Electronic Supplementary Information

Molten Multi-Phase Catalytic System Comprising Li-Zn Alloy and

LiCl-KCl Salt for Nitrogen Fixation and Ammonia Synthesis at

Ambient Pressure

Xian Meng^{1,#}, Jian Liu^{1,#}, Zujian Tang¹, Bingxu Xi¹, Pu Yan¹, Xiangran Wang¹, Kecheng Cao¹, Bo Yang^{1,**}, Xiaofei Guan^{1,*}

¹School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road,

Shanghai, 201210, China

[#] These authors contributed equally

*E-mail: guanxf@shanghaitech.edu.cn (X.G.)

** E-mail: yangbo1@shanghaitech.edu.cn (B.Y.)

Contents:

- Table S1
- Figure S1
- Figure S2
- Table S2
- Figure S3
- Figure S4
- Figure S5
- Figure S6
- Table S3
- Figure S7
- Note S1
- Figure S8
- Figure S9
- Note S2
- Figure S10
- Note S3
- Figure S11
- Note S4
- Figure S12
- Figure S13
- Figure S14
- Figure S15
- Note S5
- Table S4
- Note S6
- Table S5
- Note S7

Chemical	Brand	Purity		
Li	Sinopharm	>99.9%		
Zn	Sinopharm	≥99.8%		
KCl	Sinopharm	≥99.8%		
LiCl	Titan	≥99%		
NH4Cl	Titan	>99.9%		
HOC ₆ H ₄ COONa	Titan	>99.5%		
LiH	Macklin	>97%		
NaOH	Macklin	>98%		
LiNH ₂	J&K	95%		
C ₄ H ₄ KNaO ₆ 4H ₂ O	J&K	99%		
C5FeN6Na2O 2H2O	Aladdin	99.98%		
H_2SO_4	Sinopharm	98%, analytical reagent		
HCl	Sinopharm	36.5%, CP		
NaClO*	Sinopharm	chemically pure		
NiCl ₂	Macklin	99%		
H_2O	Macklin	deionized		
N_2	Youjiali Special Gas Co., Ltd	99.999%		
H_2	Youjiali Special Gas Co., Ltd	99.999%		
Ar	Youjiali Special Gas Co., Ltd	99.999%		

 Table S1. Chemicals used in all experiments.

* Cl concentration > 5.2%, free alkali concentration: 7~8%.

Figure S1. (a) The Li-Zn phase diagram modified after Okamoto¹. (b) Standard Gibbs free energy change (ΔG^{o}) for reactions in the Li-N-H system²⁻⁴. The red dashed line was a horizontal line passing through the zero point of the Y axis.

Figure S2. Schematic diagrams of the bubble column reactors for NH_3 synthesis. (a) N_2 was introduced into the bottom of the liquid alloy through an alumina bubbling tube (OD: 3 mm; ID: 1 mm; length: 650 mm). H_2 was introduced into the bottom of the molten salt through an alumina bubbling tube (OD: 6 mm; ID: 4 mm; length: 500 mm). The two bubbling tubes were coaxial. (b) A mixture of N_2 and H_2 was introduce into the bottom of the bottom of liquid alloy through an alumina bubbling tube (OD: 6 mm; ID: 4 mm; length: 500 mm). The two bubbling tubes were coaxial. (b) A mixture of N_2 and H_2 was introduce into the bottom of liquid alloy through an alumina bubbling tube (OD: 6 mm; ID: 4 mm; length: 600 mm). The external gas pipelines used were made of Teflon fluoropolymers.

Table S2. The starting amounts of materials (including metals and salts) used for the ammonia synthesis experiments. The superscripts a and b in the table represent the amount of metals required for different experimental setups as illustrated in Figures S2 (a) and (b), respectively. The target height of the Li-Zn liquid alloy was 5 cm. The target height of the molten eutectic LiCl-KCl was 5, 10 or 15 cm.

Sustano	Temperature	Li-Zn alloy		LiCI-KCI salt	
Systems	(°C)	Li (g)	Zn (g)	LiCI (g)	KCI (g)
70mol%Li-Zn (5 cm) and	400	2.900 ^a	11.709ª	3.978	4.822
eutectic LiCI-KCI (5 cm)	400	2.532 ^b	10.223 ^b	- 3.976	4.022
70mol%Li-Zn (5 cm) and	400	2.532 ^b	10.223 ^b	7.957	9.643
eutectic LiCI-KCI (10 cm)	400	2.332°	10.225°	7.957	9.043
70mol%Li-Zn (5 cm) and	400	2.532 ^b	10.223 ^b	11.935	14.465
eutectic LiCI-KCI (15 cm)	400	2.5325	10.223	11.955	14.405
70mol%Li-Zn (5 cm) and	500	2.899ª	11.704ª	4.029	4.882
eutectic LiCI-KCI (5 cm)	500	2.099- 11.704-	11.704	4.029	4.002

Figure S3. The XRD pattern of the pretreated Li-Zn mixture showing the characteristic peaks for LiZn (PDF No. 03-0954) and Li (PDF No. 01-074-6889).

Figure S4. (a) SEM image of the sample 2 collected from the top of the solidified alloy column after the reaction with N_2 in the molten state. (b) N-*K*, (c) O-*K*, and (d) Zn-*K* EDS elemental mapping for the area enclosed by the white dashed rectangle in (a). The presence of the O as shown in (c) was likely due to the Li oxidation or the Li₃N hydrolysis during the SEM sample preparation and transfer outside the Ar-filled glovebox. (b) and (d) show that the distributions of N and Zn were complementary, indicating that no Zn₃N₂ was formed and the Li played the key role of fixing nitrogen in the Li-Zn alloy. The SEM and EDS results suggest that the Li₃N exhibited a dendrite-like shape on top of the Li-Zn alloy as shown in (a).

Figure S5. STEM images showing the particles of sample 1 on a copper grid.

Figure S6. Representative N 1*s* XPS results of the upper, middle, lower parts of the solidified alloy columns after the reaction with N₂ for (a) 2 hours and (b) 18 hours at 400 °C. No characteristic peaks for N 1*s* were identified, confirming the absence of Li₃N in the alloy.

Table S3. The N weight fraction in the solidified salt in the experiments that operated for different durations at 400 °C. For each experiment, five salt samples were characterized. The N weight fraction was calculated by subtracting the amount of nitrogen in the impurities in the commercial eutectic LiCl-KCl (0.01847wt.%) and then taking the mass-weighted average.

Reaction	Sample	Sample	N weight fraction after subtracting	N weight fraction in the salt obtained by
duration (h)	No.	mass (g)	the N impurities in the salt (wt.%)	taking the mass-weighted average (wt.%
0.5 3	0.1916	0.167		
	2	0.1828	0.163	
	3	0.1862	0.162	0.163
	4	0.2026	0.163	
	5	0.2081	0.161	
	1	0.1866	0.409	
	2	0.1878	0.376	
1	3	0.2105	0.377	0.394
	4	0.1842	0.409	
	5	0.1663	0.402	
	1	0.1481	0.530	
	2	0.1834	0.557	
2	3	0.1930	0.562	0.555
	4	0.1589	0.545	
	5	0.1507	0.582	
	1	0.1075	1.083	
	2	0.0937	1.001	
3 3 4	3	0.1130	0.901	1.025
	4	0.1107	1.098	
	5	0.1115	1.043	
	1	0.1358	1.669	
	2	0.1808	1.222	
4	3	0.1394	1.141	1.218
	4	0.1422	0.982	
	5	0.2310	1.140	
	1	0.0542	1.906	
	2	0.0694	1.897	
10	3	0.0694	2.054	1.934
_	4	0.0780	2.070	
	5	0.1005	1.785	
18	1	0.0930	2.626	
	2	0.0895	3.500	
	3	0.0691	3.266	2.655
	4	0.0870	2.473	
	5	0.0953	1.611	

Figure S7. UV-Vis spectra for determining the nitrogen weight fraction in the commercial LiCl and KCl used in the experiments. The sample solutions were prepared by first dissolving LiCl (0.2377 g) and KCl (0.239 g) in 10 ml H₂SO₄ solutions, respectively. The UV-Vis spectra for the standard solutions with 0 and 4 μ g(NH₃)/ml are also shown. Based on the results, the nitrogen weight fraction in the commercial eutectic LiCl-KCl was estimated to be 0.0185wt.%.

Note S1. Measurement of the Apparent Activation Energy for N₂ Fixation by the Li-Zn Liquid Alloy

The N₂ fixation rate by the liquid 70mol%Li-Zn alloy was obtained by measuring the amount of the nitrogen dissolved in the molten salt phase at different temperatures (380, 400, 425, and 450 °C) for 2 hours. N₂ was bubbled to the liquid 70mol%Li-Zn alloy at 5 cm³/min, and Ar was introduced into the molten LiCl-KCl salt at 15 cm³/min to homogenize the distribution of Li₃N in the molten salt. Before cooling down, Ar bubbling was kept for another 30 mins to ensure the full dissolution and diffusion of Li₃N.

For each experiment, three or five pieces of the solidified salt were sampled randomly, weighed, and then dissolved in 10 ml of $0.05 \text{mol/L H}_2\text{SO}_4$ inside an ultrasonic instrument. The liquid solutions were characterized using UV-Vis spectroscopy to determine the nitrogen content. Then, the average value of the nitrogen weight fraction in the salt (*N wt%*) was obtained. The N₂ fixation rate was then calculated using Eq. S1, where *MLiCl-KCl* is the total mass of the LiCl-KCl salt (8.8 g) used in each experiment.

Fixation rate_{N₂} =
$$\frac{N \ wt\% \times M_{LiCl-KCl}}{reaction \ time}$$
 (S1)

From the N₂ fixation rates measured at different temperatures, the apparent activation energy for N₂(E_{a,N_2}) was determined by using Eq. S2, where *A* is the reaction rate constant, *R* is the gas constant, *T* is the temperature.

Fixation rate_{N₂} =
$$Aexp\left(-\frac{E_{a,N_2}}{RT}\right)$$
 (S2)

By taking a natural log of Eq. S2, the following equation can be obtained

$$\ln(\text{Fixation rate}_{N_2}) = lnA - \frac{E_{a,N_2}}{RT}$$
(S3)

Figure S8. Temperature dependence of the N₂ fixation rate in the reactors containing liquid 70mol%Li-Zn alloy (height: 5 cm) and molten LiCl-KCl salt (height: 5 cm) at different temperatures. The dashed lines serve as the guide for the eyes.

Figure S9. NH₃ synthesis rate in the molten catalytic system comprising the liquid Zn (height: 5 cm) underneath and the LiCl-KCl eutectic salt (height: 5 cm) on the top at 500 °C. To remove the effect of nitrogen-containing impurities in the molten salt, N₂ (5 cm³/min) and H₂ (15 cm³/min) were mixed and then fed into the molten salt in the first 10 hours. The NH₃ synthesis rate decreased from 0.0031 µg/s to 0.0006 µg s⁻¹ over 10 hours, indicating the effective removal of the nitrogen-containing impurities. Afterwards, the N₂-H₂ mixture was directly fed into the liquid Zn underneath. No noticeable change in the NH₃ synthesis rate was observed. In other words, the NH₃ synthesis rate remained negligibly small over the following 10 hours.

Figure S10. (a) Radial distribution functions, g(R), of Li or Zn atoms and (b) the average number of Li or Zn atoms, *n*, around the N atoms in N₂ obtained from the prerelax simulation of the Li-Zn system from 3 ps to 5 ps. *R* is the distance from the tagged N atoms. The projected density of states (PDOS) of (c) Li-*s* orbital and (d) Zn-*d* orbital in the Li-Zn model system. (c) and (d) share the same X-axial label.

(e) Snapshot of the bare Zn model system at the end of the AIMD simulation (color code: grey, Zn; blue: N). (f) The free energy change as a function of the N-N distance for the N₂ cleavage in pure liquid Zn at 450 °C. The work profiles of 3 slow-growth trajectories are also shown, as denoted by the dashed lines in color.

(g) Snapshot of the bare Li model system at the end of the AIMD simulation (color code: pink, Li; blue, N). (h) The free energy profile as a function of the N-N distance for N₂ cleavage in pure liquid Li at 450 $\$ C.

Note S2. The reactivity of N₂ cleavage in liquid pure Zn and pure Li

A liquid pure Zn (60 atoms) model was built in a periodic cubic cell with the edge length = 11.2 Å, and a N₂ molecule was placed inside. The cubic box represents the periodic unit cell of the infinite bulk system. The AIMD simulations were performed at 450 °C, slightly greater than the melting point of Zn (419.5 °C). Figure S10e shows a snapshot of the model system at the end of the simulation. Figure S10f shows the free energy change for the N₂ cleavage to two N^{δ -} as a function of the N-N distance. The value of δ was calculated to be only 1.4 based on the Bader charge analysis, suggesting the covalent nature of the Zn-N bond. The activation free energy was identified to be as high as nearly 4 eV, and the reaction free energy was almost 3 eV, suggesting that the N₂ cleavage was difficult in pure liquid Zn.

Similarly, a liquid pure Li (60 atoms) model was built and studied with AIMD simulations (Figure S10g,h).

Note S3. The reactivity of N2 cleavage in liquid Li-Sn

A randomly mixed Li₃₆Sn₂₄ model was built in a periodic cubic cell with the edge length = 11.2 Å, and a N₂ molecule was placed inside the cell. The AIMD simulations were performed at 500 °C. Figure S11a shows a snapshot of the system at the end of the AIMD simulation. Figure S11b shows the free energy change for the N₂ cleavage to two N^{δ -} as a function of the N-N distance. The value of δ was calculated to be 2.9 based on the Bader charge analysis. The N₂ cleavage in the liquid Li-Sn alloy showed a G_a of 1.7 eV and ΔG of 0.7 eV. A comparison with the results for Li-Zn shows that Li-Zn is more reactive than Li-Sn for activating and fixing N₂.

Figure S11. (a) Snapshot of the model system at the end of the AIMD simulation. Color code: pink, Li; yellow, Sn; blue: N. (b) The free energy change as a function of the N-N distance for the N₂ cleavage in 60mol%Li-Sn alloy at 500 °C. The work profiles of 3 slow-growth trajectories are also shown, as denoted by the dashed lines in color.

Note S4. Synthesis of Li₃N from pure Li and N₂

To synthesize the Li₃N, pure Li tablets were placed in an alumina boat inside an alumina reactor (OD: 35 mm, ID: 28 mm, length: 400 mm), and heated it at 100 $^{\circ}$ C under N₂ flow (20 cm³/min) for 18 hours. The reactor was sealed by vacuum flanges to prevent oxidation of Li. The phase of the Li₃N synthesized was verified by X-ray diffraction, as shown in Figure S12a. A digital photograph of some pieces of Li₃N is shown in Figure S12b.

Figure S12. (a) The XRD pattern of the sample after the solid pure Li tablets reacting with N_2 . Characteristic peaks for Li_3N (PDF No. 76-0593) were indexed. (b) Digital photo of some Li_3N samples inside a plastic weigh boat.

Figure S13. Temperature profile and the rate of NH_3 evolution from the LiCl-KCl-1mol%LiNH₂ heated under Ar atmosphere over time. The mass of the eutectic LiCl-KCl was 8.8 g, and the mass of LiNH₂ was 0.0368 g. The molten salt height was 5 cm. The ammonia evolution rate first increased and then decreased. Based on the total amount of NH_3 collected, the LiNH₂ conversion was calculated to be 69.17%.

Figure S14. The NH₃ synthesis rate over time in the experiments of bubbling H₂ (15 cm^3/min) or Ar (20 cm^3/min) into molten eutectic LiCl-KCl containing 1mol% Li₂NH at 400 °C. The height of the molten salt in each experiment was 5 cm. A comparison of the results confirms that the H₂ reacts with the Li₂NH and produces NH₃. As the reaction between H₂ and Li₂NH occurs stepwise via the formation of LiNH₂ to produce ammonia, the results also indicate the occurrence of the reaction between H₂ and LiNH₂.

Figure S15. UV-Vis spectra for three solidified salt samples collected randomly from the experiment bubbling N₂ into LiCl-KCl molten salt containing 3mol%LiH at 400 °C. The masses of the samples 1 to 3 were 0.1718 g, 0.1856 g and 0.1527 g, respectively. The UV-Vis spectra for the standard solutions with 0 and 4 μ g(NH₃)/ml are also shown.

Note S5. Calculation of the degree of nitridation of LiH dissolved in molten LiCl-KCl eutectic salt.

1) NH₃ synthesis: It is assumed that all the H in obtained NH₃ comes from LiH, that

is, $3n_{LiH} = n_{NH_3}$.

$$m_{LiH,1} = \frac{3 \times m_{NH_3} \times M_{LiH}}{M_{NH_3}}$$

2) Li₂NH Synthesis: It is assumed that all the N in salt comes from Li₂NH, and N is evenly distributed in salt after the experiment, that is, $n_{Li_2NH} = n_N$.

$$m_{LiH,2} = \frac{2 \times N \ wt\% \times m_{salt} \times M_{LiH}}{M_N}$$

Therefore,

Degree of nitridation =
$$\frac{m_{LiH,1} + m_{LiH,2}}{m_{LiH,add}} \times 100\%$$

System	Gas feeding mode	Temperature (°C)	N weight fraction in the solidified salt
70mol%Li-Zn (height: 5 cm) and eutectic LiCl-KCl salt (height: 5 cm)	Separate (N₂ into the alloy; H₂ into the salt)	400	0.559wt.%
70mol%Li-Zn (height: 5 cm) and eutectic LiCl-KCl salt (height: 5 cm)	Separate (N ₂ into the alloy; H ₂ into the salt)	500	0.783wt.%
70mol%Li-Zn (height: 5 cm) and eutectic LiCl-KCl salt (height: 5 cm)	Mixed (N ₂ and H ₂ mixture into the alloy)	400	0.407wt.%
70mol%Li-Zn (height: 5 cm) and eutectic LiCl-KCl salt (height: 10 cm)	Mixed (N ₂ and H ₂ mixture into the alloy)	400	0.304wt.%
70mol%Li-Zn (height: 5 cm) and eutectic LiCI-KCI salt (height: 15 cm)	Mixed (N ₂ and H ₂ mixture into the alloy)	400	0.276wt.%

Table S4. Nitrogen weight fraction in the solidified samples from different experiments.

Note S6. Validation Experiment on the Effect of Partial Pressure of N₂ on Nitrogen Fixation Rate

To verify the effect of N₂ partial pressure on the nitrogen fixation rate, we performed two control experiments with different gas feeding at 400 °C for 4 hours in the molten hybrid system (Figure 3a). In the first experiment, N₂ (5 cm³/min) and Ar (15 cm³/min) were fed to the liquid alloy and molten salt, respectively. In the second experiment, the mixture of N₂ (5 cm³/min) and Ar (15 cm³/min) were fed to the liquid alloy. The Li in the alloy reacted with N₂ to form Li₃N that floated up and was dissolved in the molten LiCl-KCl above. After cooling, five pieces of solidified salt samples were collected from each experiment to determine the nitrogen fixation rate according to Eq. S1. In the case of feeding the mixture of N₂ and Ar, the N₂ partial pressure was only 0.25 atm, and the nitrogen fixation rate was as low as 41.6 µg/s. In comparison, when feeding the N₂ and Ar to the liquid alloy and the molten salt, respectively, the nitrogen fixation rate was larger (53.5 µg/s). The results verified that the rate of nitrogen fixation by the liquid alloy increased with the N₂ partial pressure.

Table S5. Activity levels of molten catalytic systems studied in this work and several relevant catalytic materials that operated at 1 bar as reported in literature. The activity level in this work is calculated by dividing the amount of ammonia product by the reaction time and the total mass of the alloy and the salt. The materials labelled with * were tested with the stepwise chemical looping route in which N₂ and H₂ were fed separately to the system. All the other materials were tested with catalytic processes of flowing N₂ and H₂ at the same time into the reactors.

						1		
Materials			Average	Total				
	Т	Р	amount of NH₃	mass of	Activity level	Refer-		
	(°C)	(bar)	produced per	catalyst	(µmol g _{cat} -1 h-1)	ences		
			hour (µmol h-1)	(g _{cat})				
70mol%Li-Zn (5cm)	400	400	400	1	0.005	04.55	0.404	
and LiCI-KCI (5cm)	400	1	2.605	21.55	0.121			
70mol%Li-Zn (5cm)	400	1	4	20.25	0.420	This		
and LiCI-KCI (10cm)	400	1	4	30.35	0.132	work		
70mol%Li-Zn (5cm)	400	4	5 004	00.45	0.407			
and LiCI-KCI (15cm)	400	1	5.361	39.15	0.137			
Pure Na	500	1	1.501	20	0.075	5		
LiH *	350	1	1.44	0.03	48	6		
Zn-8LiH *	350	1	28.68	0.03	956	6		
50wt%Ni-LiH	350	1	undetectable	0.03	undetectable	7		
50wt%Ni-LiH *	300	1	45.99	0.03	1533			
LaMnSi	400	1	12	0.1	120			
LaFeSi	400	1	62	0.1	620	8		
LaCoSi	400	1	122.5	0.1	1225			
Cs-promoted	250 4	250 4	200	0.02	10000	0		
Ru/MgO	350	1	300	0.03	10000	9		

Note S7. Computational details

All the *ab initio* molecular dynamics (AIMD) simulations and density functional theory (DFT) calculations were performed with Vienna Ab initio Simulation Package (VASP).^{10, 11} The generalized gradient approximation (GGA) combined with the Perdew–Burke–Ernzerhof (PBE) functional was utilized to depict the core-electron interactions. The Grimme DFT-D3 correction method was employed to take the van der Waals interaction term into account. The energy convergence threshold is 10^{-4} eV. Considering the large supercell, Γ -point of Brillouin zone and 350 eV cut-off energy were used in the AIMD calculations.

The AIMD calculations were performed with NVT ensemble, in which the temperature was kept by Nose-Hoover thermostat. The time step was set as 1 fs. To calculate the free-energy change during a reaction, we utilized the slow-growth method implemented in VASP. In such calculations, a collective variable (CV, ξ) was assigned to describe the geometric property along the reaction path. Here the N–N bond distance $d_{\text{N-N}}$ was chosen as the CV, serving as the reaction coordinate. Free energy samplings were performed with constrained $d_{\text{N-N}}$ in the simulations. Consider states *a* and *b* during a reaction, the work needed for the transformation from state *a* to state *b* can be calculated through integrating the potential energies *V* through CV using the following formula:

$$\Delta W_{a \to b} = \int_{\xi(a)}^{\xi(b)} \left(\frac{\partial V}{\partial \xi}\right)_{\xi} \mathrm{d}\xi$$

The obtained works $\Delta W_{a \to b}$ could be related to the free energy change $\Delta A_{a \to b}$ via Jarzynski equality theorem¹²:

$$e^{-\Delta A_{a \to b}/k_B T} = \overline{e^{-\Delta W_{a \to b}/k_B T}}$$

where $k_{\rm B}$ is the Boltzmann constant, and the expression of \bar{x} denotes a canonical averaging over x. For each reaction, we computed 3 trajectories to obtain W along the reaction path. The corresponding increment speed of CV was 10⁻⁴ Å/step. The total simulation step is 30000, and the overall simulation time is 30 ps. The initial structures of the slow-growth calculations were obtained by performing at least 5 ps equilibrium

MD simulations to allow the liquid catalyst around the N₂ molecule to find the favorable arrangements, with the $d_{\text{N-N}}$ constrained to be 1.0 Å, slightly smaller than the equilibrium $d_{\text{N-N}}$ of 1.3 Å in the Li-Zn alloy. As the simulation progressed, the $d_{\text{N-N}}$ gradually increased from 1.0 Å to 4.0 Å, which covered the range of the N₂ cleavage process and allowed for the derivation of the free energy profile changes along $d_{\text{N-N}}$. The initial, transition, and final states were determined from the local minimum or maximum points in the free energy profiles, respectively.

The coordination number (CN) of an atom *i* were defined by:

$$CN = \sum_{j} \frac{1 - (r_{ij}/r_0)^{nn}}{1 - (r_{ij}/r_0)^{nd}}$$

where r_{ij} was the distance between atoms *i* and *j*, *nn*, *nd* and r_0 were set to 9, 14 and 1.2 Å respectively.

References for the Electronic Supplementary Information

- 1. H. Okamoto, J. Phase Equilibria Diffus., 2012, 33, 345-345.
- 2. S. Hino, N. Ogita, M. Udagawa, T. Ichikawa and Y. Kojima, J. Appl. Phys., 2009, 105, 023527.
- 3. H. Ning, Z. Lan, J. Bai and J. Guo, *Mater. Chem. Phys.*, 2014, 144, 484-490.
- 4. W. Gao, J. Guo and P. Chen, *Chin. J. Chem* . 2019, **37**, 442-451.
- 5. F. Kawamura and T. Taniguchi, *Sci. Rep.*, 2017, 7, 11578.
- R. Wang, W. Gao, S. Feng, Y. Guan, Q. Wang, J. Guo and P. Chen, *ChemSusChem*, 2023, 16, e202300813.
- W. Gao, J. Guo, P. Wang, Q. Wang, F. Chang, Q. Pei, W. Zhang, L. Liu and P. Chen, *Nat. Energy*, 2018, 3, 1067-1075.
- 8. H. Li, Y. Gong, H. Yang, X. Yang, K. Li, J. Wang and H. Hosono, ChemSusChem, 2023, 16.
- Q. Wang, J. Pan, J. Guo, H. A. Hansen, H. Xie, L. Jiang, L. Hua, H. Li, Y. Guan, P. Wang, W. Gao, L. Liu, H. Cao, Z. Xiong, T. Vegge and P. Chen, *Nat. Catal.*, 2021, 4, 959-967.
- 10. G. Kresse and J. Hafner, *Phys. Rev. B*, 1993, 47, 558-561.
- 11. G. Kresse and J. Furthmüller, Comp. Mater. Sci., 1996, 6, 15-50.
- 12. C. Jarzynski, Phys. Rev. Lett., 1997, 78, 2690-2693.