Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2024

**Supplementary Information** 

## Alkali metal modified Pt/EG-TiO<sub>2</sub> catalysts for CO oxidation with efficient resistance to SO<sub>2</sub> and H<sub>2</sub>O

Hongtai Zhu,<sup>ab</sup> Wenge Qiu,<sup>\*a</sup> Rui Wu,<sup>b</sup> Kai Li<sup>b</sup> and Hong He<sup>\*ab</sup>

a Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Beijing University of Technology, Beijing 100124, China b Advanced E-catal. Corporation, Ltd., Beijing 100025, China

\* Corresponding author, qiuwenge@bjut.edu.cn (Wenge Qiu) and hehong@bjut.edu.cn (Hong He)



Fig. S1 (A) Cycling of CO conversion over the Pt-0.15Na/EG-TiO<sub>2</sub> catalysts and (B) Arrhenius plots for CO oxidation over the catalysts. Reaction condition: 1 vol% CO, 6 vol%  $O_2$ , He (balance); GHSV = 400,000 hr<sup>-1</sup>.

 Table S1 Pt and Na contents in the samples determined by the ICP-AES technique, the

 dispersion of Pt in the samples determined by CO chemisorption and apparent activation

|                               |                |                | -                 |                               |  |
|-------------------------------|----------------|----------------|-------------------|-------------------------------|--|
| Samples                       | Pt content (%) | Na content (%) | Pt dispersion (%) | $E_a$ (kJ·mol <sup>-1</sup> ) |  |
| Pt/EG-TiO <sub>2</sub>        | 0.92           | -              | 29.7              | 62.3                          |  |
| Pt-0.1Na/EG-TiO <sub>2</sub>  | 0.91           | 0.09           | 49.3              | 43.6                          |  |
| Pt-0.15Na/EG-TiO <sub>2</sub> | 0.90           | 0.13           | 60.1              | 22.2                          |  |
| Pt-0.2Na/EG-TiO <sub>2</sub>  | 0.91           | 0.18           | 58.2              | 31.9                          |  |

energies  $(E_a)$  for CO oxidation over the samples.



Fig. S2 (A) and (B) AC-TEM images of Pt-0.15Na/EG-TiO<sub>2</sub> catalysts.



Fig. S3 (A) ESR and (B) O<sub>2</sub>-TPD spectra of catalysts.

Table S2 EXAFS fitting parameters for the Pt L<sub>3</sub> sides of the samples.

| Samples                       | Shell | $N^a$        | $R(\text{\AA})^b$ $\sigma^2(\text{\AA}^2)^c$ |                     | $\Delta E_0 ({ m eV})^d$ | R factor |
|-------------------------------|-------|--------------|----------------------------------------------|---------------------|--------------------------|----------|
| Pt foil                       | Pt-Pt | 12*          | $2.766\pm0.001$                              | $0.0045 \pm 0.0002$ | $10.7\pm0.3$             | 0.0032   |
| PtO <sub>2</sub>              | Pt-O  | $5.5\pm0.3$  | $2.012\pm0.001$                              | $0.0028 \pm 0.0005$ | $14.0\pm0.3$             |          |
|                               | Pt-Pt | $4.2\pm1.0$  | $3.084\pm0.001$                              | $0.0041 \pm 0.0013$ | $10.7\pm0.9$             | 0.0045   |
|                               | Pt-O  | $11.4\pm1.6$ | $4.018\pm0.001$                              | $0.0036 \pm 0.0001$ | $1.5\pm0.1$              |          |
| Pt/EG-TiO <sub>2</sub>        | Pt-O  | $5.6\pm0.4$  | $2.010\pm0.001$                              | $0.0012 \pm 0.0008$ | $12.0\pm0.4$             |          |
|                               | Pt-Pt | $6.1\pm0.1$  | $3.092 \pm 0.001$                            | $0.0032 \pm 0.0006$ | $9.7 \pm 1.0$            | 0.0096   |
|                               | Pt-O  | $22.6\pm0.1$ | $4.036\pm0.001$                              | $0.0081 \pm 0.0023$ | $0.6\pm0.8$              |          |
| Pt-0.15Na/EG-TiO <sub>2</sub> | Pt-O  | $5.7\pm0.3$  | $1.984 \pm 0.001$                            | $0.0017 \pm 0.0007$ | $12.0\pm0.6$             |          |
|                               | Pt-Pt | $1.9\pm0.1$  | $3.185 \pm 0.001$                            | 0.0044 ± 0.0010     | 12.1 + 1.1               | 0.0077   |
|                               | Pt-O  | $9.6\pm0.1$  | $3.656\pm0.001$                              | $0.0044 \pm 0.0019$ | $13.1 \pm 1.1$           |          |

<sup>*a*</sup>*N*: Coordination numbers; <sup>*b*</sup>*R*: Bond distance; <sup>*c*</sup> $\sigma^2$ : Debye-Waller factors; <sup>*d*</sup> $\Delta E_0$ : The inner potential correction; \*: According to the experimental EXAFS fit of Pt foil reference as the known crystallographic value.



Fig. S4 SO<sub>2</sub> and H<sub>2</sub>O resistance of the regenerated catalysts. Reaction condition: 1 vol% CO, 6 vol% O<sub>2</sub>, 100 ppm SO<sub>2</sub>, 10 vol% H<sub>2</sub>O, He (balance); GHSV = 400,000 h<sup>-1</sup>; temperature = 220 °C. Regeneration condition: 1 vol% CO, 6 vol% O<sub>2</sub>, He (balance); GHSV = 400,000 h<sup>-1</sup>; temperature = 350 °C constant for 3 h.

| Catalysts                     | Reaction condition                                                        | Time (h) | CO conversion (%) | Reference |  |
|-------------------------------|---------------------------------------------------------------------------|----------|-------------------|-----------|--|
|                               | 0.8 vol% CO, 15 vol% O <sub>2</sub> , 50 ppm SO <sub>2</sub> , 15         |          |                   |           |  |
| Pt-1P&M/TiO <sub>2</sub>      | vol% H <sub>2</sub> O, N <sub>2</sub> (balance); GHSV = 30,000 $h^{-1}$ ; | 72       | 99                | 30        |  |
|                               | temperature = $170  ^{\circ}$ C.                                          |          |                   |           |  |
|                               | 1 vol% CO, 6 vol% O <sub>2</sub> , 100 ppm SO <sub>2</sub> , 10           |          |                   |           |  |
| Pt/Keg-CeTi                   | vol% H <sub>2</sub> O, He (balance); GHSV = $400,000$                     | 30       | 93                | 64        |  |
|                               | h <sup>-1</sup> ; temperature = 200 °C.                                   |          |                   |           |  |
| 0.1Pt-5W/Ti-A                 | 1 vol% CO, 16 vol% O <sub>2</sub> , 50 ppm SO <sub>2</sub> , 10           |          | 85                | 69        |  |
|                               | vol% H <sub>2</sub> O, N <sub>2</sub> (balance); GHSV = 90,000            | 26       |                   |           |  |
|                               | mL·g <sup>-1</sup> ·h <sup>-1</sup> ; temperature = 220 °C.               |          |                   |           |  |
|                               | 1 vol% CO, 6 vol% O <sub>2</sub> , 100 ppm SO <sub>2</sub> , 10           |          |                   |           |  |
| Pt-0.15Na/EG-TiO <sub>2</sub> | vol% H <sub>2</sub> O, He (balance); GHSV = 400,000                       | 66       | 100               | This work |  |
|                               | h <sup>-1</sup> ; temperature = 220 °C.                                   |          |                   |           |  |
|                               |                                                                           |          |                   |           |  |

Table S3  $SO_2$  and  $H_2O$  resistance of the catalysts on reported literatures.



Fig. S5 XRD patterns of the as-obtained catalysts.



Fig. S6 SEM images of (A) Pt/EG-TiO<sub>2</sub>, (B) Pt-0.15Na/EG-TiO<sub>2</sub>, (C) Pt/EG-TiO<sub>2</sub>(U), and (D)

Pt-0.15Na/EG-TiO<sub>2</sub>(U).



Fig. S7 N<sub>2</sub> adsorption-desorption isotherms of the samples.

Table S4 BET surface areas, pore volumes, and pore sizes of the samples.

| Samples                           | BET surface area $(m^2 \cdot g^{-1})$ | Pore volume (cm <sup>3</sup> ·g <sup>-1</sup> ) | Pore size (nm) |  |
|-----------------------------------|---------------------------------------|-------------------------------------------------|----------------|--|
| Pt/EG-TiO <sub>2</sub>            | 97                                    | 0.5                                             | 18.1           |  |
| Pt-0.15Na/EG-TiO <sub>2</sub>     | 98                                    | 0.5                                             | 18.1           |  |
| Pt/EG-TiO <sub>2</sub> (U)        | 92                                    | 0.4                                             | 17.5           |  |
| Pt-0.15Na/EG-TiO <sub>2</sub> (U) | 95                                    | 0.4                                             | 17.9           |  |



Fig. S8 XPS survey spectrum of the samples.



Fig. S9 Surface element compositions of (A) Pt and (B) O on the samples.

| Sla-                          | $Pt^{2+}4f$ |      | $Pt^0 4f$ |      | O <sub>ads</sub> 1s |              | O <sub>latt</sub> 1s |      |
|-------------------------------|-------------|------|-----------|------|---------------------|--------------|----------------------|------|
| Samples                       | BE          | Area | BE        | Area | BE                  | Area         | BE                   | Area |
|                               | 72.5        | 14.4 | 71.4      | 33.5 |                     |              |                      |      |
| Pt/EG-TiO <sub>2</sub>        | 75.9        | 17.4 | 74.4      | 34.7 | 531.4               | 20.8         | 529.4                | 79.2 |
|                               | 72.4        | 21.1 | 71.1      | 27.7 |                     | <b>2</b> 0 ( |                      |      |
| Pt-0.15Na/EG-11O <sub>2</sub> | 75.9        | 19.5 | 74.3      | 31.7 | 531.3               | 28.6         | 529.3                | 71.4 |
|                               | 72.1        | 21.9 | 71.3      | 20.9 |                     |              |                      | (1.0 |
| Pt/EG-11O <sub>2</sub> (U)    | 75.8        | 17.9 | 74.2      | 39.3 | 531.3               | 38.2         | 529.2                | 61.8 |
| Pt-0.15Na/EG-                 | 72.3        | 15.5 | 71.1      | 22.3 | 531.0               | 16.6         | 520.2                | 53.4 |
| TiO <sub>2</sub> (U)          | 75.7        | 29.8 | 74.3      | 32.4 | 551.0               | 40.0         | 329.2                | 55.4 |

Table S5 XPS binding energies (BEs) of the samples.

The unit of BE is (eV) and Area is percentage content (%).



Fig. S10 At 220 °C, CO + O<sub>2</sub> + SO<sub>2</sub> DRIFTS spectra of (A) the Pt/EG-TiO<sub>2</sub> catalysts with time, and (B) the Pt-0.15Na/EG-TiO<sub>2</sub> catalysts with time. Reaction conditions: 1 vol% CO,



16 vol% O<sub>2</sub>, 100 ppm SO<sub>2</sub>.

Fig. S11 At 220 °C, CO + O<sub>2</sub> + SO<sub>2</sub> + H<sub>2</sub>O DRIFTS spectra of (A) the Pt/EG-TiO<sub>2</sub> catalysts with time, and (B) the Pt-0.15Na/EG-TiO<sub>2</sub> catalysts with time. Reaction conditions: 1 vol% CO, 16 vol% O<sub>2</sub>, 100 ppm SO<sub>2</sub>, 3 vol% H<sub>2</sub>O, He (balance).