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Catalysts characterization

The chemical compositions of all catalysts were measured quantitatively using inductively 

coupled plasma atomic emission spectroscopy (ICP-AES) on an Agilent 725 spectrometer. Prior to 

the measurement, each sample was dissolved in a mixed solution of hydrofluoric acid and aqua regia 

and then diluted before measurement.

To obtain X-ray diffraction (XRD) measurements, we used a Bruker D8 Focus diffractometer 

with Cu Kα radiation (40 kV, 40 mA, λ = 1.5406 Å) and a scanning rate of 6°/min at 2θ = 5-80°.

Nitrogen adsorption and desorption isotherms were recorded at low temperatures (77 K) using a 

Micromeritics ASAP 2020 M instrument after degassing the sample at 180 °C for 1 hour prior to 

analysis. The specific surface area was determined by the Brunauer-Emmett-Teller (BET) method, 

and pore size distribution was calculated using the Barrett-Joyner-Halanda (BJH) method.

Scanning transmission electron microscopy (STEM) was recorded with a ThermoFisher Talos 

F200X (FETEM, 200 kV), and high angle annular dark field (HAADF)-STEM images were 

acquired with a convergence semi-angle of 11 mrad, and inner- and outer collection angles of 59 

and 200 mrad, respectively. Energy dispersive X-ray spectroscopy (EDS) was carried out using 4 

in-column Super-X detectors.

The analysis of X-ray photoelectron spectroscopy (XPS) was conducted on a Thermo Scientific 

ESCALAB 250Xi electron spectrometer. Al Kα (hν = 1486.6 eV) radiation was used as the 

excitation source in ultra-high vacuum (6.7×10−8 Pa), and a pass energy of 30 eV was applied. The 

C1s peak (284.8 eV) originating from the adventitious carbon was used as a reference.

Ultraviolet and visible diffuse reflectance spectroscopy (UV-vis) were determined on a Lambda 

950 UV-vis spectrophotometer.

The temperature-programmed reduction of hydrogen (H2-TPR) was performed in a PX 200 

apparatus (Tianjin Pengxiang Technology Co., Ltd.) equipped with a thermal conductivity detector 

(TCD). A total of 40 mg of the catalyst was loaded into a quartz reactor and gradually heated from 

30 °C to 800 °C at a rate of 10 °C/min while being exposed to a flow of 10 vol.% H2/N2 gas mixture, 

flowing at a flow rate of 40 mL/min. The amount of H2 consumed was quantified by utilizing high 

purity CuO as a reference sample.

The PX 200 apparatus, manufactured by Tianjin Pengxiang Technology Co., Ltd., was used for 

the temperature-programmed desorption of ammonia (NH3-TPD). Initially, 50 mg of the catalyst 



was placed in a quartz reactor and treated with Ar for 1 hour at 450 °C with a flow rate of 50 mL/min. 

Following cooling down to 90 °C, the adsorption of ammonia was executed in a flow of 10 vol.% 

NH3/Ar at a flow rate of 50 mL/min and preserved at 90 °C for 30 minutes. Desorption was carried 

out by ramping the temperature from 90 °C to 600 °C at a rate of 10 °C /min. A TCD detected the 

corresponding NH3 desorption signal.

Temperature-programmed desorption of oxygen (O2-TPD) was conducted using a Micromeritics 

AutoChem II 2920 chemisorption analyzer. A mass of 50 mg of the catalyst underwent pretreatment 

at 400 °C for 1 hour in 3 vol.% O2/He gas with a flow rate of 40 mL/min. Upon cooling to room 

temperature, the catalyst was purged with pure He at a flow rate of 40 mL/min for 40 minutes. The 

reactor was then heated from room temperature to 800 °C at a rate of 10 °C/min. The Hiden HPR20 

mass spectrometer (MS) was used to record the signal.

The in-situ DRIFT measurement of VC oxidation was performed on a Nicolet Nexus 6700 FT-

IR spectrometer with an MCT detector, and the sample cell was equipped with BaF2 windows and 

a heating chamber. The sample was pretreated at 300 °C for 1 hour in O2/Ar at a 40 mL/min flow 

rate, then cooled to 60 °C to collect the backgrounds at 40 °C intervals. Subsequently, the gas flow 

consisting of stoichiometric VC/O2 mixture was introduced into the IR cell at 60 °C and the infrared 

signals were collected after stabilizing for 30 minutes. Then the temperature was increased, and the 

spectra of VC oxidation were collected at 40 °C intervals.

Catalyst performance evaluation for EDC oxidation

The catalytic activity of EDC oxidation was evaluated by a fixed bed reactor. 100 mg of the 

catalysts were placed in a quartz tube with an inner diameter of 6 mm. A mixture of EDC and air, 

with a concentration of 1000 ppm of EDC, was passed through the tube with a weight hourly space 

velocity (WHSV) of 30,000 mL·h-1·gcat
-1. The outlet gas was detected online using a GC2060 gas 

chromatography. It equipped a flame ionization detector (FID) to test EDC and the organic by-

products of the reaction. The conversion of EDC was calculated by the following equation:

XEDC(%)=
[EDC]in - [EDC]out

[EDC]in
× 100%

Where [EDC]in and [EDC]out represent the concentrations of EDC at the inlet and outlet, 
respectively.



 

Fig. S1 EDS mapping images of Ru/HZSM-5 catalyst.



 

Fig. S2 EDS mapping images of Ru-2Cu/HZSM-5 catalyst.
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Fig. S3 Ru 3d XPS spectra of zeolite-based catalyst.



Fig. S4 H2-TPR profiles of CuO sample.



Fig. S5 CO2 yields of the Ru/HZSM-5 and Ru-2Cu/HZSM-5 catalysts in the catalytic combustion 
of VC.



Fig. S6 Relationship between surface oxygen desorption peak area and T90 values over Ru/HZSM-
5 and Ru-xCu/HZSM-5 catalysts.
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(b) Ru-0.5Cu/HZSM-5
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(c) Ru-1Cu/HZSM-5
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(d) Ru-2Cu/HZSM-5
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(a) Ru/HZSM-5

Fig. S7 The concentrations of chlorinated by-products as a function of temperature for VC oxidation 
over the zeolite-based catalysts. The reaction conditions were 1000 ppm VC, and air balance, and 
the WHSV was 30,000 mL·h-1·gcat

-1.
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Fig. S8 (a) Catalytic activity of VC for the Ru-2Cu/HZSM-5 and Ru-5Cu/HZSM-5 catalysts. (b) 

The concentrations of chlorinated byproducts as a function of temperature over the Ru-2Cu/HZSM-

5 and Ru-5Cu/HZSM-5 catalysts.



Fig. S9 The concentrations of chlorinated by-products as a function of temperature for EDC 
oxidation over (a) Ru/HZSM-5 and (b) Ru-2Cu/HZSM-5 catalysts. The reaction conditions were 
1000 ppm EDC, and air balance, and the WHSV was 30,000 mL·h-1·gcat

-1.



Fig. S10 Catalytic stability for VC oxidation of Ru/HZSM-5 and Ru-2Cu/HZSM-5 catalysts at 320 

°C.



Fig. S11 The concentrations of chlorinated by-products as a function of temperature for VC 

oxidation over the zeolite-based catalysts under dry and wet conditions.



Fig. S12 In situ DRIFTS of VC oxidation over (a) Ru/HZSM-5 and (b) Ru-2Cu/HZSM-5 catalysts 
in the wavenumber range of 2500-4000 cm-1 at different temperatures.



Table S1 Calculation results of H2-TPR and NH3-TPD for the catalysts

H2 consumption (mmol/g) NH3 desorption (mmol/g)
Catalysts

RuO2→Ru Weak Strong Total

Ru/HZSM-5 0.110 0.28 1.11 1.39

Ru-0.5Cu/HZSM-5 0.118 0.20 0.20 0.40

Ru-1Cu/HZSM-5 0.123 0.23 0.17 0.40

Ru-2Cu/HZSM-5 0.136 0.26 0.13 0.39



Table S2 Comparison of the catalytic activity of the Ru-2Cu/HZSM-5 catalyst for VC oxidation 
with those catalysts reported in the literatures

Catalysts
VC concentration

(ppm)
WHSV

(mL·h-1·gcat
-1)

T90

(°C)
Reference

Mn0.4Ti0.6Ox 1000 15,000 262 [1]
Co(0.7)CeOx 1000 15,000 282 [2]

Ru-CeO2 1000 30,000 262 [3]
0.5% Ru/Co3O4-F-10 1000 30,000 251 [4]

1% RuOx/HZ5-3d 1000 30,000 297 [5]
1% Ru/CoPO-MCF 1000 48,000 313 [6]

Ru/Sn-MFI 1000 30,000 306 [7]
Ru-2Cu/HZSM-5 1000 30,000 257 This work
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