Supporting Information

Polystyrene-Bound AlCl₃ - a Catalyst for the Solvent-Free Synthesis of Aryl-Substituted Tetrazoles

Max Schmallegger,*^a Mathias Wiech,^a Sebastian Soritz,^b Miriam de J. Velásquez-Hernández, Brigitte Bitschnau,^a Heidrun Gruber-Woelfler^b and Georg Gescheidt,*^a

Contents

Determination of the Lewis Acid Strength

¹H NMR Spectra

ATR-IR Spectra

Gas Sorption Measurements

X-Ray Powder Diffraction Patterns

Optimization of AICI₃ concentration

Determination of the Lewis Acid Strength

Figure S1. ³¹P NMR spectra of TEPO in the presence of different LAs; spectra were recorded in MeOH-d₄.

The Lewis acid strength, as determined by the Gutmann-Beckett method, shows a clear correlation with the catalytic activity in the formation of tetrazoles. Lewis acids inducing a higher chemical shift in the ³¹P NMR also lead to higher product formation when employed as catalysts.

Figure S2 ¹H-NMR-spectrum of 5-phenyltetrazole formation reaction using AlCl₃ as catalyst in under bulk conditions at 160°C; spectrum was recorded in DMSO-d₆.

Figure S3 ¹H-NMR-spectra of the formation of 5-phenyltetrazole tetrazole using Polymer-bound AlCl₃ as catalyst under bulk conditions at 160°C; for all runs, the catalyst was recycled and used again; spectra were recorded in DMSO-d₆.

Figure S4 ¹H-NMR-spectrum of 3b using polymer-bound AICl₃ as catalyst in under bulk conditions at 160°C; spectrum was recorded in DMSO-d₆.

Figure S5 ¹H-NMR-spectrum of 3c using polymer-bound AICI₃ as catalyst in under bulk conditions at 160°C; spectrum was recorded in DMSO-d₆.

Figure S6 1H-NMR-spectrum of 3d using polymer-bound AICI₃ as catalyst in under bulk conditions at 160°C; spectrum was recorded in DMSO-d₆.

Figure S7 ¹H-NMR-spectrum of 3e using polymer-bound AICI₃ as catalyst in under bulk conditions at 160°C; spectrum was recorded in DMSO-d₆

Figure S8 ¹H-NMR-spectrum of 3f using polymer-bound AICI₃ as catalyst in under bulk conditions at 160°C; spectrum was recorded in DMSO-d₆

ATR-IR Spectra

Figure S9. ART-IR spectra of polystyrene (black) and AICI $_3$ immobilized in polystyrene (red)

Gas Sorption Measurements

Figure S10. N2 adsorption isotherms. a) Polystyrene sample. b) AlCl3-on-PS

Figure S11. Brunauer-Emmett-Teller (BET) analysis

Figure S12. Pore size distribution analysis obtained from Density Functional Theory (DFT)

X-Ray Powder Diffraction Patterns

Figure S13. Normalized PXRD patterns of the polymer reference without $AlCl_3$ (yellow), the polymer-bound $AlCl_3$ composite before (violet) and after 5 catalytic runs (green). The diffractograms of $AlCl_3 \cdot 6(H_2O)$ (ICSD-22071, blue), $AlCl(OH)_2 \cdot 2(H_2O)$ (ICSD-425880, red) and $Al(OH)_3$ (ICSD-6162, black) are shown for comparison.

Optimization of AICI₃ concentration

Figure S14 ¹H-NMR-spectra of 3a using polymer-bound $AICI_3$ prepared with different polymer-to-AICI3 mass ratios as catalyst in under bulk conditions at 160°C; spectrum was recorded in DMSO-d6 (left) and comparison of the obtained product yields (right) rationalizing the 1:2 polymer:AICI₃ ratio used in all further experiments