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1 General Information

All reactions were performed under an inert atmosphere of argon by using Schlenk techniques or in a MBraun
inert-gas glovebox. The solvents were purified according to standard procedures. All -substrates and amine
boranes were purchased from Sigma-Aldrich, Acros Organics or TCl and used as purchased without further
purification. The deuterated solvents were purchased from Eurisotope and dried over 3 A molecular sieves.
Complexes Mn1,' fac-[Mn(dippe)(CO)sH]?> and cis-[Mn(dippe)(CO)2(k?-BHs)] (MnBHa4)®> were synthesized
according to literature. *H and *3C{*H}, !B, '°F and 3!P{*H} NMR spectra were recorded on Bruker AVANCE-250,
AVANCE-400, and AVANCE-600 spectrometers. *H and 3C{*H} NMR spectra were referenced internally to residual
protio-solvent, and solvent resonances, respectively, and are reported relative to tetramethylsilane (3 = 0 ppm).
31p{1H} NMR spectra were referenced externally to H3POa4 (85%) (5 = 0 ppm). B NMR spectra were referenced

externally to BFs'Et20 (15% in CDClIs).

GC—MS analysis was conducted on an ISQ LT Single quadrupole MS (Thermo Fisher) directly interfaced to a TRACE
1300 Gas Chromatographic systems (Thermo Fisher), using a Rxi-5Sil MS (30 m, 0.25mm ID) cross-bonded

dimethyl polysiloxane capillary column.

2 Experimental Procedures for the Reduction of Nitriles

R“ ™ NH,CI
(upon workup)

N P o
= amine Mn1 (x mol%)
- M
R + boranes ; ;

Inside an argon-flushed glovebox, a screwcap-vial (8 mL) was charged with Mn1 (0.5-3 mol%), nitrile substrate
(0.56 mmol, 1.0 equiv.), amine borane (0.56 mmol —1.12 mmol, 1.0 -2.0 equiv.) and 0.56 mL solvent (1M) in this
order. A stirring-bar was added, the vial was sealed, transferred outside the glovebox and the reaction mixture
was heated to the indicated temperature (if required) and stirred for the indicated time. The reaction was

quenched by exposure to air.

For optimization reaction, 50 pl of the sample were taken, diluted with 550 pl CDCls and analysed by *°F{*H} NMR.

In case of substrate scope, 10 pl of the sample was taken for GC-MS analysis.

Isolation of product

2.5 mL Et20 and 1 mL of aqueous HCI (1M) were added. The biphasic system was stirred for approx. 30 minutes
until gas evolution ceased. The pH of the aqueous phase was adjusted to approx. 10 using a NaOH solution (2M)
and the phases were separated. The aqueous phase was thrice extracted with 2 mL Et20. The combined organic
phases were washed once with water and once with brine. The organic phases were dried over Na;SO4 and the
solvent was removed. The residue was redissolved in 5 mL Et.0 and ethereal HCI (1M) was added dropwise under
stirring until precipitation was complete. The precipitate was collected by filtration and thoroughly washed with

Et20. The ammonium salt was dried.



3 Further optimization Reactions
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borane Mn1 (x mol%) J@/\NHZ /@A NH
+ orsilane ; y F + F
1 1a

Entry Catalyst loading Reductant Temperature Reaction Time Conversion Ratio
[mol%] (equiv.) solvent [°C] [h] (%) 1:1a
1 3 DMAB (2) THF 70 18 >99 >99:1

2 3 EtsSiH (2) THF 70 18 - -

3 3 PhMe,SiH (2) THF 70 18 - -

4 3 PhSiH; THF 70 18 - -
6 3 DMAB (2) THF 50 18 >99 >99:1
7 2 DMAB (2) THF 50 18 >99 >99:1
8 2 DMAB (2) THF 50 18 >99 >99:1
9 2 DMAB (2) CesHe 50 18 >99 >99:1
10 2 DMAB (2) THF 25 18 >99 >99:1
11 2 DMAB (2) CeHe 25 18 >99 >99:1
12 2 DMAB (2) Et,O 25 18 >99 >99:1
13 2 DMAB (2) DCM 25 3 83 94:6
14 2 DMAB (2) Toluene 25 3 91 97:3
15 2 DMAB (1.6) Et,0 25 3 >99 >99:1
16 2 DMAB (1.4) Et,0 25 3 >99 >99:1
17 2 DMAB (1.2) Et,0 25 3 94 98:2
18 1 DMAB (1.3) Et,0 25 3 89 97:3

Reaction conditions: 0.56 mmol 4-fluorobenzonitrile, Mn1 (x mol%) solvent (0.56 mL, 1 M), conversion and ratio

1:1a determined by **F{*H}-NMR spectroscopy.



4 Mechanistic Studies

4.1 Identification of the Primary Product (P)
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Inside an argon-flushed glovebox, an NMR tube was charged with Mn1l (0.0112 mmol, 2 mol%), 4-

flurobenzonitrile (0.56 mmol, 1.0 equiv.), DMAB (0.73 mmol, 1.3 equiv.) and 0.56 mL CsDs (1M). After 3 hours

NMRs were recorded.
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Figure S2: 11B-NMR for the reduction 4-flurobenzonitrile with DMAB in presence of Mn1.
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Figure S3: *H/*'B-HSQC for the reduction 4-flurobenzonitrile with DMAB in presence of Mn1.
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Figure S4: *H-DOSY for the reduction 4-flurobenzonitrile with DMAB in presence of Mn1.

1.0

0.5



A N

S6

9

{3.94,48.42), ¢
{2.25,51.20}

- "} N

{6.81,114.69)

{6.96,128.21),
\( 0

110

£20

£30

40

£50

L60

£70

180

£90

1100

f1 (ppm)

L110

£120

£130

140

£150

(160

L170

(180

190

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5

Figure S5: *H/*3C-HSQC for the reduction 4-flurobenzonitrile with DMAB in presence of Mn1.

4.2 Mechanistic Experiments

4.2.1 Catalysis in absence of nitrile substrates

H H

rd

FzZ H”

CeD ]

Mn1 4 DMAB  — me e [MeNBH, + (MeN)BH 4 Hz + E /"'l“‘;
: : co

(50 equiv.) R, éo

MnBH,

0.0

*(

R
,f,,'“;'n\‘\\co
s & Nco

R, CO

Inside an argon-flushed glovebox, an NMR tube was charged with Mn1 (0.0112 mmol, 2 mol%) and DMAB (0.56

mmol, 1.0 equiv.) and 0.56 mL CsDes (1M). NMRs were periodically recorded. Representative NMR data after 18

hours is shown below. 95% conversion of DMAB was detected after ~36 hours.
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Figure S6: Representative 'B-NMR for dehydrogenation of DMAB in presence of Mn1 after 18 h.
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Figure S7: Representative 3'P{*H}-NMR for dehydrogenation of DMAB in presence of Mn1 after 18 h.
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4.2.2  Catalysis in an open system
N

Z
z NH
/@/ _— Mn1 (2 mol%) /@/\ N .\ /@/QNH
F + ELO,25°C,3h > F E

1 1a

Inside an argon-flushed glovebox, a screw cap vial (8mL) was charged with Mn1 (0.0112 mmol, 2 mol%), 4-
flurobenzonitrile (0.56 mmol, 1.0 equiv.), DMAB (0.73 mmol, 1.3 equiv.) and 0.56 mL Et.0 (1M). The vial was not
sealed and placed in a 30 mL Schlenk tube. The Schlenk tube was brought out of the glove box and opened to
the Schlenkline. After 3 hours 50 pl of the sample were taken, diluted with 550 pl CDCls and analysed by °F{*H}

NMR. 91 % conversion of nitrile substrate was detected (>99% was detected in a closed system).

4.2.3  Catalysis with Imine substrate

NH .
SNH Mn1 (2 mol%) + amine-boranes H,
+ DMAB  —35C,74h >

Imine | No conversion of Imine |

Inside an argon-flushed glovebox, an NMR tube was charged with Mn1 (0.0112 mmol, 2 mol%), Imine |
(generated from the iminium hydro chloride and 1.05 equiv. triethylamine before the reaction and used
immediately) (0.56 mmol, 1.0 equiv.), DMAB (0.73 mmol, 1.3 equiv.) and 0.56 mL CsDs (1M). NMR analysis was
periodically conducted. No consumption of Imine | was observed over the course of 24 h. The dehydrogenation

of DMAB is not affected by the presence of Imine I.
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Figure S8: *H-NMR for attempted reduction of Imine | with DMAB in presence of Mn1 after 24 h.
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Figure S9: 1'B-NMR for attempted reduction of Imine | with DMAB in presence of Mn1 after 24 h.

4.2.4  Deuterium labelling studies

H
2 NBen
F J@/ . DMAB  Mni(2mol%) O/T\ H H/\©\ + [MeNBH;, + Hy
(N-D) 25°C,3h F F

<5%D

Inside an argon-flushed glovebox, an NMR tube was charged with Mn1 (0.0112 mmol, 2 mol%), 4-
flurobennzonitrile (0.56 mmol, 1.0 equiv.), DMAB N-D (~95 % D) (0.73 mmol, 1.3 equiv.) and 0.56 mL CsDe (1M).
NMR analysis was periodically conducted. 91% conversion was detected after 3 hours (>99% for DMAB N-H).
Deuterium content was determined upon full conversion. <5% of deuterium incorporation was found in the

benzylic position.
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Figure S11: *H-NMR for reduction of 4-flurobenzonitrile with DMAB N-D in presence of Mn1 after 5 h.

N H

Z N-Ben
/@/ . DMAB Mn1 (2 mol%) ’©/T\H H/\@\ b peNEHg + H
F (B-D3) ’ F F

66% D

Inside an argon-flushed glovebox, an NMR tube was charged with Mn1 (0.0112 mmol, 2 mol%), 4-
flurobenzonitrile (0.56 mmol, 1.0 equiv.), DMAB B-Ds (~93 % D) (0.73 mmol, 1.3 equiv.) and 0.56 mL THF-d8 (1M).
NMR analysis was periodically conducted. 69 % conversion was detected after 3 hours (82% for DMAB B-Hs).
Deuterium content was determined upon full conversion. 66% of deuterium incorporation was found in the

benzylic position.
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Figure S12: *H-NMR for reduction of 4-flurobenzonitrile with DMAB B-Ds in presence of Mn1 after 6 h.

4.3 In Operando NMR Analysis

4.3.1  Reduction of 4-fluorobenzonitrile
Inside an argon-flushed glovebox, an NMR tube was charged with Mn1 (0.0112 mmol, 2 mol%), 4-
flurobenzonitrile (0.56 mmol, 1.0 equiv.), DMAB (0.73 mmol, 1.3 equiv.) and 0.56 mL C¢Ds (1M). NMRs were

periodically recorded.
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Figure S13: *H-NMR for reduction of 4-flurobenzonitrile with DMAB in presence of Mn1 at different reaction times.
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Figure S14: *H-NMR for reduction of 4-flurobenzonitrile with DMAB in presence of Mn1 at different reaction times (hydridic region).
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Figure S15: 1*B-NMR for reduction of 4-flurobenzonitrile with DMAB in presence of Mn1 at different reaction times.
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Figure S16: 3'P{*H}-NMR for reduction of 4-flurobenzonitrile with DMAB in presence of Mn1 at different reaction times.
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Figure S17: *H/3'P-HMBC reduction of 4-flurobenzonitrile with DMAB in presence of Mn1 at 90 min reaction time.

4.3.2  Reduction of various nitrile substrates
Inside an argon-flushed glovebox, an NMR tube was charged with Mn1 (0.0112 mmol, 2 mol%), nitrile (0.56

mmol, 1.0 equiv.), DMAB (0.73 mmol, 1.3 equiv.) and 0.56 mL CesDs (1M). NMRs were periodically recorded.
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Figure S18: *H-NMR for reduction of nitriles with DMAB in presence of Mn1 only hydridic region shown.
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Figure S19: 3'P-NMR for reduction of nitriles with DMAB in presence of Mn1.

4.3.3  Reduction of 4-fluorobenzonitrile with DMAB N-D or B-Ds
Inside an argon-flushed glovebox, an NMR tube was charged with Mn1 (0.0112 mmol, 2 mol%), 4-
flurobenzonitrile (0.56 mmol, 1.0 equiv.), DMAB N-D or B-D3 (0.73 mmol, 1.3 equiv.) and 0.56 mL CsDs (1M).

NMRs were periodically recorded.
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Figure S20: 3'P-NMR for reduction of 4-fluorobenzonitriles with DMAB N-D and B-Ds in presence of Mn1.

4.4 Kinetic experiments

4.4.1  Variation of catalyst loading
Inside an argon-flushed glovebox, an NMR tube was charged with Mn1 (1-3 mol%), 4-flurobenzonitrile (0.56

mmol, 1.0 equiv.), DMAB (0.73 mmol, 1.3 equiv.) and 0.56 mL CsDs (1M). NMRs were periodically recorded.
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Figure S21: Kinetic profile of reduction of 4-flurobenzonitrile with various catalyst loadings.

4.4.2  Variation of substrate amount
Inside an argon-flushed glovebox, an NMR tube was charged with Mn1 (0.0112 mmol, 2 mol%), 4-

flurobenzonitrile (0.5- 1.0 equiv.), DMAB (0.73 mmol, 1.3 equiv.) and 0.56 mL CsDs (1M). NMRs were periodically

recorded.
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Figure S22: Kinetic profile of reduction of 4-flurobenzonitrile with various amount of substrate.

443 Variation of DMAB amount

Inside an argon-flushed glovebox, an NMR tube was charged with Mn1 (0.0112 mmol, 2 mol%), 4-

flurobenzonitrile (0.56 mmol, 1.0 equiv.), DMAB (0.73 mmol, 1.0-1.7 equiv.) and 0.56 mL CsDs (1M). NMRs were

periodically recorded.
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Figure S23: Kinetic profile of reduction of 4-flurobenzonitrile with various amount of DMAB.

44.4  Employing DMAB N-D or B-D3
Inside an argon-flushed glovebox, an NMR tube was charged with Mn1 (0.0112 mmol, 2 mol%), 4-
flurobenzonitrile (0.56 mmol, 1.0 equiv.), DMAB N-D or B-D3 (0.73 mmol, 1.3 equiv.) and 0.56 mL CsDs (1M).

NMRs were periodically recorded.
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Figure S24: Kinetic profile of reduction of 4-flurobenzonitrile with DMAB N-D or B-Ds.

4.4.5 Employing various nitrile substrates

Inside an argon-flushed glovebox, an NMR tube was charged with Mn1 (0.0112 mmol, 2 mol%), nitrile (0.56
mmol, 1.0 equiv.), DMAB (0.73 mmol, 1.3 equiv.) and 0.56 mL CsDs (1M). NMRs were periodically recorded.
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Figure S25: Kinetic profile of reduction of various para-substituted benzonitriles with DMAB.
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5 Characterization of Organic Products

4-Flurobenzylammonium chloride* (1): pale yellow solid, *H NMR (8, 400 MHz, D20, 20 °C): 7.37 — 7.30 (m, 2H),
7.04 (m, 2H), 4.03 (s, 2H). 3C{*H} NMR (8, 101 MHz, D20, 20 °C):162.4, 131.0, 128.6 , 115.8,42.4 .

Benzylammonium chloride? (3): white solid, 'H NMR (6, 400 MHz, CD30D, 20 °C): 7.33 — 7.18 (m, 5H), 3.79 (s,
2H). 3C{*H} NMR (8, 101 MHz, CDs0D, 20 °C):142.3, 128.1, 127.0, 126.5, 45.3.

4-(Trifluoromethyl)benzylammonium chloride® (5): white solid, *H NMR (8, 250 MHz, D20, 20 °C): 7.68 (d, ) =
8.1 Hz, 2H), 7.50 (d, J = 8.1 Hz, 2H), 4.16 (s, 2H). 3C{*H} NMR (3, 63 MHz, D0, 20 °C):136.5, 130.3, 139.2, 126.0
(9,)=,429).

4-(Methyl)benzylammonium chloride® (6): white solid, *H NMR (8, 400 MHz, D0, 20 °C): 7.35-7.29 (m, 4H),
4.07 (s, 2H), 2.34 (s, 3H). 3C{*H} NMR (5, 100 MHz, D;0, 20 °C): 139.2, 131.0, 129.7, 128.6, 43.1, 20.2.

Methyl (4-methyammoniun)benzoate chloride?® (7): white solid, *H NMR (400 MHz, D20) 6 = 7.34 (d, J = 8.2 Hz,
2H), 6.95 (d, J = 8.1 Hz, 2H), 4.05 (s, 2H), 3.34 (s, 3H). 3C{*H} NMR (100 MHz, D,0) § = 159.3, 130.6. 125.1,
114.5,55.3, 42.1.

4-(Methoxy)benzylammonium chloride® (8): pale yellow solid, *H NMR (5, 400 MHz, D20, 20 °C): 8.02 (d, /= 8.0
Hz, 2H), 7.54 (d, J = 7.9 Hz, 2H),4.26 (s, 2H), 3.11 (s, 3H). 3C{*H} NMR (3, 100 MHz, D20, 20 °C): 169.7, 137.9,
130.0, 128.8,52.7, 42.1.

(Napht-2-yl)methylammonium chloride® (10): white solid, *H NMR (5, 400 MHz, CD30D, 20 °C): 7.50 — 7.48 (m,
4H), 7.42 —7.34 (m, 4H), 4.12 (s, 2H). 3C{*H} NMR (5, 101 MHz, CD30D, 20 °C):133.4, 133.3, 130.4, 128.7, 128.2,
127.7,127.4,126.5, 126.4, 125.7, 47.1.

(Thiophen-2yl)methylammonium chloride’ (12): yellow solid, *H NMR (5, 400 MHz, D20, 20 °C): 7.50-7.48 (m,
1H), 7.22-7.20 (m, 1H), 7.07-7.06 (m, 1H), 4.38 (s, 2H). 3C{*H} NMR (5, 100 MHz, D-0, 20 °C): 133.7, 129.5,
127.9,127.7, 37.3.

(5-(4-chlorophenyl)furan-2-yl)methylammonium chloride® (13) yellow solid, *H NMR (400 MHz, MeOD) & 7.72
(d,J=8.5Hz, 2H), 7.40 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 3.3 Hz, 1H), 6.66 (d, J = 3.4 Hz, 1H), 4.24 (s, 2H). 3C{*H}
NMR (5, 100 MHz, D20, 20 °C): 154.1, 146.5, 133.3, 128.8, 128.6, 125.0, 112.8, 106.5, 35.6.

(Phenyl)ethylammonium chloride® (15): white solid *H NMR (400 MHz, D20) & 7.36 (t, J = 7.3 Hz, 2H), 7.28 (d, J =
7.7 Hz, 3H), 3.20 (t, J = 7.2 Hz, 2H), 2.93 (t, J = 7.3 Hz, 2H). BC{*H} NMR (8, 100 MHz, D0, 20 °C): 137.0, 129.0,
128.9, 127,9, 40.6, 32.7.

1,10-Decandiammonium dichloride® (15): white solid, *H NMR (8, 400 MHz, D20, 20 °C): 2.88 (t, ) = 7.4 Hz, 4H),
1.63 —1.46 (m, 8H), 1.27 (m, 20H). 3C{*H} NMR (8, 100 MHz, D0, 20 °C): 39.5, 28.17, 3.82, 27.7, 25.5, 16.3.

(3-((Trimethylsilyl)ethynyl)phenyl)methylammonium chloride?® (17): yellow solid, *H NMR (400 MHz, MeOD) &
7.52 (s, 1H), 7.46 — 7.35 (m, 3H), 4.06 (s, 2H), 0.19 (s, 8H). 3C NMR (100 MHz, MeOD) & 131.9, 131.8, 129.0, 128.8,
124.0,104.,94.2,42.6, -1.5.

(E)-3-phenylprop-2-en-1-ammonium chloride* (18): white solid, *H NMR (400 MHz, MeOD) § 7.44 (d, /= 7.4
Hz, 2H), 7.29 (dt, J = 23.5, 7.2 Hz, 3H), 6.79 (d, J = 15.7 Hz, 1H), 6.35 — 6.20 (m, 1H), 3.70 (d, J = 6.4 Hz, 2H). 13C
NMR (101 MHz, MeOD) & 136.4, 135.7, 128.4, 128.2, 126.4, 119.8, 41.2.
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6 NMR Spectra of Products
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Figure S26. *H-NMR of isolated 1.
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Figure S27. 3C{*H}-NMR of isolated 1.
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Figure S28. *H-NMR of isolated 3.
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Figure $29. 3C{*H}-NMR of isolated 3.
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Figure S30. *H-NMR of isolated 5.

1423
128.1
127.0

L2,
\126.5

2.0

45.3

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60

f1 (ppm)

Figure S31. *C{*H}-NMR of isolated 5.
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Figure S32. *H-NMR of isolated 6.
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Figure $33. *C{*H}-NMR of isolated 6.
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Figure S35. 3C{*H}-NMR of isolated 7.
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Figure $36. H-NMR of isolated 8.
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Figure S37. 3C{*H}-NMR of isolated 8.
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Figure $39. 3C{*H}-NMR of isolated 10.
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Figure S42. *H-NMR of isolated 13.
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Figure S45. 3C{*H}-NMR of isolated 15.
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Figure S47. 3C{*H}-NMR of isolated 16.
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Figure S48. *H-NMR of isolated 17.
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Figure S49. 3C{*H}-NMR of isolated 17.
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