Electronic Supplementary Information

Enhanced catalytic performance for toluene combustion

via Ce-doped α-MnO₂: efficient balance between toluene adsorption and

activation oxidation

Yongli Dong^{a,‡}, Shuo Li^{a,‡}, Chaoqun Chen^{a,‡}, Weina Song^{a,*}, Xinglong Li^a, Fan Wang^a, Lina Ma^a,

Xiaotong Wang^a, Wei Li^{b,*}

^a School of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, PR China

^b Department of Chemistry, Fudan University, Shanghai 200433, PR China

[‡]*These authors make equal contribution to this work.*

* Corresponding Author: <u>weinasong@163.com</u> (W. N. Song), <u>weilichem@fudan.edu.cn</u> (W. Li).

Supplemental Data Items

1. Materials

Manganese sulfate monohydrate (MnSO₄·H₂O, AR) was purchased from Bodi Chemical Co., Ltd., Tianjin, China. Ethanol glycol (AR) was purchased from Sinopharm Chemical Reagent Co. Ltd., Shanghai, China. Toluene (AR) and potassium permanganate (KMnO₄, AR) were purchased from Kemiou Chemical Reagent Co. Ltd., Tianjin, China. Ammonium ceric nitrate (Ce(NH₄)₂(NO₃)₆, AR) was purchased from Aladdin, Shanghai, China.

2. Experimental

 N_2 adsorption-desorption isothermals were recorded on a Micromeritics Tristar 2420 instrument at 77 K, before measurements, each sample was degassed at 180 °C for 6 h. The Brunauer-Emmett-Teller (BET) method was used to calculate the specific surface areas. The pore size distributions were derived from the desorption branches based on Barrett-Joyner-Halenda (BJH) model. Temperature programmed reduction with H_2 (H_2 -TPR) was performed by a TP-5080 adsorption analyzer (Xianquan) equipped with a thermal conductivity detector. Typically, the sample (30 mg) was packed into the reactor and degassed at 300 °C for 1 h with an Ar gas flow, then the sample was cooled down to the room temperature, and the gas flow was shifted to a mixture of 5 vol.% H_2/N_2 (30 mL min⁻¹), then the reactor was carried out by raising the temperature from 30 to 700 °C at a heating rate of 10 °C min⁻¹.

Temperature-programmed desorption of oxygen (O₂-TPD) was conducted on a TP-5080 adsorption analyzer with a quadrupole mass detector (HIDEN QGA). At first, the MnO_x and Ce-MnO₂-EG catalyst (30 mg) was packed into the reactor and pre-treated under O₂ atmosphere (30 mL min⁻¹) at 300 °C for 60 min, and then cooled down to 30 °C. Then the reactor was purged by He for 60 min. Finally, the TPD experiment was took under a He flow (30 mL min⁻¹) from 30 to 850 °C upon a rate 10 °C min⁻¹.

Temperature-programmed surface reaction of toluene in He atmosphere (without O_2) (C₇H₈-TPSR (He)) were carried out on a TP-5080 adsorption analyzer with a quadrupole mass detector (HIDEN QGA). At first, the MnO_x and Ce-MnO₂-EG catalyst (30 mg) was packed into the reactor, after the pretreatment in He at 300 °C for 60 min it was cooled to 30 °C. Then the mixture gas of toluene/He was introduced into reactor for 10 min, and then the reactor was purged by He for 60 min. Finally, the TPSR experiment was took under a He flow (30 mL min⁻¹) from 30 to 850 °C upon a rate 10 °C min⁻¹. The signal was detected by a mass spectrometer (MS) at mass-to-charge (m/z) ratios of 44 (CO₂) and 92 (toluene).

C₇H₈-TPSR (He+O₂) were carried out on a TP-5080 adsorption analyzer with a quadrupole mass detector (HIDEN QGA). At first, the MnO_x and Ce-MnO₂-EG catalyst (30 mg) was packed into the reactor, after the pretreatment in He at 300 °C for 60 min it was cooled to 30 °C. Then the mixture gas of toluene/He was introduced into reactor for 10 min, and then the reactor was purged by He for 30 min. Finally, the TPSR experiment was took under a O₂/He (20 vol.%) flow (30 mL min⁻¹) from 30 to 850 °C upon a rate 10 °C min⁻¹. The signal was detected by a mass spectrometer (MS) at mass-to-charge (m/z) ratios of 44 (CO₂) and 92 (toluene).

Table S1

The desorption peak areas of O_{α} -M species, consumption peak areas of O_{α} -M and CO_2 product peak areas calculated based on the C₇H₈-TPSR curve.

Sample	O _a -M ^a	Consumption of $O_{\alpha}\text{-}M^b$	CO ₂ product peak area ^c
MnO ₂ -HT	4370	-	75
MnO ₂ -RP	1055	134	268
MnO ₂ -EG	685	181	422
Ce-MnO ₂ -EG	969	240	769

^a The peak areas of O_{α} -M species were calculated based on the O_2 -TPD curves.

^b The consumption peak areas of O_{α} -M species were calculated based on the O₂-TPD and C₇H₈-TPSR curves (TCD signal) from 450 to 700 °C.

 $^{\circ}$ The product peak areas of CO₂ were calculated based on the C₇H₈-TPSR curves (TCD signal) from 200 to 400 $^{\circ}$ C.

Table S2

Catalysts	Synthesis method	Oxidation conditions		Toluene conversion		Reference
		Toluene (ppm)	Space velocity	T50 (°C)	T ₉₀ (°C)	_
α-MnO ₂	hydrothermal	1000	50000 mL g ⁻¹ h ⁻¹	215	228	[1]
MnO ₂	H ₂ O ₂ reduction	1000	$60000 \text{ mL g}^{-1} \text{ h}^{-1}$	255	267	[2]
Mn ₂ O ₃	Redox precipitation	1000	20000 mL g ⁻¹ h ⁻¹	241	250	[3]
α -MnO ₂ / δ -MnO ₂	decomposition method	1000	20000 mL g ⁻¹ h ⁻¹	205	213	[4]
Mn ₃ O ₄	solution combustion strategy	1000	19100 h ⁻¹	225	256	[5]
MnO _x -1	redox coprecipitation method	1000	$40000 \text{ mL g}^{-1} \text{ h}^{-1}$	219	223	[6]
MnO _x /AC-0.3	in-situ redox precipitation	1000	$20000 \text{ mL g}^{-1} \text{ h}^{-1}$	184	193	[7]
Mn ₂ O ₃ @MnO ₂	redox-induced H ⁺ /KMnO ₄	1000	60000 mL g ⁻¹ h ⁻¹	235	252	[8]
	treatment method					
MnO _x	starch paste-assisted method	1000	60000 mL g ⁻¹ h ⁻¹	250	285	[9]
MnCo _x	starch paste-assisted method	1000	$60000 \text{ mL g}^{-1} \text{ h}^{-1}$	203	224	
Ag-MnO ₂	H2O2 assisted treatment method	1000	60000 mL g ⁻¹ h ⁻¹	216	225	[10]
Ni-MnO ₂	EG reduction strategy	1000	20000 mL $g^{-1} h^{-1}$	189	199	[11]
Ce0.03MnOx	Redox precipitation	1000	20000 mL g ⁻¹ h ⁻¹	215	220	[3]
MnOx/Co ₃ O ₄	synergistic pyrolysis	1000	120000 mL g ⁻¹ h ⁻¹	237	242	[12]
	adsorption-oxidation strategy					
CuMnO _x	co-precipitation method	1000	20000 mL $g^{-1} h^{-1}$	210	231	[13]
MnO ₂ -EG	EG reduction strategy	1000	20000 mL g ⁻¹ h ⁻¹	194	214	This work
Ce-MnO ₂ -EG	EG reduction strategy	1000	20000 mL g ⁻¹ h ⁻¹	184	197	This work

Catalytic activities of toluene combustion over different catalysts reported in the literature.

Fig. S1 K 2p XP spectra of various MnO₂ and Ce-MnO₂-EG samples.

Fig. S2 Enlarged O₂-TPD curves of the various catalysts in the low temperature region.

Fig. S3 (a) XRD pattern and (b) O₂-TPD profile of MnO_x reference sample without K content.

Fig. S4 Activation-oxidation temperature of toluene to CO_2 based the C_7H_8 -TPSR testing (without O_2) for various MnO₂ and Ce-MnO₂-EG catalysts under He atmosphere.

Fig. S5 Comparison curves of toluene signal (m/z = 92) and CO₂ signal (m/z = 44) for C₇H₈-TPSR

 $(He + O_2)$ and C_7H_8 -TPSR (He) of Ce-MnO₂-EG.

Fig. S6 Catalytic activities of Ce-MnO₂-EG catalyst under different WHSV with $[C_7H_8] = 1000$ ppm in air.

Fig. S7 XRD patterns of fresh Ce-MnO₂-EG and Ce-MnO₂-EG-used samples.

Fig. S8 H₂-TPR curves fresh Ce-MnO₂-EG and Ce-MnO₂-EG-used catalysts.

Fig. S9 O₂-TPD profiles of fresh Ce-MnO₂-EG and Ce-MnO₂-EG-used catalysts.

References

- X. Zhang, Y. Yang, Q. Zhu, M. Ma, Z. Jiang, X. Liao, C. He, J. Colloid. Interf. Sci., 2021, 598, 324–338.
- [2] J. Chen, X. Chen, X. Chen, W. Xu, Z. Xu, H. Jia, J. Chen, *Appl. Catal. B: Environ.*, 2018, 224, 825–835.
- [3] L. Zhao, Z. Zhang, Y. Li, X. Leng, T. Zhang, F. Yuan, X. Niu, Y. Zhu, *Appl. Catal. B: Environ.*, 2019, 245, 502–512
- [4] Q. Huang, Z. Zhou, B. Lan, M. Sun, C. Sun, L. Yu, *Colloid. Surface. A.*, 2023, 666, 131302.
- [5] M. Piumetti, D. Fino, N. Russo, Appl. Catal. B: Environ., 2015, 163, 277–287.
- [6] C. Zhang, M. Li, X. Wang, L. Fan, Y. Dong, Y. Zhu, J. Chem. Technol. Biot., 2021, 97, 1138-1148.
- Y. Dong, F. Wang, W. Song, P. Wang, C. Zhu, X. Wang, S. Li, X. Li, W. Li, *Chem. Eng. J.*, 2023, 464, 142740.
- [8] W. Yang, Y. Peng, Y. Wang, H. Liu, Z. Su, W. Yang, J. Chen, W. Si, J. Li, Appl. Catal. B: Environ., 2020, 278, 119279.
- [9] J. Zhao, P. Wang, J. Wang, C. Liu, J. Wang, *Chem. Eng. J.*, 2023, 464, 142739.
- [10] W. Yang, X. Zhao, Y. Wang, X. Wang, Catal. Sci. Technol., 2022, 12(19), 5932–5941.
- [11] Y. Dong, J. Zhao, J. Zhang, Y. Chen, X. Yang, W. Song, L. Wei, W. Li, *Chem. Eng. J.*, 2020, 388, 124244.
- [12] D. Han, X. Ma, X. Yang, M. Xiao, H. Sun, L. Ma, J. Colloid. Interf. Sci., 2021, 603, 695–705.
- [13] C. Xu, S. Dong, T. Chen, H. Liu, X. Zou, M. Ji, Fuel., 2023, 347, 128401.