Electronic Supplementary Material (ESI) for Catalysis Science \& Technology.

Supplementary Information: Development of a multi-enzyme cascade for 2'3'-cGAMP synthesis from nucleosides

Martin Becker ${ }^{\text {b }}$, Isabel Nowak ${ }^{\text {b }}$, Katharina Hildebrand ${ }^{\text {b }}$, Stephan Lütz ${ }^{\text {b }}$ and Katrin Rosenthal ${ }^{* a}$
[a] Prof. Dr. K. Rosenthal
School of Science
Constructor University
Campus Ring 1, 28759 Bremen (Germany)
E-mail: krosenthal@constructor.university
[b] M. Becker, Isabel Nowak, Katharina Hildebrand, Prof. Dr. S. Lütz
Department of Biochemical and Chemical Engineering
Chair for Bioprocess Engineering, TU Dortmund University
Emil-Figge-Straße 66, 44227 Dortmund (Germany)

Content

1. Experimental data 3
1.1 Specific thscGAS activity 3
1.2 Temperature stability of ATP and GTP 4
1.3 Turnover numbers (TONs) 5
2. SDS gels 5
3. HPLC and LC-MS measurements 7
4. DNA sequences 8

1. Experimental data

1.1 Specific thscGAS activity

Figure S1: Determination of the specific thscGAS activity for the $\mathbf{2}^{\prime} \mathbf{3}^{\prime}$-cGAMP formation from guanosine
Progress of $2^{\prime} 3^{\prime}$-cGAMP-formation within the first 2 h using $0.08 \mathrm{mg} / \mathrm{mL}$ thscGAS in 1.5 mL Eppendorf tubes at $37{ }^{\circ} \mathrm{C}$ in biological triplicates. Samples were taken after 10, 20, 30, 45, 60, 90 and 120 min and analyzed by HPLC.

The specific enzyme activity of $43.0 \pm 13.7 \mathrm{mU} / \mathrm{mg}$ was calculated from the mean activity between the measuring points in the range between 20 min and 2 h .

Figure S2: Determination of the specific thscGAS activity for the $\mathbf{2 '}^{\prime} \mathbf{3}^{\prime}$-cGAMP formation from adenosine and guanosine
Progress of $2^{\prime} 3^{\prime}$-cGAMP formation within the first 2 h using $0.12 \mathrm{mg} / \mathrm{mL}$ thscGAS in 1.5 mL Eppendorf tubes at $37{ }^{\circ} \mathrm{C}$ in biological triplicates. Samples were taken after 10, 20, 30, 45, 60, 90 and 120 min and analyzed by HPLC.

The specific enzyme activity of $50.0 \pm 2.2 \mathrm{mU} / \mathrm{mg}$ was calculated from the mean activity between the measuring points in the range between 0 min and 2 h .

1.2 Temperature stability of ATP and GTP

Figure S3: Temperature stability of ATP at $60^{\circ} \mathrm{C}, 70^{\circ}, 80^{\circ} \mathrm{C}$.
In 1.5 mL Eppendorf tubes, 1 mL of 5 mM ATP in 50 mM TRIS- $\mathrm{HCl}, 40 \mathrm{mM} \mathrm{MgCl}{ }_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ activity buffer was incubated in duplicates at $60^{\circ} \mathrm{C}, 70^{\circ} \mathrm{C}$, and $80^{\circ} \mathrm{C}$. Samples were taken after $0,2,3.5,4.75,6,7.25$ and 24 h and analyzed by HPLC. The measured concentrations were normalized to the 0 h sample.

Figure S4: Temperature stability of GTP at $60^{\circ} \mathrm{C}, 70^{\circ}, 80^{\circ} \mathrm{C}$.
In 1.5 mL Eppendorf tubes, 1 mL of 5 mM GTP in 50 mM TRIS- $\mathrm{HCl}, 40 \mathrm{mM} \mathrm{MgCl} \mathrm{M}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ activity buffer was incubated in duplicates at $60^{\circ} \mathrm{C}, 70^{\circ} \mathrm{C}$, and $80^{\circ} \mathrm{C}$. Samples were taken after $0,2,3.5,4.75,6,7.25$ and 24 h and analyzed by HPLC. The measured concentrations were normalized to the 0 h sample.

1.3 Turnover numbers (TONs)

Table S1: TONs of the Guanosine Cascade
TONs were calculated for the indicated reaction conditions from the enzyme concentration and the difference between the initial and final product concentration of the assays. In the case of class III PPK2s, the transfer of a single phosphate group was considered separately.

Enzyme	TON
MjNK	1,751
ChPPK2 + EbPPK2	953
thscGAS	847

Table S2: TONs of the Nucleoside Cascade
TONs were calculated for the indicated reaction conditions from the enzyme concentration and the difference between the initial and final product concentration of the assays. In the case of class III PPK2s, the transfer of a single phosphate group was considered separately. In the case of ChPPK2, step 2 was not considered as no activity was observed. Only the first reaction step was considered for the SCADK and only steps three and four for the MjNK, as the corresponding substrates were consumed after these steps. For the calculations of EbPPK2 and ChPPK2 in the last two reaction steps, the consumption of AMP and GMP and the formation of 2'3'-cGAMP were considered.

Enzyme	TON
ScADK	7,365
ChPPK2 step 1	10,458
MjNK	527
ChPPK2 + EbPPK2 in step 3 and step 4	6,558
thscGAS	672

2. SDS gels

Figure S5: SDS-PAGE to verify protein purification using ScADK (37 kDa) as an example.
Order of lanes: lane M: PageRuler Prestained Protein Ladder \#26619, lane 1: filtered lysate after cell disruption, lane 2: IMAC flow-through, lane 3: purified enzyme after buffer exchange, lane 4: IMAC fraction 1, lane 5: IMAC fraction 2, lane 6: IMAC fraction 3, lane 7: IMAC fraction 4, lane 8: IMAC fraction 5.

Figure S6: SDS-PAGE of purified enzymes used for enzyme screening.
Order of lanes: lane M: PageRuler Prestained Protein Ladder \#26616, lane 1: ScADK (37 kDA), lane 2: AjPPK2 (58 kDa), lane 3: SmPPK2 (37 kDa), lane 4: MrPPK2 (32 kDa), lane 5: MjNK 2 (34 kDa), lane 6: EbPPK2 (35 kDa).

Figure S7: SDS-PAGE of all purified proteins used for the development of the enzyme cascades. The purified ChPPK2 was additionally used for enzyme screening.

Order of lanes: lane M: PageRuler Prestained Protein Ladder \#26616, lane 1: ScADK (37 kDA), lane 2: MjNK (34 kDa), lane 3: thscGAS (56 kDa), lane 4: AjPPK2 (58 kDa), lane 5: SmPPK2 (37 kDa), lane 6: EbPPK2 (35 kDa), lane 7: ChPPK2 (37 kDa), lane 8: MrPPK2 (32 kDa).

3. HPLC and LC-MS measurements

Figure S8: Illustrative HPLC chromatograms of standards and samples for 2'3'-cGAMP formation from guanosine.

Figure S9: Illustrative HPLC chromatograms of standards and samples for 2'3'-cGAMP formation from nucleosides.

Figure S10: LC-MS SIM measurements of 2'3'-cGAMP formation from nucleosides after $\mathbf{2 4} \mathbf{h}$ reaction.
The mass $675 \mathrm{~m} / \mathrm{z}$ was extracted. The signal with mass $675 \mathrm{~m} / \mathrm{z}$ corresponds to single ionized $2^{\prime} 3^{\prime}$-cGAMP and the signal at 338 to double ionized 2'3'-cGAMP.

4. DNA sequences

ScADK:

UniProt: P47143
ATGACCGCACCATTGGTAGTATTGGGTAACCCACTTTTAGATTTCCAAGCCGACGTCACGGCTGAATACCTGGC CAAGTATTCTCTAAAGGAAAACGACGCAATTTTGGTCGATGCCAAATCAGGCGATGCTAAGATGGCTATTTTTG ACGAGCTCTTACAGATGCCAGAAACAAAGCTTGTTGCAGGTGGTGCTGCTCAAAACACTGCTAGAGGGGCAG CATACGTTTTGGGCGCCGGCCAGGTGGTGTACTTCGGTTCCGTCGGTAAGGACAAGTTCAGCGAGAGATTGCT TAACGAAAACGAAAAAGCTGGTGTCAAGTCTATGTACCAAGTTCAAAATGATATTGGTACCGGTAAGTGTGCC GCATTAATCACTGGCCATAACCGGTCCTTGGTCACTGACTTGGGTGCTGCCAATTTCTTTACTCCAGACCACTTG GACAAGCATTGGGACTTGGTCGAAGCAGCTAAGCTCTTCTACATCGGTGGTTTCCACTTGACCGTGTCTCCAGA CGCTATCGTTAAGTTGGGCCAACATGCTAAAGAGAACAGCAAACCTTTCGTGTTGAACTTTAGTGCTCCTTTCA TTCCTCATGTCTTCAAAGACGCATTGGCCAGAGTTTTGCCTTATGCTACCGTCATCATCGCTAACGAATCGGAG GCCGAAGCCTTTTGCGACGCCTTCCAATTAGACTGTGCCAACACTGATTTGGAAGCTATTGCTCAAAGAATTGT CAAGGACTCTCCAGTTGAAAAGACTGTCATCTTCACCCACGGTGTCGAACCAACAGTGGTCGTGTCCTCCAAG GGTACCAGCACATATCCAGTCAAACCTTTGGACTCTTCTAAGATCGTCGACACCAACGGTGCTGGTGACGCCTT CGCTGGTGGCTTTATGGCTGGGTTGACTAAAGGTGAAGATTTGGAAACCTCTATTGACATGGGTCAATGGCTA GCTGCTTTGTCTATTCAAGAAGTTGGTCCCTCTTACCCTTCCGAAAAAATATCTTACTCTAAA

MjNK:

UniProt: Q57849

AGTGGGAATAAAAAAACTTGGTGTTAATTCAGAGCTTTTATCATGTGTTGGCTATGATTTTAAAAATAGTGGAT ATGAGAGGTATTTAAAGAATTTGGATATAAATATTTCTAAACTTTACTATTCTGAAGAAGAAGAAACACCAAAG GCATGGATATTTACAGACAAGGATAACAATCAGATAACTTTCTTTTTATGGGGAGCTGCTAAGCATTATAAGGA ACTAAACCCACCAAACTTCAATACAGAAATTGTCCATATAGCCACTGGAGACCCAGAGTTCAACTTAAAATGTG CAAAAAAAGCTTATGGAAACAATTTGGTCTCTTTCGACCCCGGACAGGACTTACCTCAATACTCAAAAGAAATG TTGTTGGAAATTATTGAGCATACAAACTTTTTATTTATGAATAAACATGAATTTGAGAGAGCATCTAATTTATTA AATTTTGAAATTGATGATTATTTAGAGAGGGTTGATGCCCTTATAGTAACAAAAGGTTCTAAGGGTAGTGTAAT ATACACTAAAGATAAAAAAATAGAAATTCCTTGTATTAAAGCAGGGAAAGTTATAGACCCAACAGGTGCTGGA GACAGCTATAGAGCTGGATTTTTATCTGCCTATGTCAAAGGGTATGATTTAGAGAAATGTGGTTTAATTGGTGC TGCAACTGCCTCATTTGTTGTTGAGGCAAAGGGATGCCAAACTAATTTACCAACATGGGATAAGGTTGTTGAG AGATTAGAAAAACACCGAATATAA

AjPPK2:

UniProt: Q83XD3
ATGGACACCGAAACCATTGCAAGCGCAGTTCTGAATGAAGAACAGCTGAGCCTGGATCTGATTGAAGCACAGT ATGCACTGATGAATACCCGTGATCAGAGCAATGCAAAAAGCCTGGTTATTCTGGTTAGCGGTATTGAACTGGC AGGTAAAGGTGAAGCAGTTAAACAGCTGCGTGAATGGGTTGATCCGCGTTTTCTGTATGTTAAAGCAGATCCG CCTCACCTGTTTAATCTGAAACAGCCGTTTTGGCAGCCGTATACCCGTTTTGTTCCTGCCGAAGGTCAGATTATG GTTTGGTTTGGTAATTGGTATGGTGATCTGCTGGCAACCGCAATGCATGCAAGCAAACCGCTGGATGATACCC TGTTTGATGAATATGTTAGCAACATGCGTGCCTTTGAACAGGATCTGAAAAATAACAATGTGGATGTGCTGAA AGTGTGGTTTGATCTGAGCTGGAAAAGCCTGCAGAAACGTCTGGATGACATGGATCCGAGCGAAGTTCATTG GCATAAACTGCATGGTCTGGATTGGCGTAACAAAAAACAGTATGATACGCTGCAAAAACTGCGTACCCGCTTT ACCGATGATTGGCAGATTATTGATGGTGAAGATGAAGATCTGCGCAACCATAATTTTGCACAGGCAATTCTGA CCGCACTGCGTCATTGTCCGGAACATGAAAAAAAAGCAGCACTGAAATGGCAGCAGGCACCGATTCCGGATAT TCTGACCCAGTTTGAAGTTCCGCAGGCAGAAGATGCAAACTATAAAAGCGAACTGAAAAAACTGACCAAACAG GTTGCAGATGCAATGCGTTGTGATGATCGTAAAGTTGTGATTGCGTTTGAAGGTATGGATGCAGCCGGTAAAG GCGGTGCAATTAAACGTATTGTTAAAAAACTGGATCCGCGTGAGTATGAGATTCATACCATTGCAGCACCGGA AAAATATGAACTGCGTCGTCCGTATCTGTGGCGTTTTTGGAGCAAACTGCAGAGTGATGATATCACCATTTTTG ATCGTACCTGGTATGGTCGTGTTCTGGTTGAACGTGTTGAAGGTTTTGCAACCGAAGTTGAATGGCAGCGTGC CTATGCAGAAATTAATCGCTTTGAAAAAAATCTGAGCAGCAGCCAGACCGTGCTGATCAAATTTTGGCTGGCA ATTGATAAAGATGAACAGGCAGCACGTTTTAAAGCACGTGAAAGCACACCGCATAAACGCTTTAAAATCACCG AAGAGGATTGGCGCAATCGTGATAAATGGGATGATTATCTGAAAGCCGCAGCAGATATGTTTGCACATACCGA TACCAGCTATGCACCGTGGTATATTATCAGCACCAATGATAAACAGCAAGCCCGTATTGAAGTTCTGCGTGCAA TCCTGAAACAACTGAAAGCGGATCGTGATACCGATTAA

SmPPK2:

UniProt: Q92SA6
ATGGACACCGAAACCATTGCAAGCGCAGTTCTGAATGAAGAACAGCTGAGCCTGGATCTGATTGAAGCACAGT ATGCACTGATGAATACCCGTGATCAGAGCAATGCAAAAAGCCTGGTTATTCTGGTTAGCGGTATTGAACTGGC AGGTAAAGGTGAAGCAGTTAAACAGCTGCGTGAATGGGTTGATCCGCGTTTTCTGTATGTTAAAGCAGATCCG CCTCACCTGTTTAATCTGAAACAGCCGTTTTGGCAGCCGTATACCCGTTTTGTTCCTGCCGAAGGTCAGATTATG GTTTGGTTTGGTAATTGGTATGGTGATCTGCTGGCAACCGCAATGCATGCAAGCAAACCGCTGGATGATACCC TGTTTGATGAATATGTTAGCAACATGCGTGCCTTTGAACAGGATCTGAAAAATAACAATGTGGATGTGCTGAA AGTGTGGTTTGATCTGAGCTGGAAAAGCCTGCAGAAACGTCTGGATGACATGGATCCGAGCGAAGTTCATTG GCATAAACTGCATGGTCTGGATTGGCGTAACAAAAAACAGTATGATACGCTGCAAAAACTGCGTACCCGCTTT ACCGATGATTGGCAGATTATTGATGGTGAAGATGAAGATCTGCGCAACCATAATTTTGCACAGGCAATTCTGA CCGCACTGCGTCATTGTCCGGAACATGAAAAAAAAGCAGCACTGAAATGGCAGCAGGCACCGATTCCGGATAT

Abstract

TCTGACCCAGTTTGAAGTTCCGCAGGCAGAAGATGCAAACTATAAAAGCGAACTGAAAAAACTGACCAAACAG GTTGCAGATGCAATGCGTTGTGATGATCGTAAAGTTGTGATTGCGTTTGAAGGTATGGATGCAGCCGGTAAAG GCGGTGCAATTAAACGTATTGTTAAAAAACTGGATCCGCGTGAGTATGAGATTCATACCATTGCAGCACCGGA AAAATATGAACTGCGTCGTCCGTATCTGTGGCGTTTTTGGAGCAAACTGCAGAGTGATGATATCACCATTTTTG ATCGTACCTGGTATGGTCGTGTTCTGGTTGAACGTGTTGAAGGTTTTGCAACCGAAGTTGAATGGCAGCGTGC CTATGCAGAAATTAATCGCTTTGAAAAAAATCTGAGCAGCAGCCAGACCGTGCTGATCAAATTTTGGCTGGCA ATTGATAAAGATGAACAGGCAGCACGTTTTAAAGCACGTGAAAGCACACCGCATAAACGCTTTAAAATCACCG AAGAGGATTGGCGCAATCGTGATAAATGGGATGATTATCTGAAAGCCGCAGCAGATATGTTTGCACATACCGA TACCAGCTATGCACCGTGGTATATTATCAGCACCAATGATAAACAGCAAGCCCGTATTGAAGTTCTGCGTGCAA TCСTGAAACAACTGAAAGCGGATCGTGATACCGATTAA

MrРРК2:

UniProt: A0A806DL21
ATGGGGTTCTGCAGCATAGAATTCCTGATGGGAGCCCAGATGAAAAAATACCGCGTTCAACCGGATGGTCGCT TTGAACTAAAGCGCTTCGATCCCGACGACACCAGCGCCTTTGAGGGGGGCAAGCAAGCGGCCCTGGAAGCCC TGGCTGTGCTCAACAGGCGTTTGGAGAAGCTGCAAGAGCTGCTGTATGCGGAAGGCCAGCACAAGGTACTGG TGGTGTTGCAGGCCATGGATGCGGGCGGCAAGGATGGCACCATCCGGGTGGTTTTCGACGGGGTAAACCCCA GCGGGGTGCGCGTGGCCAGTTTTGGTGTGCCCACCGAGCAGGAGCTGGCCCGCGACTACCTCTGGCGGGTGC ACCAGCAGGTGCCCCGCAAGGGTGAGCTGGTGATTTTCAACCGCTCCCACTACGAGGACGTGCTGGTGGTGC GGGTTAAAAACCTGGTGCCCCAACAGGTTTGGCAGAAGCGCTACCGCCACATCCGCGAGTTCGAGCGCATGCT GGCCGATGAGGGAACCACCATCCTCAAATTCTTCCTGCATATCTCCAAAGACGAGCAGCGCCAGCGGTTGCAG GAGCGCTTAGATAACCCCGAGAAGCGCTGGAAATTTCGTATGGGCGACCTCGAGGATCGCCGGCTTTGGGAC AGGTATCAAGAGGCCTATGAAGCAGCCATCCGCGAGACCAGCACCGAGTATGCCCCCTGGTATGTCATTCCGG CCAACAAGAACTGGTACCGCAACTGGCTGGTGAGCCACATCCTGGTAGAAACCCTGGAGGGCTTGGCGATGC AGTACCCCCAGCCCGAAACAGCCTCGGAGAAGATTGTGATCGAGTAG

EbPPK2:

UniProt: A0A3D5XRJ5
ATGATTAATATCTATAAAATCGATAAACTGAACAACTTCAACCTGAACAACCACAAAACCGATGATTATAGCCT GTGCAAAGATAAAGATACCGCACTGGAACTGACCCAGAAAAACATTCAGAAAATCTATGATTATCAGCAGAAG CTGTACGCCGAAAAGAAAGAAGGTCTGATTATTGCATTTCAGGCAATGGATGCAGCAGGTAAAGATGGCACC ATTCGTGAAGTTCTGAAAGCACTGGCACCGCAGGGTGTTCATGAAAAACCGTTTAAAAGCCCGAGCAGCACCG AACTGGCACATGATTATCTGTGGCGTGTTCATAATGCAGTTCCGGAAAAAGGTGAAATCACCATTTTTAACCGC AGCCACTATGAAGATGTGCTGATTGGTAAAGTGAAAGAACTGTACAAGTTCCAGAATAAAGCCGATCGCATTG ATGAAAACACCGTGGTTGATAATCGCTATGAGGATATTCGCAACTTCGAGAAATATCTGTATAATAATAGCGT G CGCATCATCAAAATCTTTCTGAACGTTAGCAAGAAAGAACAGGCAGAACGTTTTCTGAGCCGTATTGAAGAAC CGGAAAAGAACTGGAAATTTAGCGATAGCGATTTTGAGGAACGTGTGTATTGGGATAAATATCAGCAGGCAT TTGAAGATGCCATTAATGCAACCAGCACCAAAGATTGTCCGTGGTATGTTGTTCCGGCAGATCGTAAATGGTAT ATGCGTTATGTTGTGAGCGAAATCGTTGTGAAAACCCTGGAAGAAATGAATCCGAAATATCCGACCGTTACCA AAGAAACACTGGAACGTTTTGAAGGTTATCGTACCAAACTGCTGGAAGAGTATAACTATGATCTGGATACCAT TCGTCCGATCGAGAAATGA

ChPPK2:

UniProt: A0A6N4SMB5 (codon optimized)
ATGGCAACCGATTTTAGCAAACTGAGCAAATATGTTGAAACCCTGCGTGTTAAACCGAAACAGAGCATTGATC TGAAAAAAGATTTCGACACCGACTACGATCATAAAATGCTGACCAAAGAAGAAGGCGAAGAACTGCTGAATCT GGGTATTTCAAAACTGAGCGAGATCCAAGAAAAACTGTATGCAAGCGGCACCAAAAGCGTTCTGATTGTTTTT

CAGGCAATGGATGCAGCAGGTAAAGATGGCACCGTTAAACATATTATGACCGGTCTGAATCCGCAGGGTGTT AAAGTTACCAGCTTTAAAGTTCCGAGCAAAATCGAACTGAGCCATGATTATCTGTGGCGTCATTATGTTGCACT GCCTGCAACCGGTGAAATTGGTATCTTTAATCGTAGCCACTATGAAAATGTTCTGGTTACCCGTGTTCATCCGG AATATCTGCTGAGCGAACAGACCAGCGGTGTTACCGCAATTGAACAGGTTAATCAGAAATTCTGGGATAAACG CTTTCAGCAGATCAACAACTTTGAACAGCATATTAGCGAAAACGGCACCATTGTGCTGAAATTCTTTCTGCATG TGAGCAAGAAAGAGCAGAAAAAACGCTTTATTGAACGCATCGAACTGGACACCAAAAACTGGAAATTTAGCA CAGGCGATCTGAAAGAACGTGCACATTGGAAAGATTATCGCAACGCCTATGAAGATATGCTGGCAAATACCAG CACCAAACAGGCACCGTGGTTTGTTATTCCGGCAGATGATAAATGGTTTACCCGTCTGCTGATTGCCGAAATTA TCTGTACCGAACTGGAAAAACTGAATCTGACCTTTCCGACCGTTAGCCTGGAACAGAAAGCAGAGCTGGAAAA AGCAAAAGCAGAACTGGTTGCCGAAAAAAGCAGCGATTAA

SUMO thscGAS

UniProt: SUMO: Q12306; human cGAS: Q8N884
ATGTCGGACTCAGAAGTCAATCAAGAAGCTAAGCCAGAGGTCAAGCCAGAAGTCAAGCCTGAGACTCACATC AATTTAAAGGTGTCCGATGGATCTTCAGAGATCTTCTTCAAGATCAAAAAGACCACTCCTTTAAGAAGGCTGAT GGAAGCGTTCGCTAAAAGACAGGGTAAGGAAATGGACTCCTTAAGATTCTTGTACGACGGTATTAGAATTCAA GCTGATCAGACCCCTGAAGATTTGGACATGGAGGATAACGATATTATTGAGGCTCACAGAGAACAGATTGGT GGTATGGGGGCCTCGAAGCTCCGGGCGGTTTTGGAGAAGTTGAAGCTCAGCCGCGATGATATCTCCACGGCG GCGGGGATGGTGAAAGGGGTTGTGGACCACCTGCTGCTCAGACTGAAGTGCGACTCCGCGTTCAGAGGCGTC GGGCTGCTGAACACCGGGAGCTACTATGAGCACGTGAAGATTTCTGCACCTAATGAATTTGATGTCATGTTTA AACTGGAAGTCCCCAGAATTCAACTAGAAGAATATTCCAACACTCGTGCATATTACTTTGTGAAATTTAAAAGA AATCCGAAAGAAAATCCTCTGAGTCAGTTTTTAGAAGGTGAAATATTATCAGCTTCTAAGATGCTGTCAAAGTT TAGGAAAATCATTAAGGAAGAAATTAACGACATTAAAGATACAGATGTCATCATGAAGAGGAAAAGAGGAGG GAGCCCTGCTGTAACACTTCTTATTAGTGAAAAAATATCTGTGGATATAACCCTGGCTTTGGAATCAAAAAGTA GCTGGCCTGCTAGCACCCAAGAAGGCCTGCGCATTCAAAACTGGCTTTCAGCAAAAGTTAGGAAGCAACTACG ACTAAAGCCATTTTACCTTGTACCCAAGCATGCAAAGGAAGGAAATGGTTTCCAAGAAGAAACATGGCGGCTA TCCTTCTCTCACATCGAAAAGGAAATTTTGAACAATCATGGAAAATCTAAAACGTGCTGTGAAAACAAAGAAG AGAAATGTTGCAGGAAAGATTGTTTAAAACTAATGAAATACCTTTTAGAACAGCTGAAAGAAAGGTTTAAAGA CAAAAAACATCTGGATAAATTCTCTTCTTATCATGTGAAAACTGCCTTCTTTCACGTATGTACCCAGAACCCTCA AGACAGTCAGTGGGACCGCAAAGACCTGGGCCTCTGCTTTGATAACTGCGTGACATACTTTCTTCAGTGCCTCA GGACAGAAAAACTTGAGAATTATTTTATTCCTGAATTCAATCTATTCTCTAGCAACTTAATTGACAAAAGAAGTA AGGAATTTCTGACAAAGCAAATTGAATATGAAAGAAACAATGAGTTTCCAGTTTTTGATGAATTTTGATAA

