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1 RPBE optimized lattice constants

Table S1: RPBE optimized lattice constants of the Pt-based alloys considered in this study

System a(A) b(A) c(A)

L1o-PtFe  3.903 3.903 3.795
L1o-PtCo 3.822 3.822 3.797
L1o-PtNi  3.867 3.867 3.689
L1,-PtsFe 3.887 3.887 3.887
L1,-Pt3Co 3.889 3.889 3.889
L1,-Pt3Ni  3.900 3.900 3.900
L15-PtsSc  4.031 4.031 4.031

2 Standard reduction potentials

Table S2: Standard reduction potentials (pH 0) for pure metals considered in this study obatained from
Reference [1]

Metal Number of electrons transferred Standard dissolution potential (Vsug)

Pt 2 1.18
Co 2 -0.28
Ni 2 -0.26
Fe 2 -0.45
Sc 3 -2.08




3 Schematics showing diffusion pathway in cubic alloys

diffusion pathway

Figure S1: Schematic showing vacancy mediated bulk diffusion pathway for L1o-Pt3M systems.
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Figure S2: Schematic showing vacancy mediated “near-surface” diffusion pathway for L1o-Pt3M systems.



4 DFT calculated dissolution potentials for elements in FCT and
FCC Pt-based alloys

Table S3: Dissolution potential (¢) of Pt (in Vgug) on 111 facet of L1p-PtM and L1y-Pt3M surfaces as a
function of Pt overlayers. Here, Pt,, denotes “n” overlayers of Pt on an alloy system, created by replacing
solute metal (M) with Pt.

System Dissolution Potential (Vsyg) System Dissolution Potential (Vsygg)

L1y-PtFe 1.90 L1s-Pt3Fe 2.07
LlQ-PtFe/Ptl 1.96 L12-Pt3F€/Pt1 1.76
L1o-PtFe/Pto 1.76 L1s-PtsFe/Pty 1.69
L1y-PtCo 1.86 L15-Pt3Co 2.04
L1o-PtCo/Pt; 1.91 L15-Pt3Co/Pty 1.74
Llo—PtCO/PtQ 1.73 LlQ—Pt3CO/Pt2 1.69
L1y-PtNi 1.82 L1,-Pt3Ni 1.91
L1o-PtNi/Pt; 1.74 L1o-PtsNi/Pty 1.73
L1p-PtNi/Pto 1.62 L1o-PtsNi/Pty 1.68
- - ng-PthC 1.91

- - ng—PthC/Ptl 1.78

- - ng—PthC/Ptg 1.52

Table S4: Dissolution potential (¢) of M (in Vgug) on 111 facet of L1p-PtM and L1s-Pt3M surfaces

System  Dissolution Potential (Vsug) System Dissolution Potential (Vgug)

Llo—PtFe 0.13 LlQ-Pt3F€ 0.27
L1,-PtCo 0.15 L1,5-Pt3Co -0.01
L1y-PtNi 0.17 L1,-Pt3Ni 0.12

- - ng-PthC -0.76

Table S5: Change in free energy, AG associated with substitution of solute metal (M) with a Pt atom in
L1p-PtM and L15-Pt3M surfaces. Here, ¢ represents the potential in SHE scale.

System  AG (eV) System  AG (eV)

L1g-PtFe -3.39 L1,-PtsFe -2.75
L1y-PtCo -3.30 L15-Pt3Co -3.20
L1y-PtNi -3.08 L1,-PtgNi -3.01

- - ng—PthC -8.9 - 6(]5




5 Climbing-Image Nudged Elastic Band (CI-NEB) pathways

bulk diffusion

Er= 1.139 eV; E,= 1.139 eV; AE = 0.000 eV

E¢= 3.445 eV; E. = 0.666 eV; AE = 2.778 eV
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Figure S3: DFT calculated CI-NEB pathways for bulk diffusion in fcc Pt, L1¢p-PtM and L1s-Pt3 M structures.
The overall barrier (in eV) from configuration “a” to “d” (i.e., the forward barrier, Ef) is highlighted in red.

E, and AE represents the reverse barrier (in eV) and the potential energy difference (in eV) between
configuration “d” and “a”, respectively.



6 Climbing-Image Nudged Elastic

“near

surface” diffusion

6.1 Diffusion in FCC systems
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Figure S4: DFT calculated CI-NEB pathways for “near surface” diffusion in L1s-Pt3M structures. The
overall barrier (in eV) from configuration “A” to “F” (i.e., the forward barrier, Ef) is highlighted in red.
E, and AFE represents the reverse barrier (in eV) and the potential energy difference (in eV) between
configuration “F” and “A”, respectively.



6.2 Diffusion in FCT systems
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Figure S5: DFT calculated CI-NEB pathways for “near surface” diffusion in L1g-PtM structures. The overall
barrier (in e€V) from configuration “A” to “F” (i.e., the forward barrier, Ef) is highlighted in red. E, and
AFE represents the reverse barrier (in eV) and the potential energy difference (in eV) between configuration
“F” and “A”, respectively.

7 Rate (or time constant) comparisons

The diffusion barrier can be correlated to the rate of diffusion by

AFE

k = Ae *BT

Here, AE is the overall diffusion barrier of a system for a given pathway (in eV), kp is the Boltzmann
constant (in eV /K), k is the rate of overall diffusion, A is the pre-expoenential factor, and T is the temperature
(in K). We compared two systems in terms of their rates of diffusion by
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Here, ky and ko are the rate of overall diffusion for the reference and target systems, respectively. A more

positive value of In :—; suggests rate of diffusion in target system to be slower than the reference system by
AEo—AE
a factor of e~ 57 = and vice-versa.
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Figure S6: Comparison heatmap for rate of overall diffusion at T=80 °C for (A) bulk diffusion pathway and
(B) near surface diffusion pathway.
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