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S1 NO oxidation

Fig. S1 shows the NO conversion during the NO oxidation experiment over HSiW/Fe,O;,
HPW/Fe,0;, and HPMo/Fe,Oj; catalysts at 150-500 °C. The NO conversion over all catalysts was
below 9% at the whole temperature window. It was observed that the NO oxidation activity on
HPMo/Fe,0; was less than those on HSiW/Fe,O3; and HPW/Fe, 05 catalysts at 250-500 °C. With
the increase of temperature, both HSiW/Fe,0; and HPW/Fe,0; catalysts could reach the maximum
values of NO conversion at 300 °C.

S2 XPS results of W 4f and Mo 3d

The XPS results of W 4f and Mo 3d of HPA/Fe,O; catalysts are shown in Fig. S2. A doublet peak
corresponding to W 4f photoelectrons appeared at 37.7-37.5 eV and 35.6-35.4 eV were obtained on
the HSiW/Fe,0; and HPW/Fe,05. This was associated with W in the formal (VI) oxidation state.
The Mo 3d binding energies of HPMo/Fe,O; mainly centered at 236.0 and 232.8 ¢V, which were
attributed to Mo®".

S3 DFT calculations

S3.1 Computational Methods

All calculations are based on the CASTEP program package, using the generalized gradient
approximation (GGA-PBE) with the Perdew-Burke-Ernzerh of exchange correlation function and
super soft pseudopotential, and using a plane wave extension with a cut-off energy of 500 eV. The
Brillouin area sampling adopts the Monkhorst-Park format, and the model adopts a 1 x 1 x 1 K-
point grid. The convergence standards for structure optimization and energy calculation are SCF
tolerance is 1.0 x 10~ eV/atom, Energy tolerance is 1.0 x 10~ e¢V/atom, Max force tolerance is 0.05
eV/A, and Maximum displacement tolerance is 0.002 A.
S$3.2 Formation of NH,NO

The formation of NH,NO is a key step in the SCR reaction.5! NH,NO undergoes a series of
reactions and decomposes into N, and H,0.5%3 DFT calculations were utilized to further investigate
the Langmuir-Hinshelwood mechanism and the Eley-Rideal mechanism of the SCR reaction over
HPW/Fe,0;. As shown in Fig. S5A, the reaction energy of NH,NO formation on HPW/Fe,03

through the Langmuir-Hinshelwood mechanism was 0.85 eV. However, when NH,NO formed on



HPW/Fe,0; through the Eley-Rideal mechanism, the reaction energy was -0.33 eV (shown in Fig.
S5B). The calculation results suggested that the NH,NO formation is more inclined to the SCR

reaction pathway of the Eley-Rideal mechanism.
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Fig. S1. NO oxidation over HSiW/Fe,O3;, HPW/Fe,0;, and HPMo/Fe,0; catalysts. Reaction
conditions: [NO] = 500 ppm, [O,] = 5%, catalyst mass = 100 mg, total flow rate = 100 mL min-!,

and WHSV = 60, 000 cm3 g'! h'l,
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Fig. S2. XPS spectra of HSiW/Fe,05;, HPW/Fe,05, and HPMo/Fe,O5 catalysts over the spectral
regions of W 4f and Mo 3d.
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Fig. S3. NO,-TPD results for HSiW/Fe,05;, HPW/Fe,05, and HPMo/Fe,0; catalysts.
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Fig. S4. Dependences of the
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SCR reaction rate during NO reduction over (A) HSiW/Fe,03, (B)

HPW/Fe,0;, and (C) HPMo/Fe,0; on gaseous NO concentration. Reaction conditions: [NH;]=500

ppm, [NO]=300-700 ppm, [0,]=5%, catalyst mass=3-30 mg, total flow rate=400 mL min’!, and

WHSV=800,000-8,000,000 cm? g!' h-!.
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Fig. S5. Energy profiles and the corresponding optimized structures of the NH,NO formation on
HPW/Fe,O; through (A) the Langmuir-Hinshelwood mechanism and (B) the Eley-Rideal

mechanism.
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