Supplementary Information

Core-shell Structured Cobalt-oxide Nanoparticles and Single Co Atoms Supported on Graphene for Selective Hydrodeoxygenation of Syringol to Cyclohexanol

Xiaohan Qu,^a Saibei Zhang, ^a Jingbo Mao,^{a,b} Hui Lv,^a and Jinxia Zhou* ^{a,b}

^a College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, China
^b Dalian Key Laboratory of Green Manufacturing Technology for Fine Chemicals, Dalian, 116622, China
*Corresponding authors.

E-mail addresses: zhoujxmail@163.com (Jinxia Zhou).

Tel.: +86 411-87403214, fax: +86 411-87402449.

Preparation of GO and rGO

Graphene oxide (GO) used in this research was prepared following the modified Hummers' method. In brief, the flake graphite was first mixed with NaNO₃ and H₂SO₄ mixture in an ice-water bath. Then the mixture was gradually added with KMnO₄ and underwent oxidation reaction at 35 °C for 2 h. Next, the mixture was diluted by water (twice the volume of H₂SO₄) and heated at 90 °C–98 °C for 15 min. Then, the reaction mixture was gradually added with sufficient water (about six times the volume of H₂SO₄) under vigorous stirring with the temperature decreased to 50 °C–60 °C and added with H₂O₂ (30 %). Finally, the mixture was allowed to stay at room temperature for 24 h. The as-prepared GO was purified by repeated centrifugation and washing. Reduced graphene oxide (rGO) was obtained following the previously reported method.³⁹ In brief, the obtained GO was suspended in water by ultrasound, added with ammonia, and reduced with hydrazine hydrate (80% in water) at 90 °C–98 °C, followed by filtering and washing with hot deionized water. The filter cake was dried with the freeze-drying method to obtain rGO. N was incorporated into the rGO network via the hydrothermal reduction of GO by using N₂H₄ and ammonia as reducing reagents.

Table

Catalyst	Element mass fraction (%)				S_{BET} (m ² •g ⁻¹)
_	С	Н	0	Ν	-
rGO	83.6	1.7	10.2	4.5	489
Gr	98.7	0.3	-	-	191
Co _{2.5} /rGO					385
Co _{1.0} /Gr					167

Table S1 Property description of the supports and the corresponding catalysts.

Figures

Fig. S1 Electron microscope images of the fresh Co_{2.5}/rGO catalyst: (a) TEM image and particle size distribution;(b) HRTEM image; (c) HAADF-STEM image of a core-shell structured nanoparticle

Fig. S2 HAADF-STEM image of single Co atoms of the $Co_{2.5}$ /rGO catalyst

Fig. S3 Electron microscope images of the $Co_{2.5}/Gr$ catalyst: (a) TEM image and particle size distribution; (b) HRTEM image and corresponding fast Fourier transform (FFT) of a nanoparticle from the green square area in (a); (c) HAADF-STEM image of single Co atoms in the $Co_{2.5}/Gr$ catalyst

Fig. S4 XRD patterns of the fresh and spent Co_{2.5}/rGO catalysts

Fig. S5 Raman diagrams of Co_{2.5}/rGO and Co_{2.5}/Gr.

Fig. S6 N₂-sorption characterizations of the catalysts