ELECTRONIC SUPPLEMENTARY INFORMATION FOR

Acid-Base and Redox Performance of Carbon Nanotubes in the Methanol Conversion

Igor Bychko^{a,*}, Alexander Abakumov^a, Alexey Zhokh^a, Andrii Trypolskyi^a, Oksana Kremen^b, Peter Strizhak^a

 ^aL. V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Nauky Ave. 31, 03028 Kyiv, Ukraine
^bO.O. Chuiko Institute of Surface Chemistry of the National Academy of Science of Ukraine, Oleha Mudraka str. 17, 03164 Kyiv, Ukraine
* Corresponding authors: igorbychko@ukr.net

Figure S1. Deconvolution of Raman spectra of MWCNT samples.

Raman spectra of MWCNT samples were analyzed using Gaussians considered the deconvolution of the "D band region", which consists of a central D band and two satellite bands designed DI (D-left) and Dr (D-right), at ~1250 cm⁻¹ and ~1400 cm⁻¹, respectively. In the "G band region" the fitting considered two Lorentzian bands, G and Gr (G right) at ~1580 cm⁻¹ and ~1610 cm⁻¹, respectively, and GI (G left) near 1500 cm⁻¹. Also, the S-band near ~1150 cm⁻¹ is presented. DI, Dr, and Gr bands are assigned to the presence of low size aromatic domains, analogous structures to polycyclic aromatic hydrocarbons, and S and GI bands refer to polyacetylene-like structures.

Figure S2. Survey XPS of MWCNT samples.

DFT Calculations were performed using the US GAMESS program with the B3LYP exchangecorrelation functional in the 6-31G(d, p) basis set with the Grimme dispersion correction.

Figure S3. The equilibrium structure of the complex, which is formed at the step B (a) and C (b) of the methanol interaction with SV (PAH $C_{95}H_{24}$).

Figure S4. The equilibrium structure of the complex that is formed at steps B (a) and C (b) of themethanolinteractionwithDV $(PAH C_{94}H_{24}).$

Т, К;	The	Thermodynamic			Electronic energy with thermodynamic corrections		
(CH₃OH)	E _{tot}	H _{corr}	G _{corr}	E ₀ + E _{tot}	E ₀ + H _{corr}	E ₀ +G _{corr}	
273	142.67	144.94	81.14	-303694.00	-303691.73	-303755.53	
373	146.51	149.61	57.03	-303690.16	-303687.06	-303779.64	
473	151.17	155.10	31.55	-303685.50	-303681.57	-303805.12	
573	156.66	161.42	4.82	-303680.01	-303675.25	-303831.85	
673	162.90	168.50	-23.08	-303673.77	-303668.17	-303859.75	
773	169.81	176.24	-52.09	-303666.86	-303660.43	-303888.76	
873	177.30	184.56	-82.14	-303659.37	-303652.11	-303918.81	
973	185.31	193.40	-113.17	-303651.36	-303643.27	-303949.84	
1073	193.77	202.69	-145.14	-303642.90	-303633.98	-303981.81	
1173	202.63	212.38	-177.99	-303634.04	-303624.29	-304014.66	

Table S1. Thermochemical values (kJ/mol) for the CH₃OH molecule. E_0 (CH₃OH) = -303836.67, E_{ZPE} (CH₃OH) = 134.89, $E_0 + E_{ZPE}$ = (CH₃OH) = -303701.78 kJ/mol.

Table S2. Thermochemical values (kJ/mol) for the CH_2O molecule. $E_0 (CH_2O) = -300629.67$, $E_{ZPE} (CH_2O) = 70.22$, $E_0 + E_{ZPE} = (CH_2O) = -300699.89$ kJ/mol.

Thermodynamic				Electronic energy with thermodynamic			
	corrections			corrections			
(CH2O)	E _{tot}	H _{corr}	G _{corr}	E ₀ + E _{tot}	E ₀ + H _{corr}	E ₀ +G _{corr}	
273	77.08	79.35	18.94	-300552.60	-300550.33	-300610.73	
373	79.84	82.94	-3.77	-300549.83	-300546.73	-300633.44	
473	82.98	86.91	-27.49	-300546.70	-300542.76	-300657.17	
573	86.55	91.31	-52.11	-300543.13	-300538.36	-300681.78	
673	90.54	96.13	-77.53	-300539.14	-300533.54	-300707.20	
773	94.92	101.35	-103.70	-300534.76	-300528.32	-300733.37	
873	99.65	106.91	-130.56	-300530.02	-300522.76	-300760.24	
973	104.70	112.79	-158.09	-300524.97	-300516.88	-300787.76	
1073	110.02	118.94	-186.23	-300519.65	-300510.73	-300815.90	
1173	115.58	125.33	-214.96	-300514.10	-300504.34	-300844.63	

тк	Thermodynamic			Electronic energy with thermodynamic			
(U_)		correction	s	corrections			
([12]	E _{tot}	H _{corr}	G _{corr}	E ₀ + E _{tot}	E ₀ + H _{corr}	E ₀ +G _{corr}	
273	32.39	34.66	-0.20	-3061.87	-3059.560	-3094.46	
373	34.47	37.57	-13.45	-3059.79	-3056.69	-3107.71	
473	36.55	40.48	-27.48	-3057.71	-3053.78	-3121.74	
573	38.63	43.39	-42.14	-3055.63	-3050.87	-3136.40	
673	40.71	46.30	-57.31	-3053.55	-3047.95	-3151.57	
773	42.80	49.22	-72.91	-3051.46	-3045.04	-3167.17	
873	44.90	52.15	-88.89	-3049.36	-3042.10	-3183.15	
973	47.01	55.10	-105.21	-3047.25	-3039.16	-3199.47	
1073	49.15	58.08	-121.83	-3045.11	-3036.18	-3216.09	
1173	51.32	61.07	-138.74	-3042.94	-3033.18	-3233.00	

Table S3. Thermochemical values (kJ/mol) for the H₂ molecule. $E_0 (H_2) = -3094.26$, $E_{ZPE} (H_2) = 26.72$, $E_0+E_{ZPE} = (H_2) = -3067.54$ kJ/mol.

General remarks

 E_0 – the total electronic energy.

 E_{ZPE} – zero-point energy of the molecule.

 E_{tot} – total internal energy ($E_t + E_r + E_v + E_e$).

- E_t internal energy due to translation.
- E_r internal energy due to rotational motion.
- E_v internal energy due to vibrational motion.
- E_e internal energy due to electronic motion.
- H_{corr} correction to the enthalpy due to internal energy.
- G_{corr} correction to the Gibbs free energy due to internal energy.
- PAH polycyclic aromatic hydrocarbon.
- SV single vacancy.
- DV double vacancy.

Table S4. The thermochemical Gibbs energy values (kJ/mol) for CH₃OH, CH₂O, and H₂ molecules depend on the temperature and the Gibbs energy values of the reaction CH₃OH \rightarrow CH₂O + H₂. $\Delta G_{reac} = (G(CH_2O) + G(H_2)) - G(CH_3OH)$. $G(CH_2O) = E_0(CH_2O) + G_{corr}(CH_2O)$. $G(H_2) = E_0(H_2) + G_{corr}(H_2)$. $G(CH_3OH) = E_0(CH_3OH) + G_{corr}(CH_3OH)$.

Temperature (K)	E ₀ + G _{corr} (CH₃OH)	E ₀ + G _{corr} (CH ₂ O)	E ₀ + G _{corr} (H ₂)	ΔG _{reac}	ΔG_{reac}^*
273	-303755.53	-300610.73	-3094.46	50.34	62,38
373	-303779.64	-300633.44	-3107.71	38.49	51,25
473	-303805.12	-300657.17	-3121.74	26.21	39 <i>,</i> 65
573	-303831.85	-300681.78	-3136.40	13.67	27,76
673	-303859.75	-300707.20	-3151.57	0.98	15,67
773	-303888.76	-300733.37	-3167.17	-11.78	3,46
873	-303918.81	-300760.24	-3183.15	-24.58	-8,84
973	-303949.84	-300787.76	-3199.47	-37.39	-21,19
1073	-303981.81	-300815.90	-3216.09	-50.19	-33,57
1173	-304014.66	-300844.63	-3233.00	-62.97	-45,97
$^{*}\Delta G_{reac}$ after the fitting. The Least square method was used to fit calculated data to					
experimental data.					

Figure S5. The equations of straight lines approximate calculated and experimental data of Gibbs energy values dependent on temperature for the reaction $CH_3OH \rightarrow CH_2O + H_2$. For experimental data: $\Delta G_{exp} = -0.1209T + 96.482$; for calculated data: $\Delta G_{calc} = -0.1264T + 85.69$.

Figure S6. Structures of PAH with SV and methanol molecule, designation of atoms, and distance (Å) between C atoms of the catalyst reaction center.

ure S7. Structures of PAH with DV, methanol molecule, designation of atoms, and distance (Å) between C atoms of the catalyst reaction center.

Table S5. Atomic charge (a.u.) obtained by Mulliken analysis for calculated energy profile for CH₃OH dehydrogenation on PAH with SV. Designation of atoms according to Figure S6. **A** (starting point) – C₉₅H₂₄ + CH₃OH; **B** – first step (H(5)–C₉₅H₂₄–O(6)–CH₃); **C** – second step (H(5)–C₉₅H₂₄–O(6)–C(1)H₂–H(1)), bridge-structure formation; **D** – third step (H(5)–C₉₅H₂₄–H(1)), FA desorption; **F** – fifth step (C₉₅H₂₄•••H₂), physical adsorption of H₂; **G** – final step, H₂ desorption. TS – transition state.

A 4			Steps of	f methar	ol trans	formati	on on PA	H with S	V
Atoms d	esignation	Α	B	С	TS	D	E	F	G
	C1	-0.187	-0.215	-0.320	-0.338	-0.297	-0.290	-0.193	-0.187
	C2	-0.041	0.056	-0.032	0.068	0.059	0.065	-0.39	-0.041
	C3	0.002	-0.008	0.024	-0.039	0.000	0.003	0.032	0.002
	C4	0.016	0.066	0.048	0.080	0.070	0.064	0.010	0.016
	C5	0.047	-0.199	0.303	-0.319	-0.294	-0.293	0.057	0.047
	C6	0.059	0.104	0.093	-0.135	-0.280	-0.298	0.044	0.059
	C7	0.011	0.046	0.078	0.088	0.073	0.080	0.015	0.011
	C8	0.030	0.003	0.064	0.014	0.016	0.022	0.005	0.030
<u>ب</u>	С9	-0.041	0.008	-0.042	0.062	0.064	0.075	-0.038	-0.041
Iter	C10	0.060	0.029	0.080	0.035	0.010	0.015	0.040	0.060
cer	C11	0.035	0.006	-0.019	0.012	0.027	0.029	0.035	0.035
uc	C12	0.038	0.002	0.072	-0.007	-0.010	-0.008	0.062	0.038
ctic	C13	-0.043	0.032	0.002	0.018	0.013	0.016	-0.025	-0.043
ea	C14	0.076	-0.005	0.013	0.013	0.017	0.018	0.002	0.076
st 1	C15	0.045	0.054	0.024	0.058	0.046	0.045	0.062	0.045
aly	C16	-0.088	0.015	0.015	-0.004	-0.003	0.001	-0.108	-0.088
cate	C17	0.051	0.019	0.007	0.023	0.031	0.029	-0.002	0.051
le c	C18	0.063	-0.012	-0.001	-0.003	0.003	0.003	0.076	0.063
ft	C19	-0.070	0.034	0.023	0.006	0.000	0.002	-0.111	-0.070
0 S	C20	0.027	0.018	-0.006	0.007	0.020	0.019	0.039	0.027
m	C21	-0.052	0.027	0.079	0.092	0.071	0.062	-0.032	-0.052
Atc	C22	-0.066	0.060	0.023	0.026	-0.010	-0.014	-0.064	-0.066
7	C23	-0.034	0.040	0.017	0.029	0.068	0.076	-0.050	-0.034
	C24	0.038	0.026	0.016	0.026	0.030	0.028	0.029	0.038
	C25	-0.110	-0.039	-0.035	-0.034	-0.050	-0.051	-0.071	-0.110
	C26	0.075	0.021	0.029	0.045	0.039	0.035	0.063	0.075
	C27	-0.003	-0.016	-0.021	-0.036	-0.017	-0.017	0.051	-0.003
	C28	-0.109	-0.044	-0.044	-0.036	-0.044	-0.044	-0.088	-0.109
	C29	0.062	0.065	0.036	0.054	0.058	0.058	0.045	0.062
	C30	0.002	-0.038	-0.024	-0.046	-0.035	-0.035	0.077	0.002
	C31	-0.025	0.014	0.008	0.010	0.013	0.014	-0.043	-0.025
L L	C32	-0.074	-0.083	0.084	0.075	0.176	0.176	0.176	0.176*
no s o no	O33	-0.532	-0.497	-0.492	-0.382	-0.346	-0.340*	-0.340*	-0.340*
the loss	H34	0.306	0.122	0.129	0.197	0.178	0.160	0.008	0.000**
Atc	H35	0.089	0.018	0.125	0.151	0.158	0.158	-0.019	0.000**
7 1	H36	0.090	0.028	0.131	0.103	0.085	0.082*	0.082*	0.082*

	H37	0.121	0.130	0.139	0.106	0.090	0.082*	0.082*	0.082*
* – charge	on the atoms	in the isc	lated CH	₂ O molec	ule. ** –	- charge o	on the aton	ns in the is	solated H ₂
molecule.									

The charge of the O(33) atom in the transition state is -0.382 a.u. and decreases in absolute value along the reaction coordinate (is -0.346 for adsorbed CH₂O molecule and -0.340 a.u. for isolated CH₂O molecule).

Table S6. Atomic charge (a.u.) obtained by Mulliken analysis for calculated energy profile of methanol transformation on PAH with DV. Designation of atoms according to Figure S7. A starting point $-C_{94}H_{24} + CH_3OH$; **B** – first step (H(5)– $C_{94}H_{24}$ –O(4)–CH₃); **C** – second step ($C_{94}H_{24}$ –O(4–5)•••CH₄), physical adsorption of methane and the oxygen atom is implemented in the PAH plane; **D** – final step, methane desorption.

		St	eps of methan	ol transforma	tion
Atoms d	esignation		on PAH	l with DV	
	C	Α	B	С	D
	C1	0.041	-0.009	0.065	0.067
	C2	-0.012	-0.001	0.035	0.035
	C3	-0.012	0.019	0.022	0.017
	C4	0.041	0.098	0.108	0.097
	C5	0.041	-0.234	0.130	0.110
	C6	-0.009	0.083	0.029	0.029
	C7	-0.009	-0.014	0.037	0.034
	C8	0.041	-0.004	0.070	0.070
er	C9	-0.045	-0.004	-0.043	-0.043
ent	C10	-0.164	-0.116	-0.116	-0.116
U CC	C11	-0.079	-0.032	-0.069	-0.068
ior	C12	0.002	0.016	0.022	0.023
act	C13	-0.047	-0.048	-0.068	-0.068
re	C14	0.132	0.084	0.073	0.072
yst	C15	-0.054	0.002	0.035	0.035
tal	C16	-0.054	-0.037	-0.094	-0.094
са	C17	0.132	0.025	0.053	0.054
the	C18	-0.147	0.008	0.044	0.042
of1	C19	0.002	-0.010	-0.036	-0.034
US O	C20	-0.079	0.010	0.037	0.038
ton	C21	-0.164	0.013	0.073	0.073
A A	C22	-0.045	0.061	0.057	0.054
	C23	0.008	0.007	-0.012	-0.011
	C24	-0.098	-0.050	-0.030	-0.031
	C25	0.141	0.064	0.074	0.075
	C26	-0.082	-0.074	-0.119	-0.120
	C27	-0.082	-0.033	-0.011	-0.011
	C28	0.141	0.096	0.082	0.082
	C29	-0.098	-0.097	-0.106	-0.106
	C30	0.008	0.027	0.027	0.027
o	C31	-0.074	-0.087	-0.484	-0.472*
th ol	O32	-0.532	-0.495	-0.562	-0.541
of	H33	0.306	0.129	0.107	0.118*
ms eth ole	H34	0.089	0.129	0.117	0.118*
n n to	H35	0.090	0.140	0.133	0.118*
	H36	0.121	0.123	0.111	0.118*
* – charge on the a	toms in the isolated (CH_4 molecule.			

XYZ coordinates of equilibrium structure of the $C_{96}H_{28}O$ complex, which is formed at the step B (a) of the methanol interaction with SV (PAH $C_{95}H_{24}$). $C_{96}H_{28}O$

c	2 1 6 2 9 1 4 2 0 2	0 252204002	2 124077105
С Ц	2.103814293	0.255564992	-3.134877195
	3.144950212	0.303030796	-3.306293413
	2.209216961	-0.760515460	-2.802080041
	1.415025751	0.551170420	-3.922292003
0	1.727119950	1.12/646012	-2.06/055944
	1.200030977	0.30/329350	0.092069501
C C	1.200060021	-0.750781070	-0.1300/0292
C C	-1.225209547	-0.009000/1/	-0.1/9906915
C C	-1.248857340	0.707531142	-0.208/800/5
C C			-0.108934181
C C		1.478291508	-0.268982338
C	-3.692196158	-0.660476300	-0.1/3263954
C	3.699450888	-0.650987580	-0.540920890
C	-3./0/953395	0.756298647	-0.208961679
C	3./34915638	0.777039592	-0.727090139
C	-4.923873721	-1.3//1/6220	-0.134/42128
C	4.924779139	-1.365846808	-0.41/101823
C	-4.941684819	1.4/1392/85	-0.186132350
C	4.945837898	1.484848129	-0.424906502
C	-6.155066536	-0.665929886	-0.114725433
C	6.158433160	-0.656371996	-0.325736582
С	-6.163892152	0.754976653	-0.133255251
С	6.159453414	0.762598669	-0.273415675
С	-7.393924380	-1.395681439	-0.072903304
С	7.393086736	-1.385234663	-0.222711758
С	-7.406194250	1.480545645	-0.099293539
С	7.391349478	1.485343093	-0.097190739
С	-8.624368464	-0.641042619	-0.051565784
С	8.615123558	-0.632929319	-0.081013865
С	-8.631181494	0.717891479	-0.060794473
С	8.613055220	0.724612171	-0.010787896
Н	-9.560372078	-1.192546402	-0.021382041
Н	9.548185829	-1.185083252	-0.010317943
Н	-9.572198353	1.259522880	-0.041851058
Η	9.547255968	1.266357015	0.112863611
С	-2.452538730	-2.804683976	-0.158359350
С	2.466860336	-2.819327754	-0.365103979
С	-2.474730492	2.901326677	-0.331023382
С	2.501302066	2.927201316	-0.751152269

С	-4.920677085	-2.801693356	-0.108076460
С	4.925351359	-2.797818800	-0.353975619
С	-4.939615308	2.895740102	-0.205991879
С	4.941052209	2.904655200	-0.340447100
С	-7.371294979	-2.783818145	-0.051745214
С	7.374932977	-2.775267968	-0.227508925
С	-7.389417911	2.869618609	-0.105110424
С	7.370430005	2.874226921	-0.024426431
С	-1.231156659	-3.522359610	-0.194542704
С	1.238585694	-3.522960766	-0.281331802
С	-1.254529334	3.623597653	-0.427322236
С	1.246998599	3.615885379	-0.637127648
С	-3.688352926	-3.515687887	-0.121002379
С	3.702330373	-3.525913367	-0.357029103
С	-3.712835545	3.613108012	-0.271617238
С	3.710739338	3.617476497	-0.424169317
С	-6.158463468	-3.516864411	-0.063775540
С	6.164181251	-3.511463526	-0.276610904
С	-6.180895036	3.610262232	-0.151094790
С	6.166093163	3.612679506	-0.118758267
Н	-8.310075054	-3.331202064	-0.024372163
Н	8.312578690	-3.319624004	-0.150958631
Н	-8.332456423	3.409603358	-0.076049256
Н	8.304719894	3.412860129	0.117156446
С	-1.229044184	-4.948788589	-0.164971666
С	1.237783698	-4.952092251	-0.232391414
С	-1.249433130	5.045511239	-0.390873537
С	1.233073337	5.028217778	-0.453211275
С	-3.686133349	-4.936515512	-0.088231412
С	3.700391146	-4.943667607	-0.271731106
С	-3.711021871	5.031505798	-0.263989602
С	3.689919376	5.028238823	-0.251847990
С	-6.128176098	-4.933263957	-0.025626946
С	6.138041628	-4.926037837	-0.218400037
С	-6.151494132	5.025432183	-0.134645896
С	6.124716026	5.022745031	0.000581001
С	-2.459193038	-5.651688939	-0.101513547
С	2.468785958	-5.656369193	-0.219138399
С	-2.480363442	5.747397466	-0.300254651
С	2.461245160	5.738309289	-0.306416919
С	-4.936188381	-5.645496982	-0.031557527
С	4.948689137	-5.647756768	-0.205057696
С	-4.958241864	5.738980968	-0.177085047
С	4.929815570	5.731997058	-0.051624540

Н	-7.071133660	-5.474113583	0.012787560
Н	7.082186284	-5.461780856	-0.162215800
Н	-7.092934679	5.565271155	-0.074058062
Н	7.057185726	5.564578542	0.141134488
С	-2.450296481	-7.089637794	-0.042367822
С	2.460945561	-7.091041451	-0.120871976
С	-2.468714882	7.179990174	-0.215172176
С	2.443681720	7.167504356	-0.150732580
С	-4.896032008	-7.087121728	0.027280940
С	4.909194090	-7.087186642	-0.097183421
С	-4.914140888	7.179927532	-0.113311071
С	4.879148758	7.167220959	0.080703166
С	-1.238111597	-7.769421858	-0.043839904
С	1.246163916	-7.769594478	-0.072395648
С	-1.249172520	7.849728054	-0.191125063
С	1.231093752	7.846427858	-0.154931228
С	-3.721219374	-7.770048763	0.025344319
С	3.733212572	-7.768406338	-0.058209172
С	-3.737380852	7.861408219	-0.125907654
С	3.702945208	7.846283687	0.032466670
Н	-5.839444739	-7.623438785	0.083764918
Н	5.852785381	-7.623407597	-0.036212029
Н	-5.855746242	7.715841545	-0.034846469
Н	5.813985831	7.700789199	0.224588954
Н	-1.240302965	-8.855095463	0.007440245
Н	1.246352308	-8.853886574	0.004344844
Н	-1.242563174	8.933690081	-0.103174731
Н	1.227168745	8.927986140	-0.042762646
Н	-3.718562073	-8.855543328	0.077520993
Н	3.731179974	-8.850642774	0.035819698
Н	-3.734440172	8.946137039	-0.055410594
Н	3.687290345	8.927011863	0.144836531
С	0.004061451	-2.818840363	-0.234390448
С	-0.013358610	2.916453844	-0.522557404
С	0.005187176	-5.659297591	-0.170946676
С	-0.007810450	5.741046301	-0.376548084
С	0.005027192	-7.090871375	-0.101355302
С	-0.009968573	7.166808128	-0.250839087
С	2.466028834	-1.390515085	-0.365786706
С	2.647357348	1.576242762	-1.190969157
С	0.015719064	-1.399871948	-0.171055362
С	-0.123165310	1.556317475	-0.383829551

XYZ coordinates of equilibrium structure of the $C_{96}H_{28}O$ complex, which is formed at the step C (b) of the methanol interaction with SV (PAH $C_{95}H_{24}$).

$C_{96}H_{28}O$

С	1.177018632	0.025654580	-2.292999821
Н	1.780119128	-0.472665536	-3.059309243
н	1.491921681	0.057646436	-0.222921794
н	0.147930652	0.115611414	-2.644011027
0	1.643130691	1.355670737	-2.096291784
н	0.811568154	1.166864374	0.382496944
С	1.285817968	-0.721469054	-0.938297043
С	-1.174571675	-0.667643829	-0.317877078
С	-1.215041941	0.792972280	-0.218348681
С	-2.416560638	-1.370352797	-0.270842185
С	-2.455567108	1.487695115	-0.342017589
С	-3.658453558	-0.656183508	-0.251872942
С	3.736363976	-0.697068896	-0.890149428
С	-3.677920233	0.764087884	-0.319713204
С	3.729229110	0.774043702	-0.900949176
С	-4.891376959	-1.371005745	-0.183540432
С	4.975161913	-1.397275199	-0.677370278
С	-4.914738077	1.475118725	-0.309755126
С	4.938286555	1.471234133	-0.523406539
С	-6.124736818	-0.660690641	-0.164648320
С	6.182109293	-0.675634469	-0.480960875
С	-6.137134491	0.758069892	-0.231363052
С	6.160507061	0.752267230	-0.392940341
С	-7.363160444	-1.389397285	-0.069789481
С	7.411103527	-1.392080131	-0.294629159
С	-7.381710712	1.482815950	-0.205631870
С	7.381639481	1.469596454	-0.151614930
С	-8.594425505	-0.636354845	-0.047461598
С	8.618875109	-0.636932144	-0.081852617
С	-8.604023668	0.720540763	-0.112000700
С	8.604630267	0.720280184	-0.014881178
Н	-9.528402605	-1.186376409	0.028182128
Н	9.549361022	-1.183294788	0.048534841
Н	-9.545750982	1.261882162	-0.085406531
Н	9.524635290	1.271899561	0.162441915
С	-2.421291125	-2.796324343	-0.266016551
С	2.526760788	-2.855474884	-0.707879707
С	-2.463350483	2.913274465	-0.362828105

С	2.496496889	2.936584442	-0.637311824
С	-4.888097740	-2.794921108	-0.121391222
С	4.977220734	-2.821601706	-0.580053832
С	-4.924125447	2.902423783	-0.344556311
С	4.938162025	2.889738194	-0.355165520
С	-7.339737418	-2.775748673	0.003351833
С	7.406440130	-2.788511160	-0.277810435
С	-7.373115589	2.871398155	-0.262735394
С	7.362566970	2.859114892	-0.036678088
С	-1.200648392	-3.516570609	-0.333784799
С	1.275020441	-3.536884032	-0.576474528
С	-1.248774022	3.643782938	-0.378665402
С	1.248101013	3.617403232	-0.426031997
С	-3.659835206	-3.508134266	-0.161145356
С	3.759241593	-3.556663949	-0.593144223
С	-3.701793709	3.622892888	-0.372475285
С	3.714881413	3.619354804	-0.364503665
С	-6.127384843	-3.509050836	-0.018300582
С	6.214128600	-3.529503389	-0.385421194
С	-6.167518574	3.615157131	-0.327362382
С	6.165073591	3.593133068	-0.114781004
Н	-8.278328294	-3.320324036	0.077989065
Н	8.344506811	-3.318323759	-0.126655188
Н	-8.316776168	3.409999031	-0.243939792
Н	8.293109234	3.390148353	0.148885173
С	-1.195567957	-4.941796914	-0.244700357
С	1.274510576	-4.945282342	-0.409493739
С	-1.239722080	5.063971104	-0.356095962
С	1.242845161	5.031678164	-0.279938962
С	-3.654434898	-4.925573394	-0.078638458
С	3.746541507	-4.964618323	-0.415647909
С	-3.699613285	5.043802447	-0.374586373
С	3.698659451	5.025931718	-0.141772612
С	-6.094399896	-4.920471386	0.067785151
С	6.182334188	-4.944741441	-0.259382847
С	-6.141984946	5.031285599	-0.351856288
С	6.129670459	5.003917153	0.059562542
С	-2.423932491	-5.640665345	-0.104057202
С	2.512057546	-5.657505336	-0.344778576
С	-2.470716965	5.764798630	-0.350584418
С	2.473441215	5.736454022	-0.154044721
С	-4.900064453	-5.632459739	0.051427281
С	4.996259923	-5.664774997	-0.265029794
С	-4.948863324	5.750425659	-0.366357717

С	4.944501477	5.721712229	0.049792142
Н	-7.034493131	-5.460045765	0.157954843
Н	7.122959876	-5.472849497	-0.121178839
Н	-7.084675237	5.572796641	-0.339315063
Н	7.068324614	5.531041813	0.212770894
С	-2.412351031	-7.071573677	0.019577007
С	2.498311658	-7.084824354	-0.155537571
С	-2.458299805	7.197327470	-0.279239545
С	2.455935163	7.167379000	0.011192933
С	-4.855170430	-7.069677904	0.169694192
С	4.947327695	-7.096454176	-0.087330195
С	-4.905416234	7.193975132	-0.348060583
С	4.896152736	7.155026544	0.221137942
С	-1.196541535	-7.748354258	0.017810567
С	1.285988974	-7.753987740	-0.065071364
С	-1.238083616	7.862942093	-0.173260275
С	1.246413416	7.847700136	-0.000738428
С	-3.678614099	-7.749861023	0.157510955
С	3.766950257	-7.767477108	-0.041557211
С	-3.730635242	7.878842364	-0.299986191
С	3.721444422	7.838065987	0.197933989
Н	-5.795047526	-7.604671750	0.277012953
Н	5.886698125	-7.632221352	0.023894559
Н	-5.848762202	7.732852095	-0.357572487
Н	5.833447160	7.685363002	0.368919744
Н	-1.191854510	-8.829704802	0.126821998
Н	1.285104113	-8.832405607	0.073066955
Н	-1.233246345	8.948177176	-0.103239632
Н	1.243442527	8.929089555	0.115556553
Н	-3.672488793	-8.832063852	0.257823261
Н	3.754792888	-8.844369421	0.103306494
Н	-3.732681846	8.965248521	-0.267999665
Н	3.711401684	8.916920409	0.329412403
С	0.025917151	-2.813041454	-0.509683831
С	-0.023064394	2.942427870	-0.290193896
С	0.038024421	-5.649792958	-0.264724503
С	0.001586971	5.750810980	-0.256076753
С	0.040295781	-7.072599606	-0.110877138
С	0.001304015	7.175977774	-0.143934038
С	2.558384337	-1.464365627	-0.876884072
С	2.618136935	1.611426777	-1.196738800
С	0.012856432	-1.409351046	-0.554153452
С	-0.088070856	1.584633407	-0.014679147

XYZ coordinates of equilibrium structure of the $C_{95}H_{28}O$ complex that is formed at steps B (a) of the methanol interaction with DV (PAH $C_{94}H_{24}$).

$C_{95}H_{28}O$

0	1.004170242	-1.113179222	1.628175164
Н	1.433817063	-1.040792937	-0.740071148
С	-1.049836628	-0.707806939	0.377237836
С	-0.898769148	0.740286804	0.139108215
С	-2.306785655	-1.410042686	0.174968531
С	-2.213917624	1.435653687	0.029658003
С	-3.523480209	-0.691112737	0.039589367
С	3.487970185	-0.712396352	-0.369872238
С	-3.479436525	0.726026432	0.005748859
С	3.345224172	0.747205332	-0.266039900
С	-4.776050874	-1.397927900	-0.030549902
С	4.767190211	-1.404513221	-0.307209029
С	-4.737953931	1.429055369	-0.088969140
С	4.667487238	1.443467606	-0.267871721
С	-5.998708681	-0.687441144	-0.111997318
С	5.976950717	-0.686613179	-0.298656145
С	-5.978121022	0.723915128	-0.136235138
С	5.920235041	0.731654593	-0.296900747
С	-7.252063112	-1.400326086	-0.172896402
С	7.235796112	-1.385997504	-0.314687274
С	-7.228637685	1.439347248	-0.211622358
С	7.178273212	1.437479568	-0.311708325
С	-8.478801349	-0.651005294	-0.234932586
С	8.455916397	-0.635099248	-0.336846459
С	-8.465247987	0.701982806	-0.251377509
С	8.421738663	0.716568730	-0.337816565
Н	-9.415787876	-1.199962169	-0.269804909
Н	9.398655714	-1.173085908	-0.359525845
Н	-9.392140189	1.266355282	-0.294717525
Н	9.340141464	1.296790105	-0.358648325
С	-2.372545772	-2.839054636	0.184823647
С	2.413615795	-2.894977883	-0.241288313
С	-2.322224284	2.860678993	-0.056253473
С	2.376822667	2.937423396	-0.154507444
С	-4.815753238	-2.819450011	-0.022595909
С	4.833509510	-2.829000159	-0.323468604
С	-4.780617805	2.848082110	-0.138154208
С	4.785738705	2.862946170	-0.244428884

С	-7.259158067	-2.782940694	-0.179130581
С	7.269566417	-2.775396909	-0.322545393
С	-7.231358795	2.818803434	-0.242123821
С	7.219712550	2.822126485	-0.298416451
С	-1.178997980	-3.586626086	0.212084263
С	1.241175009	-3.611398265	0.091847677
С	-1.144433553	3.615035514	-0.080549858
С	1.236438979	3.723828785	-0.136541908
С	-3.608730735	-3.545061696	0.057572048
С	3.649724073	-3.588484622	-0.270964254
С	-3.571621218	3.569842390	-0.119099218
С	3.612576668	3.622116664	-0.204182798
С	-6.062697430	-3.524413186	-0.119391929
С	6.089640373	-3.529063305	-0.329426110
С	-6.030998215	3.552212034	-0.214288643
С	6.043303347	3.565466651	-0.267442248
Н	-8.206924253	-3.312728779	-0.233962687
Н	8.230137035	-3.284306487	-0.319330776
Н	-8.175771304	3.353626283	-0.291914610
Н	8.179069547	3.332185693	-0.305663880
С	-1.191963458	-5.011476443	0.067492789
С	1.247053546	-5.027323578	-0.006003849
С	-1.175471264	5.055905350	-0.131076789
С	1.244624464	5.120903013	-0.159819605
С	-3.633473337	-4.967267341	-0.020790739
С	3.681229538	-5.006657072	-0.243083215
С	-3.608406910	4.994307111	-0.172492604
С	3.660699035	5.053137107	-0.209505181
С	-6.063852766	-4.932921888	-0.163935613
С	6.105021322	-4.948620487	-0.339632430
С	-6.038911219	4.957837660	-0.260476274
С	6.078829912	4.981822119	-0.260697125
С	-2.422343453	-5.702334559	-0.025855790
С	2.470722013	-5.727310147	-0.176306787
С	-2.407500456	5.742165694	-0.168435829
С	2.474825697	5.809244935	-0.192002889
С	-4.884174292	-5.662207316	-0.138038956
С	4.938514401	-5.695760625	-0.314329550
С	-4.862706635	5.688273394	-0.239417160
С	4.922623475	5.735791842	-0.238853635
Н	-7.014664268	-5.453280289	-0.241602174
Н	7.066456585	-5.454578612	-0.368211267
Н	-6.992997210	5.475544785	-0.315384434
Н	7.048808576	5.473526853	-0.277627293

С	-2.429764078	-7.135050085	-0.149676879
С	2.468882077	-7.163506713	-0.252836210
С	-2.427568395	7.181808080	-0.217654035
С	2.478763664	7.246629397	-0.213404274
С	-4.868011653	-7.099260556	-0.245739108
С	4.914635178	-7.137679901	-0.367585336
С	-4.862642353	7.127921806	-0.286141574
С	4.920966249	7.180339018	-0.244932598
С	-1.224874846	-7.830388892	-0.187948408
С	1.259026379	-7.843995567	-0.227584732
С	-1.232621040	7.897139492	-0.222992733
С	1.265381684	7.924953681	-0.217105734
С	-3.703768016	-7.799528601	-0.253272438
С	3.745095622	-7.831747908	-0.355254520
С	-3.707675616	7.839455994	-0.271326913
С	3.766536213	7.898860692	-0.234795411
Н	-5.820053553	-7.615470087	-0.334254201
Н	5.860952863	-7.666500235	-0.433570300
Н	-5.822314430	7.635580213	-0.335161282
Н	5.882365603	7.687396856	-0.260358316
Н	-1.237134607	-8.912503685	-0.297253283
Н	1.255175508	-8.928473846	-0.309137919
Н	-1.263480755	8.983452268	-0.259305812
Н	1.264025446	9.012195616	-0.241437419
Н	-3.711342902	-8.881758044	-0.349872417
Н	3.751934113	-8.917027910	-0.414318714
Н	-3.729286109	8.925213728	-0.310152182
Н	3.798537611	8.984902438	-0.242170515
С	0.043470900	-2.908670572	0.398530181
С	0.086021446	2.929726996	-0.089270539
С	0.021655287	-5.738216008	0.014270947
С	0.018350717	5.813338479	-0.157327050
С	0.017626129	-7.163523093	-0.123763455
С	0.016065509	7.242170983	-0.196685878
С	2.375909183	-1.511973718	-0.498877174
С	2.112276891	1.528933862	-0.138571166
С	0.008634019	-1.533328710	0.815346178
С	0.347929018	1.528565659	-0.027343004
С	0.771668048	-0.093682437	2.610232084
Н	-0.282969558	-0.048193847	2.892793353
Н	1.381932190	-0.378006835	3.469068181
Н	1.088978532	0.882382869	2.237094228

XYZ coordinates of equilibrium structure of the $C_{95}H_{28}O$ complex that is formed at C (b) of the methanol interaction with DV (PAH $C_{94}H_{24}$).

$C_{95}H_{28}O$

0	1.207009243	-0.863347869	-0.310239284
Н	2.509920248	-0.973473408	2.711332558
С	-1.080619124	-0.675380245	-0.216435093
С	-0.920252182	0.781856706	-0.212640262
С	-2.340203889	-1.380680960	-0.188752806
С	-2.238313424	1.474213085	-0.194041728
С	-3.559718566	-0.660400854	-0.173130705
С	3.487946317	-0.670857520	-0.246206243
С	-3.505616722	0.758827300	-0.179722441
С	3.316147252	0.784499356	-0.243550981
С	-4.810299491	-1.369140647	-0.155536167
С	4.757314709	-1.375066097	-0.227508817
С	-4.767861939	1.463722058	-0.168926740
С	4.641551884	1.481010295	-0.245849073
С	-6.032952984	-0.656021678	-0.148859653
С	5.963873490	-0.651132757	-0.228267539
С	-6.009073704	0.756858770	-0.156380882
С	5.896887060	0.768259423	-0.242620154
С	-7.287685461	-1.368880086	-0.133939334
С	7.224071460	-1.351412154	-0.217372802
С	-7.260609856	1.474076394	-0.149852848
С	7.154415690	1.478144210	-0.250264155
С	-8.514095814	-0.616269654	-0.128687281
С	8.440515013	-0.593670012	-0.227085467
С	-8.498277683	0.737290417	-0.136679847
С	8.399101433	0.757865422	-0.243848780
Н	-9.453099726	-1.162511507	-0.117248801
Н	9.386682773	-1.127001766	-0.220737575
Н	-9.425969593	1.302828107	-0.131503364
Н	9.316257333	1.340085193	-0.250546522
С	-2.399353001	-2.815575756	-0.174082816
С	2.420461542	-2.906286977	-0.231748896
С	-2.350586248	2.901504327	-0.188991296
С	2.349983513	2.985872424	-0.232381397
С	-4.848934182	-2.792786343	-0.144109528
С	4.831357892	-2.805589000	-0.208188312
С	-4.811415303	2.884228782	-0.169391207
С	4.759814937	2.903075727	-0.250062854

С	-7.296635863	-2.752334802	-0.123159641
С	7.264474049	-2.741314755	-0.198190192
С	-7.263933477	2.854777349	-0.154046627
С	7.193687578	2.862180969	-0.261141207
С	-1.219603637	-3.581539634	-0.183922288
С	1.220235323	-3.627089843	-0.218867291
С	-1.171761569	3.657186537	-0.197538326
С	1.211180515	3.774787530	-0.219727210
С	-3.641250895	-3.523116170	-0.150105821
С	3.655985018	-3.580971915	-0.205641271
С	-3.601877577	3.607749234	-0.177118891
С	3.586557979	3.665787394	-0.242727725
С	-6.098786679	-3.496983831	-0.125601445
С	6.087331300	-3.502128436	-0.190808067
С	-6.063322167	3.589022340	-0.161163040
С	6.015694325	3.606374868	-0.258853641
Н	-8.246460441	-3.280886719	-0.110699577
Н	8.227590868	-3.244530510	-0.188948402
Н	-8.209695862	3.390697410	-0.150074710
Н	8.153246503	3.372812923	-0.267877019
С	-1.226883396	-5.009173479	-0.156329286
С	1.226356135	-5.036846478	-0.180014091
С	-1.204622675	5.098144362	-0.194390183
С	1.217236835	5.169748072	-0.218273036
С	-3.666424123	-4.948715090	-0.130456717
С	3.676345308	-5.000820781	-0.176231664
С	-3.640306178	5.032953738	-0.174110253
С	3.633583344	5.097758196	-0.242632345
С	-6.100862113	-4.908280178	-0.108270799
С	6.100636272	-4.924764779	-0.167323181
С	-6.073081192	4.996550405	-0.158698494
С	6.051080762	5.023334236	-0.261909420
С	-2.458915651	-5.696025305	-0.130996152
С	2.463705981	-5.728580050	-0.165408930
С	-2.438734713	5.781866688	-0.182259340
С	2.447076948	5.856300662	-0.230839712
С	-4.922021817	-5.642279271	-0.108301822
С	4.937940217	-5.682389475	-0.158451871
С	-4.896458062	5.727475335	-0.163793034
С	4.894935953	5.780370507	-0.253567097
Н	-7.055193444	-5.428978297	-0.092987900
Н	7.064639545	-5.427548860	-0.154049737
Н	-7.028755404	5.514718187	-0.151931614
Н	7.021080429	5.514203054	-0.269679242

С	-2.465654206	-7.133395527	-0.105057581
С	2.460468151	-7.165810474	-0.133818589
С	-2.459209929	7.221680233	-0.179811876
С	2.448937719	7.293212419	-0.229929263
С	-4.907822521	-7.084938871	-0.085543433
С	4.913660604	-7.127428048	-0.132558961
С	-4.896554504	7.168584580	-0.159276382
С	4.891256087	7.225837136	-0.254955745
С	-1.257792364	-7.830386135	-0.101622911
С	1.244509641	-7.842408103	-0.116511814
С	-1.265228021	7.939009565	-0.190334532
С	1.234721782	7.971633547	-0.215954240
С	-3.747160305	-7.793163981	-0.082789867
С	3.745839354	-7.827293104	-0.120955050
С	-3.740070891	7.879403426	-0.166920601
С	3.736407966	7.945055338	-0.243907242
Н	-5.863181047	-7.602462241	-0.068239201
Н	5.863486174	-7.655196988	-0.121950745
Н	-5.856101358	7.678201270	-0.149450699
Н	5.850956027	7.735775178	-0.265157645
Н	-1.274471972	-8.917243445	-0.080380050
Н	1.245401972	-8.929654456	-0.093277530
Н	-1.298955900	9.025821021	-0.188810254
Н	1.231642224	9.058915990	-0.215058198
Н	-3.767544286	-8.879415959	-0.063789259
Н	3.762986979	-8.913675069	-0.101133552
Н	-3.760531243	8.965807205	-0.164265518
Н	3.767467028	9.031364871	-0.245392748
С	0.007344835	-2.904121286	-0.218516732
С	0.062093404	2.979561130	-0.210465241
С	-0.007365935	-5.735867705	-0.155772388
С	-0.010998332	5.858019509	-0.205201504
С	-0.008631187	-7.165570264	-0.124544287
С	-0.014183782	7.286709339	-0.203614702
С	2.382948990	-1.502712734	-0.266494601
С	2.067536368	1.579089664	-0.235516649
С	0.034810121	-1.507282283	-0.251252712
С	0.340755606	1.581072366	-0.220984166
С	1.449951923	-0.759938395	2.863630911
Н	0.861036793	-1.645520856	2.612799951
Н	1.276154516	-0.494065386	3.908049852
Н	1.154798081	0.068925035	2.218647449