Effects of Pd and Co Intimacy in Pd-modified Co/TiO₂ Catalysts for Direct CO₂ Hydrogenation to Fuels: the Closer not the Better

C. Scarfiello, A. Durupt, Y. Tison, D. Pham Minh, K. Soulantica, P. Serp

Supporting Information

Figure S1. XRD diffractograms (40°-60°) of the 1Pd/TiO₂* catalyst after calcination and subsequent reduction (4 h, 350 °C, 40% H_2/Ar).

Figure S2. HAADF-STEM micrographs with Pd particle size distribution and EDX analysis of the reduced $1Pd/TiO_2^*$ catalyst. Pd single atoms are surrounded by a yellow circle for better visualization.

Figure S3. High-resolution XPS spectrum of Pd 3d of the sample $1Pd/TiO_2^*$.

Figure S4. a H₂-TPR profile of the 1Pd/TiO₂* catalyst; and **b** CO₂-TPD profiles of the 1Pd/TiO₂* catalyst and of the TiO₂* support.

Figure S5. CO_2 -TPD profiles and deconvolutions of the support and the 1Pd/TiO₂* catalyst.

Catalyst	CO ₂ Total (cm ³ g ⁻¹)	CO₂ Weak (cm ³ g ⁻¹)	CO₂ Medium (cm ³ g ⁻¹)	CO₂ Strong (cm ³ g ⁻¹)	CO ₂ [w/(m+s)]
TiO ₂ *	69.8	7.2	50.6	12	0.12
1Pd/TiO ₂ *	45.0	4.0	26.6	14.5	0.10
10Co/TiO ₂ *	38.7	20.7	17.2	0.8	1.15
0.1Pd-10Co- o/TiO ₂ *	46.3	8.4	34.0	3.9	0.22
0.1Pd-10Co- r/TiO ₂ *	35.4	5.2	18.4	11.8	0.17
1Pd-10Co-o/TiO ₂ *	28.3	3.4	19.8	5.1	0.14

Tables S1. CO_2 adsorption (as cm³.g⁻¹ and as %) resulting from CO_2 -TPD for all the materials used in this study.

As cm³/g:

As percentage:

Catalyst	CO ₂ Total (%)	CO ₂ Weak (%)	CO ₂ Medium (%)	CO ₂ Strong (%)	CO ₂ [w/(m+s)]
TiO ₂ *	100	10.4	72.4	17.2	0.12
1Pd/TiO ₂ *	100	8.8	59.0	32.2	0.10
10Co/TiO ₂ *	100	53.5	44.4	2.1	1.15
0.1Pd-10Co- o/TiO ₂ *	100	18.2	73.5	8.3	0.22
0.1Pd-10Co- r/TiO ₂ *	100	14.6	52.1	33.4	0.17
1Pd-10Co-o/TiO ₂ *	100	12.1	70.0	17.9	0.14

Figure S6. Conversions X (CO₂: green; H₂: blue) and selectivity (CO: grey; C₅₊: red) for the 1%Pd/TiO₂* catalyst at 60 hours on stream under various conditions, T = 220 °C, P = 20 bar, WHSV = 1620 mL g_{cat}⁻¹ h⁻¹. RWGSR and FTS correspond to the feeding ratio of H₂/CO₂ = 1/1 and 2/1, respectively.

Figure S7. Photographs of samples made with 1 g of WO₃ mixed or not with 5 mg of the catalysts investigated in this study before (left) and after (right) treatment with H₂ (10 mL min⁻¹) at 40 °C for 5 min.

Figure S8. HAADF-STEM micrographs and EDX analysis of the reduced: **a** and **b** 0.1Pd-10Co-o/TiO₂*; and **c** 0.1Pd-10Co-r/TiO₂* catalysts.

Figure S9. HAADF-STEM micrographs and EDX analysis of the reduced $10Co/TiO_2^*$ catalyst.

Figure S10. XRD diffractograms (40°-60°) of the 10Co/TiO₂* and 1Pd-10Co-o/TiO₂* catalysts.

Figure S11. High-resolution XPS spectra of: **a** Pd 3d; **b** Co 2p; and **c** Ti 2p regions of the 1Pd-10Co-o/TiO₂* catalyst.

Catalyst	H_2 - TPR (cm ³ g ⁻¹)	
10Co/TiO ₂ *	47.3	
0.1Pd-10Co-o/TiO ₂ *	43.7	
0.1Pd-10Co-r/TiO ₂ *	37.0	
1Pd-10Co-o/TiO ₂ *	48.2	

Table S2. H_2 consumption (cm³/g) from H_2 -TPR for the catalyst monometallic 10Co/TiO₂* and bimetallic catalysts.

Figure S12. CO₂-TPD profiles and deconvolutions of mono and bimetallic catalysts.

Figure S13. a Radar chart including the main measured parameters and the measured STY on a 0-1 scale. **b** Correlation between the two most relevant parameters and STY taken the values calculated on a 0-1 scale. **c** Correlation between the two most relevant parameters and STY taken the values calculated on a 0-1 scale for the $10Co/TiO_2^*$ catalyst and the bimetallic catalysts.

Figure S14. Different configurations used for the monometallic catalysts: **a** 2-beds configuration; and **b** 1-bed configuration.

Figure S15. STY (mol_{CO2} mol_{Me⁻¹} h⁻¹) and yields Y (mol_Z mol_{Me⁻¹} h⁻¹, Z = C₂₊) of the monoand bimetallic catalysts at 25 hours on stream, T = 220 °C, P = 20 bar, WHSV = 1620 mL g_{cat}⁻¹ h⁻¹.