Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

Supporting information

Active site for syngas production by direct partial oxidation of CH₄ over

ZrO_2

Kazumasa Murata*, Keita Arai, Nao Kondo, Ryo Manabe, Takashi Yumura, Saburo Hosokawa*

Mitsubishi Chemical Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan

Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-

8585, Japan.

Corresponding Author

*E-mail: <u>kazumasa.murata.ma@mcgc.com</u> (Kazumasa Murata), <u>hosokawa@kit.ac.jp</u> (Saburo Hosokawa)

Table S1 POM activities of oxide catalysts at 600°C. Reaction conditions: 100 mg of catalyst, 25% CH₄, 12.5% O₂, N₂ balance (CH₄/O₂ ratio of 2.0), total flow rate of 20 mL/min, total pressure of 1 atm, and contact time of 5.0×10^{-3} g_{cat} min mL⁻¹.

	Conversion (%)		Selectivity (%)				Yield (%)					
	CH ₄	O ₂	CO	H ₂	C ₂	CO ₂	H ₂ O	СО	H ₂	C ₂	CO ₂	H ₂ O
MgO	0.7	0.0	78.0	48.0	0.0	22.0	52.0	0.6	0.3	0.0	0.2	0.3
BaO	0.0	0.0	0.0	15.9	0.0	100.0	84.1	0.0	0.1	0.0	0.0	0.6
Sc_2O_3	30.2	87.6	35.3	33.9	3.8	60.8	62.2	10.3	9.7	1.1	17.8	17.7
Y_2O_3	14.2	41.7	46.3	33.8	3.3	50.4	62.6	6.9	4.8	0.5	7.5	8.8
TiO ₂	5.9	13.5	74.2	25.2	0.0	25.8	74.8	3.7	1.0	0.0	1.3	3.0
ZrO ₂	29.0	78.2	47.4	41.3	0.3	52.3	58.4	14.0	12.4	0.1	15.5	17.5
YSZ	15.4	38.6	62.8	40.4	0.0	37.1	53.6	10.0	7.5	0.0	6.0	7.5
HfO ₂	8.9	26.4	44.0	16.7	0.0	56.0	83.3	3.8	1.3	0.0	4.8	6.2
V_2O_5	1.0	0.0	87.4	0.0	0.0	12.6	100.0	1.0	0.0	0.0	0.1	0.4
Nb_2O_5	0.0	0.0	0.0	0.0	0.0	100.0	100.0	0.0	0.0	0.0	0.1	0.1
Ta ₂ O ₅	27.2	98.5	35.5	3.9	0.0	64.5	96.1	9.4	1.0	0.0	17.1	24.6
MoO ₃	0.0	0.0	0.0	0.0	0.0	100.0	100.0	0.0	0.0	0.0	0.0	0.1
WO ₃	0.3	0.0	0.0	0.0	0.0	100.0	100.0	0.0	0.0	0.0	0.2	0.1
MnO ₂	25.1	100.0	0.0	0.0	0.0	100.0	100.0	0.0	0.0	0.0	24.8	25.8
Fe ₂ O ₃	24.8	100.0	0.0	0.8	0.0	100.0	99.2	0.0	0.2	0.0	24.5	25.7
$\mathrm{Co}_3\mathrm{O}_4$	24.1	100.0	0.0	0.0	0.0	100.0	100.0	0.0	0.0	0.0	24.2	25.0
ZnO	10.2	41.4	0.0	7.7	0.7	99.3	91.5	0.0	0.8	0.1	10.5	9.2
Al_2O_3	2.2	6.5	72.5	35.0	0.0	27.5	65.0	2.1	0.7	0.0	0.8	1.4
Ga ₂ O ₃	19.8	74.2	20.3	2.1	2.0	77.7	96.0	3.9	0.4	0.4	15.0	18.9
SiO ₂	0.0	0.0	0.0	0.0	0.0	100.0	100.0	0.0	0.0	0.0	0.2	0.3
GeO ₂	0.4	0.0	0.0	0.0	0.0	100.0	100.0	0.0	0.0	0.0	0.1	0.1
SnO ₂	24.6	100.0	0.0	0.0	0.0	100.0	100.0	0.0	0.0	0.0	23.9	25.1
La ₂ O ₃	8.4	26.1	35.8	40.0	1.8	62.4	58.1	3.3	3.4	0.2	5.8	4.9
CeO ₂	25.0	100.0	1.8	5.2	0.0	98.2	94.8	0.4	1.3	0.0	24.4	24.1
Pr_6O_{11}	22.6	90.9	0.0	1.5	2.0	98.0	96.5	0.0	0.4	0.5	22.1	22.2
Nd_2O_3	21.9	70.1	15.3	28.1	5.6	79.0	66.3	3.4	6.3	1.2	17.3	14.8
Sm_2O_3	13.9	41.2	33.7	33.4	3.5	62.8	63.0	4.8	4.6	0.5	8.9	8.6
Eu_2O_3	33.3	98.5	12.4	15.8	19.1	68.5	66.5	4.0	5.6	6.3	22.4	23.5
Gd_2O_3	26.0	74.8	26.1	27.5	11.6	62.3	61.3	6.8	7.5	3.1	16.3	16.7
Dy_2O_3	15.1	43.2	35.9	38.1	3.2	60.9	58.5	5.5	5.6	0.5	9.4	8.7
Yb ₂ O ₃	20.6	56.1	44.2	33.8	6.6	49.2	59.5	9.2	6.9	1.4	10.2	12.2

Figure S1 XPS spectra of ZrO₂-based catalysts.

Figure S2 NH₃-TPD profiles of ZrO₂-based catalysts.

Figure S3 CO₂-TPD profiles of ZrO₂-based catalysts.

Figure S4 (a) CO₂ yield, (b) H₂O yield, and (c) C2 yield over ZrO₂-based catalysts as functions of temperature. (d) CO₂ selectivity, (e) H₂O selectivity, and (f) C₂ selectivity with CH₄ conversion in POM over ZrO₂-based catalysts. The dotted-line curves show the 10%, 20%, and 30% product yields. Reaction conditions: 100 mg of catalyst, 25% CH₄, 12.5% O₂, N₂ balance (CH₄/O₂ ratio of 2.0), total flow rate of 20 mL/min, total pressure of 1 atm, and contact time of 5.0×10^{-3} g_{cat} min mL⁻¹.

Figure S5 Variation in temperature of catalyst bed against set temperature for POM over ZrO_2 -based catalysts. Reaction conditions: 100 mg of catalyst, 25% CH₄, 12.5% O₂, N₂ balance (CH₄/O₂ ratio of 2.0), total flow rate of 20 mL/min, total pressure of 1 atm, and contact time of 5.0×10^{-3} g_{cat} min mL⁻¹.

Figure S6 CH₄ conversion in noncatalytic POM as function of temperature. Reaction conditions: 25% CH₄, 12.5% O₂, N₂ balance (CH₄/O₂ ratio of 2.0), total flow rate of 20 mL/min, total pressure of 1 atm, and contact time of 5.0×10^{-3} g_{cat} min mL⁻¹.

Figure S7 Time on steam of (a) CH₄ and O₂ conversion, (b) product yield, and (c) product selectivity in POM over ZrO₂ catalyst. Reaction conditions: 100 mg of catalyst, 25% CH₄, 12.5% O₂, N₂ balance (CH₄/O₂ ratio of 2.0), total flow rate of 20 mL/min, total pressure of 1 atm, contact time of 5.0×10^{-3} g_{cat} min mL⁻¹, and temperature of 600°C.

Figure S8 Dependence of product selectivity and CH_4 oxidation rate on contact time in POM over ZrO_2 catalyst. Reaction conditions: 10 mg of ZrO_2 catalyst, 30% CH_4 , 15% O_2 , N_2 balance (CH_4/O_2 ratio of 2.0), total flow rate of ~27 mL/min, total pressure of 1 atm, and temperature of 600°C.

Figure S9 Arrhenius plots of CH_4 oxidation rate of ZrO_2 -based catalysts for POM. Reaction conditions: 25% CH_4 , 12.5% O_2 , N_2 balance (CH_4/O_2 ratio of 2.0), total flow rate of 20 mL/min, and total pressure of 1 atm.

Wavenumber (cm ⁻¹)	Species	Vibrational mode	Reference	
3800-2500	H ₂ O (adsorbed water)	ν(OH)	1,2	
3780–3760	Terminal OH (t-OH)	ν(OH)	3–8	
3740–3730	Bridged OH (b-OH)	ν(OH)	6,7	
3680–3660	Multicoordinated OH (m-OH)	ν(OH)	3–8	
3630–3620	Monodentate bicarbonate (HCO3-	ν(OH)	3,6,8,9	
)			
3014	CH ₄ (gas)	v _a (CH)	10	
2965–2955	Bidentate formate (b-HCOO-)	$v_a(OCO) + v_s(OCO)$	3–5,7–12	
		and $\delta(CH) + v_s(OCO)$		
2885–2870	Bidentate formate (b-HCOO-)	ν(CH)	3–5,7–12	
1640–1600	Monodentate bicarbonate (m-	v _a (OCO)	3,6,8,9	
	HCO ₃ –)			
	Bridged carbonate (br-CO ₃ -)	v _a (OCO)	9	
1590–1550	Bidentate formate (b-HCOO-)	v _a (OCO)	3–5,9–12	
	Bidentate carbonate (b-CO ₃ -)	v _a (OCO)	3,8	
1470–1430	Monodentate bicarbonate (m-	v _s (OCO)	3,6,9	
	HCO ₃ –)			
	Terminal CH ₃ O- (t-CH ₃ O-)	δ(CH)	4,5,10,13,14	
	Polydentate carbonate (p-CO ₃ -)	v _a (OCO)	9,12	
1400–1320	Bidentate formate (b-HCOO-)	$\delta(CH)$ and $v_s(OCO)$	3–5,7–12	
	Polydentate carbonate (p-CO ₃ -)	v _s (OCO)	9,12	
	Bidentate carbonate (b-CO ₃)	v _s (OCO)	3,8	
	Bridged carbonate (br-CO ₃ -)	v _s (OCO)	9	
1304	CH ₄ (gas)	δ(CH)	10	
1150–1130	Terminal CH ₃ O– (t-CH ₃ O–)	v(CO)	4,5,10,13,14	

Table S2 Vibrational frequencies of reaction intermediates species on ZrO_2 -based catalysts.

Figure S10 In situ DRIFTS spectra of ZrO₂ catalyst in Ar flow after POM.

Figure S11 In situ DRIFTS spectra of ZrO₂ catalyst in 25% CH₄/N₂ flow.

Figure S12 In situ DRIFTS spectra of $La(2)/ZrO_2$ catalyst in Ar flow after POM.

Figure S13 In situ DRIFTS spectra of ZrO_2 -based catalysts during POM: (a) W(1)/ZrO₂, (b) W(2)/ZrO₂, (c) W(5)/ZrO₂, and (d) La(2)/ZrO₂. Reaction conditions: 25% CH₄, 12.5% O₂, N₂ balance (CH₄/O₂ ratio of 2.0), total flow rate of 40 mL/min, and total pressure of 1 atm.

DFT setting and modeling of ZrO₂ catalyst

To model the ZrO_2 catalyst, we considered its monoclinic phase and (¹11) surfaces which were energetically stable. A 2 × 2 × 1 monoclinic (¹11) ZrO₂ surface containing $Zr_{48}O_{96}$ was constructed, as shown in Figure S14. A vacuum spacing of 16 Å was added along the *c* axis, which was large enough to prevent interactions between each surface model along the axis. Using the monoclinic ZrO_2 model, we optimized the atomic configurations of the local minima and transition states during methane activation. In supercell calculations, Brillouin zone sampling was restricted to the Γ point, and energies were converged at a 1.0×10^{-5} eV tolerance. To identify the transition states, we adopted the CI–NEB method using four intermediate images. The local minima and transition states in methane activation were optimized by fixing the lattice parameters in the surface supercell, fully relaxing the positions of the atoms contained in an upper layer, and fixing those of the atoms in the bottom layer (inside the red rectangle in Figure S14). The optimization was deemed to have converged when the maximum forces on all atoms were less than 0.05 eV/Å.

Figure S14 (a) Unit cell of studied monoclinic ZrO_2 and (b) its surface. The Zr atoms labeled I, III, and IV were coordinated by six oxygen atoms, and the Zr atom labeled II was coordinated by seven oxygen atoms. Accordingly, coordinatively unsaturated Zr atoms, labeled I, III, and IV, enabled the binding of H₂O molecules in the atmosphere to the Zr atoms, thus generating HO-attached ZrO₂ surfaces with oxygen monovacancies.

	Methane	Methane bound to oxygen-deficient ZrO ₂ surface
<i>B</i> [C–H(a)] ^{<i>a</i>}	1.096	1.100
<i>B</i> [C–H(b)] <i>a</i>	1.096	1.099
$B[C-H(c)]^{a}$	1.096	1.096
<i>B</i> [C–H(d)] <i>^a</i>	1.096	1.094
$A[H(b)-C-H(a)]^{b}$	109.5	112.5
$A[H(b)-C-H(d)]^{b}$	109.5	109.2
$A[H(b)-C-H(c)]^{b}$	109.5	108.4
$A[H(a)-C-H(d)]^{b}$	109.5	108.7
$A[H(a)-C-H(c)]^{b}$	109.5	107.6
$A[H(d)-C-H(c)]^{b}$	109.5	110.4

Table S3 Geometric changes in methane before and after its interaction with oxygen-deficient ZrO_2 surface, obtained via PBE DFT calculations.

^{*a*} *B* indicates the bond lengths (Å) between the atoms in the parentheses.

 ^{b}A indicates the angles (°) between the atoms in the parentheses.

References

- (1) Sagadevan, S.; Podder, J.; Das, I. J. Mater. Sci. Mater. Electron. 2016, 27, 5622–5627.
- (2) Ishikawa, H.; Kondo, J. N.; Domen, K. J. Phys. Chem. B 1999, 103, 3229–3234.
- (3) Kondo, J.; Abe, H.; Sakata, Y.; Maruya, K. I.; Domen, K.; Onishi, T. J. Chem. Soc. Faraday Trans. 1988, 84, 511–519.
- (4) Ouyang, F.; Kondo, J. N.; Maruya, K.; Domen, K. J. Phys. Chem. B 1997, 101, 1–3.
- (5) Ouyang, F.; Nakayama, A.; Tabada, K.; Suzuki, E. J. Phys. Chem. B 2000, 104, 2012–2018.
- (6) Bachiller-Baeza, B.; Rodriguez-Ramos, I.; Guerrero-Ruiz, A. Langmuir 1998, 14, 3556–3564.
- (7) Kouva, S.; Honkala, K.; Lefferts, L.; Kanervo, J. Catal. Sci. Technol. 2015, 5, 3473–3490.
- (8) Kouva, S.; Andersin, J.; Honkala, K.; Lehtonen, J.; Lefferts, L.; Kanervo, J. Phys. Chem. Chem. Phys. 2014, 16, 20650–20664.
- (9) Ko, E.; Kogler, M.; Bielz, T.; Klo, B.; Penner, S. J. Phys. Chem. C 2013, 117, 17666–17673.
- (10) He, Y.; Guo, F.; Yang, K. R.; Heinlein, J. A.; Bamonte, S. M.; Fee, J. J.; Hu, S.; Suib, S. L.; Haller, G. L.; Batista, V. S.; Pfefferle, L. D. J. Am. Chem. Soc. 2020, 142, 17119–17130.
- (11) Zhu, J.; Van Ommen, J. G.; Lefferts, L. J. Catal. 2004, 225, 388–397.
- (12) Jung, K.; Bell, A. T. J. Catal. 2000, 193, 207–223.
- Wu, C.; Lin, L.; Liu, J.; Zhang, J.; Zhang, F.; Zhou, T.; Rui, N.; Yao, S.; Deng, Y.; Yang, F.; Xu, W.; Luo, J.;
 Zhao, Y.; Yan, B.; Wen, X. D.; Rodriguez, J. A.; Ma, D. *Nat. Commun.* 2020, *11*, 5767.
- (14) Binet, C.; Daturi, M. Catal. Today 2001, 70, 155–167.
- (15) Ko, E.; Kogler, M.; Bielz, T.; Klötzer, B.; Penner, S. J. Phys. Chem. C 2013, 117, 17666–17673.