# **Supporting Information**

# Spontaneously dual built-in electric fields in S-scheme heterojunction for enhanced photocatalytic H<sub>2</sub>O<sub>2</sub> production

Junxian Huang<sup>a#</sup>, Haiyang Shi<sup>a#</sup>, Xuefei Wang<sup>a\*</sup>, Ping Wang<sup>a</sup>, Feng Chen<sup>a</sup>, Huogen

Yu<sup>b\*</sup>

<sup>a</sup> School of Materials Science and Engineering, and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China

<sup>b</sup> Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China

University of Geosciences, 388 Lumo Road, Wuhan, 430074, P. R. China

\* Corresponding authors: xuefei@whut.edu.cn and yuhuogen@cug.edu.cn

#### **SI-1** Characterization

The crystal structure was researched by an X-ray diffractometer (XRD, Rigaku Ultima III, Japan). The morphology of photocatalyst was observed by a field emission scanning electron microscope (FESEM, JSM-7500F, Japan) and a high-resolution transmission electron microscope (HRTEM, Thermo Fisher, USA). The chemical state of element was researched by an X-ray photoelectron spectroscopy (XPS, KRATOA XSAM800, UK). The Ultraviolet visible diffuse reflectance spectra were attained by a UV-2450 Shimadzu spectrophotometer. The time-resolved photoluminescence (TR-PL) spectra was tested by a fluorescence spectrophotometer (F-7000). The electrochemical transient photocurrent response (i-t curves) and electrochemical impedance spectroscopy (EIS) were performed by a CHI660E electrochemical workstation. Furthermore, the Mott-Schottky plots were performed to evaluate the flat band potentials of the photocatalytic materials, which is based on the data of electrochemical measurements operated at a constant frequency of 1 kHz in darkness. Electron paramagnetic resonance (EPR) spectra were obtained on an EPR spectrometer (MEX-nano, Bruker, UK) with a modulation frequency of 100 kHz and a microwave power of 25 mW.

## SI-2 The procedures of photo-electrochemical test

The transient photocurrent response was studied via employing a three-electrode CHI660E electrochemical apparatus in a Na<sub>2</sub>SO<sub>3</sub> electrolyte (0.5 M) with FTO glass (loading with photocatalysts), saturated calomel electrode and Pt plate as working electrode, reference electrode and counter electrode, respectively. The reaction system

can be measured with the LED irradiator (420 nm, 3 W) as light source. To compare the photocurrent density in same condition, The photocurrent responses (*i*–*t* curves) can be obtained at a +0.5 V bias potential during the repeated ON/OFF with a set time period of 60 s. A frequency from 0.001 to  $10^6$  Hz and amplitude of 0.01 V was used to conduct electrochemical impedance spectra.

## SI-3 The procedures of cycling H<sub>2</sub>O<sub>2</sub>-production test

In general, the repeating test of photocatalytic materials includes the centrifugation, washing, drying and re-dispersion of photocatalysts after finishing one cycle of test. However, in this work, to exclude the possible loss of photocatalysts, the resulting suspension solution was centrifugated, washed and directly re-dispersed for the following successive cycling test. In detail, 50 mg MnOOH/BiVO<sub>4</sub>/Cu<sub>2</sub>O sample was added into 50 mL solution of 0.1 M PBS. After bubbled with O<sub>2</sub> for 30 min, the above solution was irradiated by visible light under continuous stirring. The produced amount of H<sub>2</sub>O<sub>2</sub> was tested every 30 min by colorimetric method. After finishing 1st run, the above suspension solution was directly filtrated, washed and re-dispersed for H<sub>2</sub>O<sub>2</sub>-production test. In this case, the 2nd, 3rd, 4th and 5th runs were coherently tested under the same process.



Fig. S1 (A) Schematic diagram illustrating the controllable preparation of the MnOOH/BiVO<sub>4</sub>/Cu<sub>2</sub>O photocatalysts: (a) BiVO<sub>4</sub>/Cu<sub>2</sub>O and (b) MnOOH/BiVO<sub>4</sub>/Cu<sub>2</sub>O;
(B) SEM image and (C) TEM image of dark field of MnOOH/BiVO<sub>4</sub>/Cu<sub>2</sub>O

photocatalyst.



Fig. S2 SEM images of (A)  $BiVO_4/Cu_2O$  (2:1), (B)  $BiVO_4/Cu_2O$  (1:2) and (C)

BiVO<sub>4</sub>/Cu<sub>2</sub>O (1:5).



Fig. S3 Photocatalytic H<sub>2</sub>O<sub>2</sub> production of (a) MnOOH/BiVO<sub>4</sub>/Cu<sub>2</sub>O (2:1), (b)

MnOOH/BiVO<sub>4</sub>/Cu<sub>2</sub>O (1:2) and (a) MnOOH/BiVO<sub>4</sub>/Cu<sub>2</sub>O (1:5).



Fig. S4. (A) XRD pattern and (B) UV-vis spectra of the MnOOH/BiVO<sub>4</sub>/Cu<sub>2</sub>O

sample (a) before and (b) after 4 cyclic tests.



Fig. S5 High-resolution XPS spectra of (A) Bi 4f and (B) Cu 2p under darkness and

light irradiation.



Fig. S6 (A) Schematic diagram and (B) SEM image of MnOOH/BiVO<sub>4</sub>/Cu<sub>2</sub>O/Ag

photocatalyst.



Fig. S7  $H_2O_2$  concentration-absorbance standard curve.

|                                            | Maximum                              | H <sub>2</sub> O <sub>2</sub> formation |                                                              | $k_{\rm d}$ (min <sup>-1</sup> ) |
|--------------------------------------------|--------------------------------------|-----------------------------------------|--------------------------------------------------------------|----------------------------------|
| Photocatalysts                             | formed H <sub>2</sub> O <sub>2</sub> | rate                                    | k <sub>f</sub><br>(μmol·L <sup>-1</sup> ·min <sup>-1</sup> ) |                                  |
|                                            | $(\mu mol \cdot L^{-1})$             | $(\mu mol \cdot L^{-1} \cdot h^{-1})$   |                                                              |                                  |
| BiVO <sub>4</sub>                          | 6.95                                 | 6.95                                    | 0.18                                                         | 0.016                            |
| Cu <sub>2</sub> O                          | 5.49                                 | 5.49                                    | 0.62                                                         | 0.015                            |
| BiVO <sub>4</sub> /Cu <sub>2</sub> O       | 24.71                                | 24.71                                   | 2.92                                                         | 0.016                            |
| MnOOH/BiVO <sub>4</sub> /Cu <sub>2</sub> O | 112.17                               | 112.17                                  | 0.14                                                         | 0.016                            |

Table. S1. Comparisons of  $H_2O_2$  production on various photocatalysts.

Table S2 The fitted parameters obtained from decay curves of (a)  $\operatorname{BiVO}_4$ , (b)

|                                      |         |          |       |         |                       |        | Averag   |
|--------------------------------------|---------|----------|-------|---------|-----------------------|--------|----------|
| Sample                               | $	au_1$ | $A_1$    | $T_2$ | $A_2$   | <b>T</b> <sub>3</sub> | $A_3$  | e        |
|                                      |         |          |       |         |                       |        | lifetime |
| BiVO <sub>4</sub>                    | 0.45    | 14168.72 | 3.04  | 368.12  | 42.29                 | 7.54   | 2.53     |
| BiVO <sub>4</sub> /Cu <sub>2</sub> O | 0.62    | 9834.19  | 3.05  | 2374.94 | 13.11                 | 277.46 | 4.33     |
| Cu <sub>2</sub> O                    | 0.63    | 11458.81 | 3.16  | 1676.03 | 14.54                 | 165.85 | 3.77     |

BiVO<sub>4</sub>/Cu<sub>2</sub>O and (c) Cu<sub>2</sub>O.

The above fitted parameters are acquired via the following tri-exponential formulas:

$$\tau_a = (A_1\tau_1^2 + A_2\tau_2^2 + A_3\tau_3^2)/(A_1\tau_1 + A_2\tau_2 + A_3\tau_3)$$

where  $A_1$ ,  $A_2$  and  $A_3$  represent the tri-exponential factors, and  $\tau_1$ ,  $\tau_2$ ,  $\tau_3$  and  $\tau_a$  correspond to the lifetime in various stages (radiation and non-radiation) and average lifetime, respectively.