Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Magnetic Pd-Fe Nanoparticles for Sustainable Suzuki-Miyaura

Cross-coupling Reactions

List of Contents

1. Controlled Catalytic Reaction and Calculation of Pd% loading	S1
2. XPS details of Fe-Pd@Fe ₃ O ₄	S2
3. EDAX mapping details of Fe-Pd@Fe ₃ O ₄	S3
4. SEM images of Fe-Pd@Fe ₃ O ₄	S4
5. FT-IR analysis of Fe-Pd@Fe ₃ O ₄	S5
6. Characterization of the Products	
7. Copies of ¹ H-NMR and ¹³ C-NMR Spectra	·S9-S19

1. Controlled Catalytic Reactions and Calculation of Pd% loading

It was found that successful couplings require the presence of Pd-Fe@Fe₃O₄, as determined by the control reactions in preliminary experiment in Scheme S1, where only reaction catalyzed by prepared Pd-Fe@Fe₃O₄ containing 320ppm gave 85% yield while reactions that we attempted using equal amounts of Pd(OAc)₂, Fe₃O₄, or Pd(OAc)₂ and Fe₃O₄ did not lead to product formation.

Scheme S1 Control reactions proved the importance of Pd-Fe@Fe₃O₄

The Pd loading was determined based on the actual amount of Pd utilized in the preparation of the catalyst, rather than the nominal loading with the following formula:

$$Pd \ mol\% = \frac{n(Pd(OAc)_2) * \frac{m(catalyst in \ a \ reaction)}{m_0(all \ prepared \ catalyst)}}{n(reaction)} * 100\%$$
$$= \frac{0.027 mmol * \frac{0.825 mg}{110 mg}}{0.5 mmol} * 100\%$$

2. XPS details of Fe-Pd@Fe₃O₄

3. EDAX mapping details of Fe-Pd@Fe₃O₄

kV: 200 Mag:160000 Takeoff:14.8 Live Time(s):38.9 Amp Time(μs):7.68 Resolution(eV):127.6

Phase: O K/FeK

Lsec: 38.9 0 Cnts 0.000 keV Det: Apollo XLT2 SUTW Det

MThin Smart Quant Results (Theoretical)

Element	Weight %	Atomic %	Net Int.	Net	KABFacto
ок	22.78	51.30	346.7	0.96	0.8
PdL	3.62	1.23	16.7	5.74	2.65
FeK	73.60	47.47	898.5	0.62	1

4. SEM images of Fe-Pd@Fe₃O₄

5. FT-IR analysis of Fe-Pd@Fe₃O₄

FT-IR of recycled Pd-Fe@Fe₃O₄, Pd-Fe@Fe₃O₄, Fe₃O₄ and Pd(OAc)₂

Fourier transform infrared (FT-IR) spectroscopy analysis of the recycled Pd-Fe@Fe₃O₄, Pd-Fe@Fe₃O₄, Fe₃O₄ and Pd(OAc)₂ was displayed. As we all know, the peaks around 3400 and 1600 wavenumbers are hydroxyl absorption peaks and the peaks around 2350 wavenumbers are O=C=O absorption peaks in the environment, while the infrared characteristic peaks of Fe-O bonds are generally below 700 wavenumbers. Comparing the infrared absorption curves of Pd-Fe@Fe₃O₄ and Fe₃O₄, we find that the absorption peak is divided from 577 wavenumber splitting into 628 and 578 wavenumbers, respectively, which is likely caused by the introduction of additional iron. At the same time, comparing the infrared absorption curve of Pd(OAc)₂, we found that the characteristic peak of acetate disappeared, indicating that palladium was completely reduced. The infrared absorption curve of recycled Pd-Fe@Fe₃O₄ showed that the nanocatalyst remain a stable structure after a gram-scale reaction. 6. Characterization of the Products.

1,1'-biphenyl. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.51 (d, J = 7.6 Hz, 4H), 7.35 (t, J = 7.5 Hz, 4H), 7.25 (t, J = 7.3 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm): 141.37, 128.88, 127.38, 127.30.

4-fluoro-1,1'-biphenyl. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.42 (d, *J* = 7.9 Hz, 4H), 7.31 (t, *J* = 7.4 Hz, 2H), 7.22 (t, *J* = 7.2 Hz, 1H), 7.00 (t, *J* = 8.2 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm): 162.4 (d, J = 246.3), 140.2, 137.3 (d, J = 3.3), 128.8, 128.6 (d, J = 8.0).

4-chloro-1,1'-biphenyl. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.40 (dd, J = 16.5, 8.0 Hz, 4H), 7.28 (dt, J = 20.7, 9.9 Hz, 5H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm): δ 138.57, 127.83, 127.80, 127.30, 126.51, 125.89.

4-methoxy-1,1'-biphenyl. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.42 (t, J = 9.1 Hz, 4H), 7.29 (t, J = 7.5 Hz, 2H), 7.18 (t, J = 7.3 Hz, 1H), 6.85 (d, J = 8.3 Hz, 2H), 3.70 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm): 159.25, 140.90, 133.85, 128.81, 128.22, 126.81, 126.74, 114.31, 55.38.

4-methyl-1,1'-biphenyl. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.44 (d, J = 7.5 Hz, 2H), 7.36 (d, J = 7.6 Hz, 2H), 7.28 (t, J = 7.3 Hz, 2H), 7.18 (t, J = 7.3 Hz, 1H), 7.10 (d, J = 7.7 Hz, 2H), 2.25 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm): 141.25, 138.45, 137.07, 129.57, 128.84, 128.80, 127.08, 127.05, 21.17.

1,1',4',1''-terphenyl. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.63 – 7.54 (m), 7.38 (t, J = 7.5 Hz), 7.28 (t, J = 7.3 Hz). ¹³C NMR (101 MHz, CDCl₃) δ (ppm): 139.67, 139.09, 127.78, 126.46, 126.30, 126.01.

2-methoxy-1,1'-biphenyl. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.42 (d, J = 7.9 Hz, 2H), 7.29 (t, J = 7.4 Hz, 2H), 7.20 (t, J = 8.4 Hz, 3H), 6.91 (t, J = 7.4 Hz, 1H), 6.85 (d, J = 8.1 Hz, 1H), 3.66 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm): 156.57, 138.66, 130.97, 130.84, 129.64, 128.70, 128.06, 126.99, 120.93, 111.36, 55.60.

3-methoxy-1,1'-biphenyl. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.48 (d, J = 7.6 Hz, 2H), 7.32 (t, J = 7.3 Hz, 2H), 7.28 – 7.17 (m, 2H), 7.08 (d, J = 7.6 Hz, 1H), 7.03 (s, 1H), 6.79 (d, J = 8.1 Hz, 1H), 3.74 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm): 158.89, 141.71, 140.04, 128.69, 127.67, 126.35, 126.13, 118.62, 111.85, 111.62, 54.21.

3-nitro-1,1'-biphenyl. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.30 (s, 1H), 8.05 (d, J = 8.0 Hz, 1H), 7.77 (d, J = 7.7 Hz, 1H), 7.53 – 7.44 (m, 3H), 7.33 (dt, J = 24.6, 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm): 148.73, 142.84, 138.63, 133.03, 129.73, 129.18, 128.56, 127.15, 122.02, 121.90.

2-Phenylthiophene. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.66 – 7.60 (m, 2H), 7.39 (t, J = 7.6 Hz, 2H), 7.35 – 7.31 (m, 1H), 7.29 (dd, J = 5.7, 3.8 Hz, 2H), 7.09 (dd, J = 5.0, 3.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm): 144.51, 134.47, 128.97, 128.10, 127.55, 126.04, 124.90, 123.16.

1-(4-Thiophen-2-yl-phenyl)-ethanon. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.54 (d, J = 8.7 Hz, 2H), 7.21 (d, J = 5.8 Hz, 1H), 7.20 (d, 1H), 7.05 (dd, J = 4.9, 3.7 Hz, 1H), 6.92 (d, J = 8.8 Hz, 2H), 3.84 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm): 159.23, 144.40, 128.01, 127.36, 127.30, 123.92, 122.16, 114.33, 55.45.

7. Copies of 1H-NMR and 13C-NMR Spectra.

 ^1H NMR (400 MHz) and $^{13}\text{C}\{^1\text{H}\}$ NMR (101 MHz) spectra of 1,1'-biphenyl (CDCl_3).

 ^1H NMR (400 MHz) and $^{13}\text{C}\{^1\text{H}\}$ NMR (101 MHz) spectra of 4-chloro-1,1'-biphenyl (CDCl_3).

¹H NMR (400 MHz) and ¹³C{¹H} NMR (101 MHz) spectra of 4-methoxy-1,1'-biphenyl (CDCl₃).

f1 (ppm)

¹H NMR (400 MHz) and ¹³C{¹H} NMR (101 MHz) spectra of 2-Phenylthiophene (CDCl₃).

¹H NMR (400 MHz) and ¹³C{¹H} NMR (101 MHz) spectra of 1-(4-Thiophen-2-yl-phenyl)-ethanon (CDCl₃).