Supplemental Information for

A Mini Review on Photocatalytic Lignin Conversion into Monomeric Aromatic Compounds

Shibo Shao¹, Xiangzhou Wang³, Wenbing Li^{1*}, Yiming Zhang⁴, Shi Liu¹, Weisheng

Xiao¹, Zongyang Yue², Xu Lu^{1*}, Xianfeng Fan^{2*}

¹Advanced Materials Research Center, Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, P.R. China

² School of Engineering, The University of Edinburgh, Edinburgh, EH9 3JL, UK

³ Refining, Chemical & New Materials Company, PetroChina Company Limited, Beijing, 100007, P.R. China

⁴ School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P.R. China.

*Corresponding author: Prof. X. Fan (<u>x.fan@ed.ac.uk</u>)

Table of Contents

Table S1 List of Abbreviations
Table S2 Typical Lignin Model Compounds Used in Literature and Their Structures.5
Table S3 The performance of C-O bond cleavage by representative photocatalysts from
previous literature
Table S4 The performance of C-C bond cleavage by representative photocatalysts from
previous literature7

Abbreviation	Definition
2D	Two-Dimensional
3D	Three-Dimensional
BDE	Bond Dissociation Energy
CB	Conduction Band
CBM	Conduction Band Minimum
COF	Covalent Organic Framework
CZCP	Carbazolic Copolymers
DFT	Density Functional Theory
DOS	Density of States
Ea	Activation energy
Eg	Band gap
ЕНСО	Electron-Hole Coupled
EPR/ESR	Electron Paramagnetic Resonance/Electron Spin Resonance
FID	Flame Ionization Detector
fs	Femtosecond
FTIR	Fourier Transform Infrared
НАА	Hydrogen Atom Abstraction
НАТ	Hydrogen Atom Transfer
НОМО	Highest-Occupied Molecular Orbital

Table S1 List of Abbreviations

LMCT	Ligand-to-Metal Charge Transfer
LUMO	Lowest-Unoccupied Molecular Orbital
LSPR	Localized Surface Plasmon Resonance
MCF	Mesoporous Cellular Silica Foam
MOF	Metal-Organic Framework
NMR	Nuclear Magnetic Resonance
ns	nanosecond
μs	microseconds
PCET	Proton-Coupled Electron Transfer
PCN	Polymeric Carbon Nitride
POF	Porous Organic Frameworks
ps	Picosecond
QDs	Quantum Dots
ROS	Reactive Oxidative Species
SET	Single Electron Transfer
UV	Ultraviolet
VB	Valence Band
VBM	Valence Band Maximum

Lignin Model Compound	Туре	Molecular Structure
benzyl phenyl ether (BPE)	α-Ο-4	α
2-phenoxy-1-phenylethanol (PP-ol)	β-Ο-4	OH a b c c c c c c c c c c c c c
2-phenoxy-1-phenylethanone (PP-one)	β-Ο-4	$ \bigcirc \qquad \bigcirc $
2-phenylethyl phenyl ether (PPE)	β-Ο-4	αβο
1,2-diphenylethanol (DPol)	C_{α} - C_{β}	OH a b

Table S2 Typical Lignin Model Compounds Used in Literature and Their Structures

Table S3 The performance of C-O bond cleavage by representative photocatalysts from previous literature

				Reac	tion Condition			Conversion	Selectivity	
Ref	Catalyst	Solvent	Substrate	Temp	Atmosphere	Reaction	Light Source	Lignin	Monomeric	By-
1	$ZnIn_2S_4$ (5 mg)	1 mL CH ₃ CN	Amount 0.10 mmol PP-ol	42 °C	N ₂	time 4 h	9.6 W blue LEDs (455 nm),	Model >99%	Aromatics 83%~90%	6%
2	Zn ₄ In ₂ S ₇ (10 mg)	5 mL CH ₃ CN/H ₂ O (1:1 v/v)	0.10 mmol PP-ol	-	N_2	4 h	Xe lamp (400– 780 nm), 0.6 W/cm ²	99%	82%~86%	9.6%
3	Ni/CdS (20 mg)	10 mL CH ₃ CN/0.1 M KOH (2:8, v/v)	0.10 mmol PP-ol	-	N ₂	2 h	8 W Blue LED (440–460 nm)	~100%	~90%	-
4	Ag2S@ CdS (1 mg)	1 mL CH₃CN	10 mg PP- ol	30 °C	Ar	3 h	6 W Blue LED	99%	91%~95%	4%
5	ZIS-3 (10 mg)	5 mL CH ₃ CN/H ₂ O (2:3, v/v)	10 mg PP- ol	20-25 °C	Ar	1.5h	Xe lamp, (420– 780 nm, 0.35W/cm ²)	~100%	91%~93%	4.7%
6	SL- Fe ₃ O ₄ /TiO ₂ (100mg)	50 mL methanol, 0.5 mL 30% H ₂ O ₂	0.5 mmol PP-ol	40 °C	O ₂	12 h	500 W Hg lamp	94.3%	10.7%	-
7	ZIF-8- NH ₂ @Bi/ Bi ₂ MoO ₆ (10 mg)	10 mL CH ₃ CN/H ₂ O (1:1, v/v)	10 mL PP- ol (0.05 mmol/L)	20-25 °C	Air	6h	300 W xenon lamp (λ > 400 nm)	93%	48%~57%	34%
8	CdS-SH/ TiO ₂ (10 mg)	5 mL CH ₃ CN	1 mg PP-ol	20 °C	N_2	lh	300 W xenon lamp	99%	85%~87%	<1%
9	CdS-150 (10mg)	5 mL CH ₃ CN/H ₂ O (2:3, v/v)	10 mg PP- ol	20 °C	Не	1h	Xe lamp, (420–780 nm, 0.35W/cm ²)	~100%	~85%-87%	-
10	CZIS-3	5 mL CH ₃ CN/H ₂ O (2:3, v/v)	10 mg PP- ol	20 °C	Не	1.5h	Xe lamp, (420– 780 nm, 0.35W/cm ²)	~100%	91.5%~93.6%	9.6%

Table S4 The performance of C-C bond cleavage by representative photocatalysts from	
previous literature	

		Reaction Condition					Conversion Selec		4	
Ref	Catalyst	Solvent	Substrate Amount	Temp	Atmosphere	Reaction time	Light Source	Lignin Model	Monomeric Aromatics	By- products
11	MCSCN-75 (12 mg)	30 mL CH ₃ CN	0.012 mmol PP- ol	R.T.	Air	1.5 h	20 W LED ($\lambda =$ 420–430 nm)	95%	~90%	-
12	CS@3%rGO (10 mg)	l ml CH ₃ CN	l mg PP- ol	-	O ₂	200 min	300 W xenon lamp	95%	~80%	3%
13	CuO _x /ceria/A -NT(10 mg)	l ml CH ₃ CN	0.05 mmol DP-ol	R.T.	O ₂	5 h	9.6 W Blue LED (455 nm)	~75%	~98%	-
14	mpg-C ₃ N ₄ (10	l ml	0.05 mmol PP-ol		0	10 h	6 W LED (455	96%	~91%	7/%
	mg)	CH₃CN	0.05 mmol DP-ol	-	02	10 n	nm)	~89%	~80%	~14%
15	40Ag ₃ PO ₄ 60PCN (10 mg)	5 mL CH ₃ CN/H ₂ O (1:1,)	0.1 mmol DP-ol	-	O ₂	6 h	Xe lamp, (420– 780 nm, 0.6W/cm ²)	~99%	~86%	~10%
16	W ₁₀ D ₁ U ₉ -2 (10 mg)	5 ml CH ₃ CN	0.05 mmol PP- ol 0.05	R.T.	O ₂	5 h	Xe lamp, (420– 780 nm,	~90%	~90%	~10%
		n I	mmol DP-ol				0.35W/cm ²)	~82%	~87%	~10%
17	DEG CN (40 mg)	5 ml CH ₃ CN	0.1 mmol DP-ol	R.T.	O ₂	10 h	Xe lamp, (300W, 0.15W/cm²)	~100%	~96%	-
18	NaK-U (10 mg)	l ml CH ₃ CN	0.05 mmol PP- ol	35 °C	O ₂	10 h	40 W LED (427 nm)	~99%	~91%	-