SUPPORTING INFORMATION

Double-doped Pd/C_{N-B} nano-architectures for hydrogen evolution and

hydrogenation reaction in water

Adam W. Augustyniak

Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland adam.augustyniak@uwr.edu.pl

Fig. S1	 2
Fig. S2	 4
Fig. S3	 4
Table S1	 4
Fig. S4	 5
Fig. S5	 6
Fig. S6	 6
Fig. S7	 7
Fig. S8	 8
Table S2	 9
Fig. S9	 9
Fig. S10	 10
Table S3	 11
Fig. S11	 11
Fig. S12	 12
Table S4	 13
Fig. S13	 13
Fig. S14	 14
Fig. S15	 15
Fig. S16	 16
Fig. S17	 17
Fig. S18	 18
Fig. S19	 19
Fig. S20	 19
Fig. S21	 20
Fig. S22	 21
Fig. S23	 22
Fig. S24	 22
Fig. S25	 23
Fig. S26	 24

Experimental Section

The phenylacetylene conversion, styrene and ethylbenzene selectivity, were estimated in accordance with the formula below by analyzing the peak areas and factors of the reactants and products calibrated by gas chromatography:

$$\alpha = \frac{A_{wz} \cdot n_s}{A_s \cdot n_{wz}}$$

 α - correction factors, A_{wz} - internal standard area, A_s - substrate area, n_{wz} - number of moles of internal standard, n_s - number of moles of substrate

Conversion (%) =
$$100\% - (\frac{n_k}{n_p} \cdot 100\%)$$

 n_k - number of moles of unreacted substrate

$$n_k = \frac{\alpha \cdot n_{wz} \cdot A_s}{A_{wz}}$$

 n_s - initial number of substrate moles

Selectivity (%) = $A_p(\%) \cdot \frac{100\%}{A_{ST}(\%) + A_{EB}(\%)}$

A_p- product area (styrene (ST) or ethylbenzene (EB))
A_{ST}. styrene area
A_{EB} - ethylbenzene area

(b)

Fig. S1 TEM images of Pd/C_{N-B} (a-b) and particle size distribution (c).

D_{TEM} / nm

Fig. S2 Raman spectrum of Pd/C_{PYMO}.

Fig. S3 IR spectrum of Pd/C_{N-B}.

Catalyst	N (%)ª	C (%) ª	H (%)ª	B (%) ^b
Pd/C _{N-B}	5.39	17.28	0.78	5.7
Pd/C _{PYMO}	5.22	37.82	2.226	-

Table S1. N, C, H, and B elements content.

^a Elemental analysis, ^b ICP-OES

Fig. S4 (a) NH₃-TPD–MS and (b) CO₂-TPD–MS profiles for Pd/C_{N-B}

Fig. S5 (a) Time dependency of the (1/C) ratio for the second-order phenylacetylene hydrogenation at 50-70 °C. **(b)** Arrhenius plot for the hydrogenation of phenylacetylene using the rate constants calculated from the second-order plots.

Fig. S6 Tme profiles of conversion of phenylacetylene catalyzed by Pd/C_{N-B} (a) and selectivity to styrene profile (b). Reaction conditions: 0.91 mmol of phenylacetylene, catalyst Pd/C_{N-B} (0.5 mol% Pd), 1 mmol of NH₃BH₃, 2 mL of H₂O.

Fig. S7 GC-FID chromatogram of the hydrogenation of a mixture of phenylacetylene and styrene using Pd/C_{N-B} as the catalyst. Reaction conditions: 1 mmol of phenylacetylene and 1 mmol of styrene, 1 mmol of BH₃NH₃ catalyst Pd/C_{N-B} (1 mol% Pd), 2 mL of H₂O.

Fig. S8 GC-FID chromatogram of the hydrogenation of phenylacetylene using Pd/C_{N-B} as the catalyst. Reaction conditions: 0.91 mmol of phenylacetylene and 1 mmol of B₂(OH)₄, catalyst Pd/C_{N-B} (1 mol% Pd), 2 mL of H₂O.

 Table S2
 Hydrogenation of 3-nitrophenylacetylene.

Reaction conditions: The catalyst (0.5 mol%), 3-nitrophenylacetylene (0.91 mmol), NH₃BH₃ (1 mmol), water (2 mL), 40 °C, 30 min.

Fig. S9 GC-FID chromatogram (a) and GC-MS spectrum (b) for the 3-nitrophenylacetylene hydrogenation at 60 °C for 30 min.

Fig. S10 GC-FID chromatogram for the 3-nitrophenylacetylene hydrogenation at 40 °C (a), 50 °C (b), and GC-MS spectrum for 50 °C (c).

Reaction conditions: The catalyst (1 mol%), 3-ethynylanisole (0.91 mmol), NH₃BH₃ (1 mmol), water (2 mL), 70 °C, 40 min.

Fig. S11 GC-FID chromatogram for the 3-ethynylanisole hydrogenation.

Fig. S12 GC-MS spectrum for the 3-ethynylanisole hydrogenation.

Table S4 Hydrogenation of 4-ethynyltoluene

Reaction conditions: The catalyst (1 mol%), 4-ethynyltoluene (0.91 mmol), NH₃BH₃ (1 mmol), water (2 mL), 70 °C, 40 min.

Fig. S13 GC-FID chromatogram for the 3-ethynylanisole hydrogenation.

Fig. S14 GC-MS spectrum for the 3-ethynylanisole hydrogenation.

Fig. S15 GC-FID chromatogram of the hydrogenation of phenylacetylene using Pd/C as the catalyst. Reaction conditions: 0.91 mmol of phenylacetylene and 1 mmol of NH₃BH₃, catalyst Pd/C (1 mol% Pd), 2 mL of H₂O.

Fig. S16 GC-FID chromatogram of the hydrogenation of phenylacetylene using **Raney®-Nickel** as the catalyst. Reaction conditions: 0.91 mmol of phenylacetylene and 1 mmol of NH₃BH₃, catalyst **Raney®-Nickel** (5 mol% Ni), 2 mL of H₂O.

Fig. S17 GC-FID chromatogram of the hydrogenation of phenylacetylene using Pd/C_{PYMO} as the catalyst. Reaction conditions: 0.91 mmol of phenylacetylene and 1 mmol of NH₃BH₃, catalyst Pd/C_{PYMO} (1 mol% Pd), 2 mL of H₂O.

Fig.S18 Recycling test of hydrogenation of phenylacetylene using Pd/C_{N-B} catalyst. Reaction conditions: 0.91 mmol of phenylacetylene and 1 mmol of BH₃NH₃, catalyst Pd/C_{N-B} (1 mol% Pd), 2 mL of H₂O.

Fig. S19 STEM image (inset: XRD diffractogram) of Pd/C_{N-B} after after hydrolysis of NH_3BH_3 and H_2 evolution.

Fig. S20 STEM image (inset: XRD diffractogram) of Pd/C_{N-B} after hydrolysis of $B_2(OH)_4$ and H_2 evolution.

Fig.S21 ICP-OES of liquid phase after H_2 evolution from NH_3BH_3 and phenylacetylene hydrogenation by Pd/C_{N-B} and commercial Pd/C

Fig. S22 High-resolution XPS spectra of N 1s (a), B 1s (b), O 1s (c), and C1s (d) for Pd/C_{N-B} after reaction.

Fig.S23 ¹H NMR spectra for the hydrogenation of phenylacetylene/d1-phenylacetylene using H_2O/D_2O as a solvent BH₃NH₃ and **Pd/C_{N-B}** as the catalyst during 40 min at 50 °C.

Fig.S24 ¹H NMR spectra for the hydrogenation of phenylacetylene/d1-phenylacetylene using H_2O/D_2O as a solvent $B_2(OH)_4$ and **Pd/C_{N-B}** as the catalyst during 40 min at 45 °C.

Fig.S25 Tandem reaction of $B_2(OH)_4$ dehydrogenation in H_2O and hydrogenation of phenylacetylene in H_2O . GC-FID chromatogram (a) and ¹H NMR spectrum (b). Reaction conditions: 0.91 mmol of phenylacetylene and 1 mmol of $B_2(OH)_4$, catalyst **Pd/C_{N-B}** (1 mol% Pd), 2 mL of H_2O , 40 min at 45 °C.

Fig.S26 ¹H NMR spectrum of phenylacetylene hydrogenation with **ammonia water**. Reaction conditions: 0.91 mmol of phenylacetylene and 1 mmol of NH₃BH₃, catalyst **Pd/C**_{N-B} (1 mol% Pd), 2 mL of H₂O, 40 min at 70 °C, 50 μ l NH₃·H₂O.