = 7.3 Hz, 1H), 7.60 - 7.53 (m, 1H), 7.47 (t, J = 7.1 Hz, 2H), 7.43 (pd, J = 7.3, 1.3 Hz, 2H), 2.47 (m, 1H), 2.08 (m, 1H), 1.88 – 1.83 (m, 1H), 1.74 (s, 3H), 1.51 – 1.42 (m, 5H), 1.33 – 1.27 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 173.3, 150.0, 144.1, 141.8, 131.6, 131.4, 127.6, 126.5, 125.82, 125.75, 125.5, 122.9, 119. 8, 115.7, 77.3, 77.0, 76.8, 51.3, 48.6, 32.9, 28.9, 28.5, 27.9, 18.6.

5-(cyclopentylmethyl)-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (15)^[3], white solid (54.5 mg, 55%). ¹H NMR (600 MHz, CDCl₃) δ 8.49 (d, J = 8.1 Hz, 1H), 8.39 (d, J = 7.3 Hz, 1H), 7.83 (d, J = 7.6 Hz, 1H), 7.57 (t, J = 7.6 Hz, 1H), 7.48 (d, J = 8.0 Hz, 2H), 7.43 (q, J = 7.2 Hz, 2H), 2.54 – 2.51 (m, 1H), 2.20 – 2.17 (m, 1H), 1.73 (s, 3 H), 1.40 – 1.29 (m, 3H), 1.25 – 1.16 (m, 4H), 0.98 – 0.92 (m, 1H), 0.83 – 0.76 (m, 1 H). ¹³C NMR (150 MHz, CDCl₃) δ 173.6, 149.9, 144.1, 142.1, 131.6, 131.4, 127.6, 126. 6, 125.9, 125.5, 122.8, 119.8, 115.8, 77.3, 77.0, 76.8, 49.2, 49.1, 37.5, 33.6, 32.4, 30.1, 2 4.9, 24.6.

5-methyl-5-((tetrahydro-2H-pyran-4-yl)methyl)benzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-o ne (16)^[5], white solid (55.3 mg, 53%). ¹H NMR (600 MHz, CDCl₃) δ 8.50 (d, J = 7.8, Hz, 1H), 8.38 (d, J = 6.9 Hz, 1H), 7.84 (d, J = 6.9 Hz, 1H), 7.60 – 7.57 (m, 1H), 7.5 1 – 7.47 (m, 2H), 7.47 – 7.43 (m, 2H), 3.75 – 3.61 (m, 2H), 3.03 (t, J = 11.6 Hz, 1H), 2.97 (t, J = 11.5 Hz, 1H), 2.56 – 2.52 (m, 1H), 2.11 (d, J = 14.4 Hz, 1H), 1.69 (s, 3H), 1.26 – 1.21 (m, 2H), 1.17 – 1.03 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 173.2, 149. 6, 144.1, 141.6, 131.8, 131.4, 127.8, 126.5, 126.1, 126.0, 125.7, 122.6, 119.8, 115.8, 77.3, 77.0, 76.8, 67.5, 48.5, 48.2, 33.8, 32.9, 32.5, 31.7.

5-(2-ethylbutyl)-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (17)^[3], yellow oil (59.9 mg, 60%). ¹H NMR (600 MHz, CDCl₃) 1H NMR (600 MHz, Chloroform-d) δ 8.5 1 – 8.46 (m, 1H), 8.40 – 8.34 (m, 1H), 7.83 (d, J = 7.4 Hz, 1H), 7.57 (t, J = 7.5 Hz, 1H), 7.50 – 7.41 (m, 4H), 2.42 – 2.39 (m, 1H), 2.02 – 1.99 (m, 1H), 1.73 (s, 3H), 0.99 – 0.88 (m, 5H), 0.59 – 0.53 (m, 5H). ¹³C NMR (150 MHz, CDCl₃) δ 173.5, 149.9, 144. 1, 141.9, 131.9, 131.6, 127.6, 126.7, 125.85, 125.82, 125.5, 122.9, 119.7, 115.7, 77.2, 77.0, 76.8, 48.7, 46.4, 37.3, 29.9, 25.8, 25.3, 10.3, 10.0.

6-isobutyl-5-methylbenzo[**4,5**]**imidazo**[**2,1-a**]**isoquinolin-6(5H)-one** (**18**)^[3], yellow oil (64.8 mg, 71%). ¹**H NMR (600 MHz, CDCl₃)** δ 8.50 (d, J = 7.6 Hz, 1H), 8.39 (d, J = 7.2 H z, 1H), 7.83 (d, J = 7.1 Hz, 1H), 7.57 (t, J = 7.6 Hz, 1H), 7.51 – 7.41 (m, 4H), 2.48 – 2.44 (m, 1H), 2.10 – 2.06 (m,f 1H), 1.69 (s, 3H), 1.33 – 1.27 (m, 1H), 0.63 (d, J = 6.7 Hz, 3H), 0.57 (d, J = 6.6 Hz, 3H). ¹³**C NMR (150 MHz, CDCl₃)** δ 173.6, 149.8, 144.1, 141.8, 131.6, 131.4, 127.6, 126.6, 126.0, 125.9, 125.5, 122.8, 119.8, 115.8, 77.3, 77.0, 76. 8, 50.6, 48.6, 31.4, 25.7, 23.9, 22.4.

5-methyl-5-(4-methylphenethyl)benzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (19)^[6], white solid (56.2 mg, 51%). ¹H NMR (600 MHz, CDCl₃) δ 8.51 (d, J = 7.0 Hz, 1H), 8.27 (d, J = 7.2 Hz, 1H), 7.81 (d, J = 7.3 Hz, 1H), 7.62 (t, J = 8.2 Hz, 1H), 7.52 (d, J = 7.5 Hz, 2H), 7.44 - 73.38 (m, 3H), 6.85 (d, J = 7.8 Hz, 2H), 6.77 (d, J = 7.9 Hz, 2H), 2.85 - 2.79 (m, 1H), 2.37 - 2.14 (m, 4H), 2.08 (s, 3H), 1.75 (s, 1H), 1.73 (s, 3H). ¹³C

NMR (150 MHz, CDCl₃) δ 173.0, 149.8, 144.0, 141.4, 136.8, 135.7, 131.9, 131.3, 128.8, 128.1, 127.8, 126.1, 126.0, 125.8, 125.4, 123.3, 119.7, 115.7, 77.3, 77.0, 76.8, 49.1, 44.3, 31.2, 29.7, 29.0, 20.8.

5-methyl-5-(3-phenylpropyl)benzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (20)^[2], white so lid (59.3 mg, 54%). ¹H NMR (600 MHz, CDCl₃) δ 8.47 (d, J = 7.8 Hz, 1H), 8.37 (d, J = 6.6 Hz, 1H), 7.81 (d, J = 6.5 Hz, 1H), 7.55 – 7.52 (m, 1H), 7.48 – 7.45 (m, 1H), 7. 44 – 7.41 (m, 2H), 7.36 (d, J = 7.7 Hz, 1H), 7.17 (t, J = 7.4 Hz, 2H), 7.11 (t, J = 7.3 Hz, 1H), 6.95 (d, J = 7.2 Hz, 2H), 2.55 – 2.50 (m, 1H), 2.45 – 2.41 (m, 1H), 2.03 – 1. 98 (m, 1H), 1.74 (s, 1H), 1.69 (s, 3H), 1.36 – 1.29 (m, 1H), 1.19 – 1.11 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 173.3, 149.9, 144.1, 141.6, 141.2, 131.9, 131.3, 128.29, 128.2 7, 128.25, 127.7, 126.0, 125.92, 125.90, 125.6, 123.0, 119.8, 115.7, 77.3, 77.1, 76.9, 49.4, 42.2, 35.6, 29.2, 26.6.

5-ethyl-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (21)^[3], white solid (53.8 m g, 65%). ¹H NMR (300 MHz, CDCl₃) δ 8.52 – 8.45 (m, 1H), 8.40 – 8.33 (m, 1H), 7.8 6 – 7.79 (m, 1H), 7.61 – 7.55 (m, 1H), 7.52 – 7.40 (m, 4H), 2.51 – 2.39 (m, 1H), 2.06 – 1.96 (m, 1H), 1.74 (s, 3H), 0.58 (t, J = 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 173.4, 150.0, 144.1, 141.6, 131.9, 131.3, 127.7, 126.1, 125.9, 125.8, 125.5, 123.3, 119.8, 1 15.7, 77.5, 77.0, 76.6, 50.1, 36.4, 28.3, 9.6.

5-methyl-5-propylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (22)^[3], white solid (53.9 mg, 62%). ¹H NMR (300 MHz, CDCl₃) δ 1H NMR (300 MHz, Chloroform-d) δ 8.51 – 8.44 (m, 1H), 8.38 – 8.35 (m, 1H), 7.84 – 7.80 (m, 1H), 7.63 – 7.53 (m, 1H), 7.51 – 7. 39 (m, 4H), 2.47 – 2.29 (m, 1H), 2.00 – 1.90 (m, 1H), 1.73 (s, 3H), 1.01 – 0.81 (m, 2 H), 0.74 (t, J = 7.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 173.6, 150.4, 144.2, 142.0, 132.0, 131.4, 127.7, 126.2, 126.0, 125.9, 125.6, 123.1, 119.9, 115.8, 77.6, 77.2, 76.7, 49.6, 45.7, 28.8, 18.6, 14.1.

5-methyl-5-neopentylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (23)^[3], white solid (38. 7 mg, 41%). ¹H NMR (600 MHz, CDCl₃) δ 8.49 (d, J = 7.7 Hz, 1H), 8.39 (d, J = 8.3 Hz, 1H), 7.83 (d, J = 7.4 Hz, 1H), 7.53 (t, J = 8.5 Hz, 2H), 7.49 – 7.41 (m, 3H), 2.64 (d, J = 14.5 Hz, 1H), 2.17 (d, J = 14.5 Hz, 1H), 1.71 (s, 3H), 0.54 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 173.5, 149.8, 144.1, 142.0, 131.5, 131.2, 127.64, 127.57, 125.9, 125. 5, 122.4, 119.7, 115.8, 77.2, 77.0, 76.8, 55.3, 47.7, 33.1, 32.0, 30.8.

5-(2,2-dimethylbutyl)-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (24)^[3], white solid (72.7 mg, 73%). ¹H NMR (600 MHz, CDCl₃) δ 8.49 (d, J = 7.7 Hz, 1H), 8.39 (d, J = 7.7 Hz, 1H), 7.83 (d, J = 7.7 Hz, 1H), 7.53 (d, J = 6.4 Hz, 2H), 7.48 – 7.41 (m, 3H), 2.61 (d, J = 14.5 Hz, 1H), 2.16 (d, J = 14.5 Hz, 1H), 1.71 (s, 3H), 1.01 – 0.95 (m, 1H), 0.93 – 0.87 (m, 1H), 0.68 (t, J = 7.4 Hz, 3H), 0.48 (s, 3H), 0.36 (s, 3H). ¹³C N MR (150 MHz, CDCl₃) δ 173.5, 149.8, 144.1, 142.2, 131.5, 131.1, 127.6, 127.5, 125.89, 125.86, 125.5, 122.4, 119.7, 115.8, 77.2, 77.0, 76.8, 53.2, 47.5, 36.6, 34.5, 33.2, 27.6, 26.

5-(((3r,5r,7r)-adamantan-1-yl)methyl)-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-o ne (25)^[3], white solid (99.8 mg, 84%). ¹H NMR (600 MHz, CDCl₃) δ 8.49 (d, J = 7.7 Hz, 1H), 8.40 (d, J = 8.4 Hz, 1H), 7.84 (d, J = 8.2 Hz, 1H), 7.52 (s, 2H), 7.50 – 7.42 (m, 3H), 2.51 (d, J = 14.6 Hz, 1H), 2.07 (d, J = 14.6 Hz, 1H), 1.67 (s, 3H), 1.63 (s, 3 H), 1.43 (d, J = 12.0 Hz, 3H), 1.30 (d, J = 11.6 Hz, 3H), 1.16 – 1.08 (m, 6H). ¹³C NM R (150 MHz, CDCl₃) δ 173.5, 149.8, 144.1, 142.3, 131.5, 131.1, 127.6, 125.9, 125.5, 12 2.1, 119.7, 115.9, 77.2, 77.0, 76.8, 56.2, 46.9, 43.5, 36.5, 34.2, 33.7, 28.4.

5-methyl-5-(((1s,3R,5S,7s)-4-oxoadamantan-1-yl)methyl)benzo[4,5]imidazo[2,1-a]isoquinolin -6(5H)-one (26)^[3], white solid (61.5 mg, 50%). ¹H NMR (300 MHz, CDCl₃) δ 8.50 (d, J = 7.0 Hz, 1H), 8.38 (d, J = 6.7 Hz, 1H), 7.84 (d, J = 6.7 Hz, 1H), 7.56 – 7.45 (m, 5 H), 2.64 (d, J = 14.6 Hz, 1H), 2.24 (d, J = 16.5 Hz, 2H), 2.15 – 2.11 (m, 1H), 1.80 (s, 1H), 1.68 (s, 6H), 1.62 – 1.53 (m, 2H), 1.52 – 1.38 (m, 3H), 1.33 – 1.25 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 217.6, 173.2, 141.6, 131.5, 128.1, 127.4, 126.30, 126.25, 125. 9, 122.2, 120.0, 116.0, 77.6, 77.2, 76.7, 53.7, 47.0, 46.4, 46.2, 45.1, 44.4, 41.8, 38.34, 38. 31, 34.2, 33.9, 27.7.

5-(((1s,3s,5R,7S)-3-hydroxyadamantan-1-yl)methyl)-5-methylbenzo[4,5]imidazo[2,1-a]isoqui nolin-6(5H)-one (27)^[3], white solid (68.1 mg, 55%). ¹H NMR (300 MHz, CDCl₃) δ 8.53

- 8.46 (m, 1H), 8.43 - 8.34 (m, 1H), 7.88 - 7.80 (m, 1H), 7.57 - 7.41 (m, 5H), 2.60 (d, J = 14.6 Hz, 1H), 2.14 (d, J = 14.6 Hz, 1H), 1.89 - 1.84 (m, 2H), 1.67 (s, 3H), 1.43 - 1.26 (m, 5H), 1.16 - 0.93 (m, 7H). ¹³C NMR (75 MHz, CDCl₃) δ 173.4, 149.8, 144.1, 142.1, 131.5, 131.4, 127.9, 127.6, 126.1, 126.0, 125.8, 122.1, 119.9, 116.0, 77.6, 77.2, 7 6.7, 68.6, 55.0, 51.7, 47.0, 44.6, 44.1, 41.7, 41.0, 37.8, 35.0, 33.9, 30.7, 30.5.

7. Spectra of prepared compounds

¹³C NMR (150 MHz, CDCl₃) spectrum of **3**

 $^1\mathrm{H}$ NMR (600 MHz, CDCl₃) spectrum of 4

¹³C NMR (150 MHz, CDCl₃) spectrum of 4

¹H NMR (600 MHz, CDCl₃) spectrum of 5

¹³C NMR (150 MHz, CDCl₃) spectrum of 5

¹H NMR (600 MHz, CDCl₃) spectrum of 6

¹³C NMR (150 MHz, CDCl₃) spectrum of 6

¹H NMR (600 MHz, CDCl₃) spectrum of 7

 ^{13}C NMR (150 MHz, CDCl_3) spectrum of 7

¹H NMR (600 MHz, CDCl₃) spectrum of 8

 ^{13}C NMR (150 MHz, CDCl₃) spectrum of $\boldsymbol{8}$

¹H NMR (600 MHz, CDCl₃) spectrum of 9

¹³C NMR (150 MHz, CDCl₃) spectrum of 9

¹H NMR (600 MHz, CDCl₃) spectrum of 10

 $^{13}\mathrm{C}$ NMR (150 MHz, CDCl_3) spectrum of 10

¹H NMR (600 MHz, CDCl₃) spectrum of 11

 ^{13}C NMR (150 MHz, CDCl_3) spectrum of 11

¹H NMR (600 MHz, CDCl₃) spectrum of 13

 $^{13}\mathrm{C}$ NMR (150 MHz, CDCl_3) spectrum of 13

¹H NMR (600 MHz, CDCl₃) spectrum of 14

 ^{13}C NMR (150 MHz, CDCl_3) spectrum of 14

¹H NMR (600 MHz, CDCl₃) spectrum of 15

¹³C NMR (150 MHz, CDCl₃) spectrum of 15

¹H NMR (600 MHz, CDCl₃) spectrum of 16

 $^{13}\mathrm{C}$ NMR (150 MHz, CDCl_3) spectrum of 16

¹H NMR (600 MHz, CDCl₃) spectrum of 17

¹³C NMR (150 MHz, CDCl₃) spectrum of 17

¹H NMR (600 MHz, CDCl₃) spectrum of 18

¹³C NMR (150 MHz, CDCl₃) spectrum of 18

¹H NMR (600 MHz, CDCl₃) spectrum of 20

¹³C NMR (150 MHz, CDCl₃) spectrum of 20

¹H NMR (600 MHz, CDCl₃) spectrum of 21

 ^{13}C NMR (150 MHz, CDCl_3) spectrum of 21

¹H NMR (600 MHz, CDCl₃) spectrum of 22

 ^{13}C NMR (150 MHz, CDCl₃) spectrum of 22

¹H NMR (600 MHz, CDCl₃) spectrum of 23

 ^{13}C NMR (150 MHz, CDCl_3) spectrum of 23

¹H NMR (600 MHz, CDCl₃) spectrum of 25

 ^{13}C NMR (150 MHz, CDCl_3) spectrum of 25

¹H NMR (300 MHz, CDCl₃) spectrum of 26

¹³C NMR (75 MHz, CDCl₃) spectrum of 26

¹H NMR (300 MHz, CDCl₃) spectrum of 27

¹³C NMR (75 MHz, CDCl₃) spectrum of 27

8. References

[1] D. R. Stuart, E. Villemure, K. Fagnou, J. Am. Chem. Soc. 2007, 129, 12072.

[2] Y. Yuan, Y. F. Zheng, B. Z. Xu, J. P. Liao, F. X. Bu, S. C. Wang, J. G. Hu, A. W. Lei, *ACS Catal.* **2020**, *10*, 6676.

[3] K. Sun, S. J. Li, X. L. Chen, Y. Liu, X. Q. Huang, D. H. Wei, L. B. Qu, Y. F. Zhao, B. Yu, *Chem. Commun.* **2019**, *55*, 2861.

[4] Z. M. Tan, Y. Y Jiang, K. Xu, C. C. Zeng, J Catal. 2023, 417, 473.

[5] B. Zhao, G. B. Hammond, B. Xu, J. Org. Chem. 2021, 86, 12851.

[6] J. Z. Li, L. Mei, X. E. Cai, C. C. Zhang, T. T. Cao, X. J. Huang, Y. L. Liu, W. T. Wei, *Adv. Synth. Catal.* **2022**, *364*, 2080.