Sustainable Copper Nanocomposite for Multicomponent Synthesis of Triazolo Quinolines and Triazolyl Benzamide Derivatives and Their Bioactivity Study

Nandini R.,^a Byresh B. Kempegowda,^b Sudhanva M. Srinivasa,^b Umesh A. Kshirsagar,^c Jan Grzegorz Malecki,^d Siddappa A. Patil,^a Shoyebmohamad F. Shaikh,^e Manoj V. Mane, ^{a*} Ramesh B. Dateer ^{a*}

^{*a*}Centre for Nano and Material Sciences, Jain Global Campus, JAIN (Deemed-to-be University), Bangalore - 562112, Karnataka, India.

^bAdichunchanagiri Institute for Molecular Medicine, Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, BG Nagara - 571448, Karnataka, India.

^{*c*}Indian Institute of Technology, Indore - 453552, Madhya Pradesh, India.

^dInstitute of Chemistry, University of Silesia, 9th Szkolna Street, Katowice40-006, Poland.

^eDepartment of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

*Corresponding authors, Email: d.ramesh@jainuniversity.ac.in; manoj.mane@jainuniversity.ac.in

Table of Contents

1. General considerations	S 3
2. Synthesis of Cu@PANI@Fe3O4nanocomposite	S4
2.1 Synthesis of PANI@Fe ₃ O ₄	
2.2 Synthesis of Cu@PANI@Fe ₃ O ₄ nanocomposite	
2.3 Characterization of Cu@PANI@Fe ₃ O ₄ nanocomposite	
3. General experimental procedure for the optimization study of triazolo quinol triazolyl benzamide derivatives.	ines and S7
4. Exact experimental procedure for the synthesis of 1 <i>H</i> -[1,2,3]Triazolo[4,5-c]quind and <i>N</i> -(p-tolyl)-2-(1 <i>H</i> -1,2,3-triazol-4-yl)benzamide (6a)	oline (3a) S8
5. Representative procedure for the gram-scale synthesis of $1H$ -[1,2,3]Triaz	zolo[4,5-
c]quinoline (3a) and <i>N</i> -(p-tolyl)-2-(1 <i>H</i> -1,2,3-triazol-4-yl)benzamide (6a)	S9
6. Optimization for the synthesis of 1 <i>H</i> -[1,2,3]triazolo[4,5-c]quinoline	S10
7. Optimization for the synthesis of <i>N</i> -(p-tolyl)-2-(1 <i>H</i> -1,2,3-triazol-4-yl)benzamide	S11

8. Plausible mechanism	S12
9. Catalyst recyclability	S14
10. Biological activity	S15
11. Hot filtration test	S17
12. Comparision with previous report	S17
13. Computational studies	S18
14. Spectroscopic data of triazolo quinolines and triazolyl benzamide derivatives	S30
15. References	S34
Appendix I: Spectral copies of ¹ H and ¹³ C NMR of compounds obtained in this stud	y S36
Appendix II: Crystallographic data	S58

1. General considerations

Unless otherwise specified, The presence of different functional groups in Cu@PANI@Fe₃O₄ nanocomposite was analysed by Fourier Transform Infrared Spectroscopy (FT-IR) in a Perkin Elmer FT-IR instrument by KBr pellets method in the range of 4000 to 500 cm⁻¹. The crystallographic nature and the phase of the Cu@PANI@Fe₃O₄ nanocomposite were as examined and confirmed using powder X-ray diffraction spectroscopy (XRD) noted on a Rigaku X-Ray Diffraction Ultima IV (Rigaku Corporation, Japan) X-ray diffractometer using Ni filtered Cu Ka radiation ($\lambda = 1.5406$ Å) with a scan rate of 2° min⁻¹ and theta value range of 10-80° at 30 kV voltage and 15 mA current. The surface area analysis of Cu@PANI@Fe₃O₄ nanocomposite was performed using Brunauer Emmet and Teller (BET) method on Belsorp-Max (M/s. Microtrac BEL, Japan) under an N2 atmosphere at a temperature of -196 °C. The corresponding pore size distribution of the catalyst was analyzed using Barrett Joyner Halenda's (BJH) method. The catalysts were degassed at 120 °C for 4 h under vacuum before analysis to push out absorbed moisture. The thermal degradation of Cu@PANI@Fe₃O₄ nanocomposite was determined by a thermal analyzer within the temperature window of 27 °C to 900 °C under continuous N2 flow with a heating rate of 5 °C min⁻¹. The morphology and structural identity of Cu@PANI@Fe₃O₄ nanocomposite were investigated using a Field Emission Scanning Electron Microscope (JEOL JSM-7100F, Singapore) coupled with energy dispersive X-ray spectroscopy (EDX). The carbon tape on the aluminium metal stub was adequately covered with the powdered sample and subjected to sputtering using gold nanoparticles. All reactions were performed in completely dried glass wares if otherwise specified. All reagents were directly used as purchased without further purification unless otherwise specified. Column chromatography was performed using silica gel (60-120 mesh) and a proper eluent. Chemical shifts were expressed in parts per million (ppm) concerning the solvent peak (DMSO in DMSO-d6: 2.5 and 3.5 ppm). Multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), doublet of doublets (ddd), doublet of triplets (dt), triplet (t), triplet of doublets (td), quartet (q), and multiplet (m). Broadband proton decoupling was used to fully decouple ${}^{13}C \{{}^{1}H\}$ NMR and recorded on an Agilent Technologies DD2 (100 MHz). Chemical changes were measured in parts per million (ppm) and compared to the center of a triplet at 44.0 parts per million (ppm) of DMSO-d6.

2. Synthesis of Cu@PANI@Fe₃O₄ nanocomposite

2.1 Synthesis of PANI@Fe₃O₄

Fe₃O₄ NPs were synthesized as per the reported procedure.^{*S1-S3*} Under ultrasonification, 0.1 g of Fe₃O₄ particles were completely disseminated in 100 mL of aqueous solution. The reaction system was subjected to intense agitation while submerged in an ice-water bath. Later on, HCl (0.1 M), polyaniline (PANI) and K₂S₂O₈ were successively added to the Fe₃O₄ dispersed solution in equal molar amounts. Then the reaction system was stirred at 0 °C for 5 hours. The black precipitate was then gathered and ultrasonically cleaned using ethanol and water through magnetic separation and dried at 80 °C for 12 hours.

2.2 Synthesis of Cu@PANI@Fe3O4 nanocomposite

The prepared PANI@Fe₃O₄ (100 mg) was ultrasonically dispersed in a solution containing $Cu(NO_3)_2$ (2 mmol), hydrazine hydrate (1 mL) and ethanol (10 mL).^{S4} Later on, this reaction mixture is continued for sonication up to 3 hours followed by centrifugation (3x30 mL ethanol) and dried at 80 °C for 12 h to obtain the required nanocomposite.

2.3 Characterization of Cu@PANI@Fe3O4 nanocomposite

2.3.1 Field Emission Scanning Electron Microscopic (FE-SEM) Analysis

FESEM analysis was carried out to know the surface morphology of the synthesized nanocomposite. The SEM images provided evidence that the Cu@PANI@Fe₃O₄ nanocomposite particles possessed agglomerated spherical morphology (Figure S1).

Figure S1. FESEM images of (a) Fe_3O_4 NPs (b) PANI@Fe_3O_4 and (c) Cu@PANI@Fe_3O_4 nanocomposite

2.3.2 Energy dispersive X-ray (EDX) analysis

The chemical composition of $Cu@PANI@Fe_3O_4$ nanocomposite was confirmed by EDX analysis which exhibited the characteristic peaks of Cu, O, Fe, C and N present in the nanocomposite (Figure S2). Further, elemental mapping confirms the uniform distribution of the Cu(0) NPs on the surface of the magnetite.

Figure S2. Energy Dispersive X-ray (EDX) Analysis of Cu@PANI@Fe₃O₄ nanocomposite

2.3.3 TG-DT Analysis

The thermal stability of the synthesized Cu@PANI@Fe₃O₄ nanocomposite was analyzed using Thermo Gravimetric (TG) and Differential Thermal (DT) Analysis (Figure S3). According to the data, the initial 5 % at around 200 °C drop was observed due to moisture and ethanol evaporation from the nanocomposite and the later 10% loss at 360 °C was due to the carbonization of the polymer shell (polyaniline) present in the nanocomposite. Further, the nanocomposite was found to be stable up to 800 °C without any loss which in turn indicates the thermal stability even at higher temperatures. The DTA graph revealed the maximum weight loss occurred at 264.8 – 546.6 °C which confirms the sustainability of Cu@PANI@Fe₃O₄ nanocomposite even at higher temperatures.

Figure S3. Thermo Gravimetric (TG) and Differential Thermal (DT) Analysis of Cu@PANI@Fe₃O₄ nanocomposite

2.3.4 BET-BJH Analysis

The surface area of the synthesized nanocomposite was analyzed using the nitrogen adsorptiondesorption technique wherein this analysis suggest that it follows type III isotherm with mesoporous nature. The surface area of the nanocomposite was found to be 11.086 m² g⁻¹ with a pore diameter of 18.57 nm and pore volume was found to be 0.0836 cm³ g⁻¹ (Figure S4).

Figure S4. BET and BJH Analysis of Cu@PANI@Fe₃O₄ nanocomposite

2.3.5 Vibrating Sample Magnetometer (VSM) Analysis

A vibrating sample magnetometer (VSM) under 12,000 to 12,000 Oe at room temperature was used to investigate the magnetic characteristics of Cu@PANI@Fe₃O₄ nanocomposite, as illustrated in Figure S5. The undetectable coercivity force of the nanoparticles was determined using magnetization hysteresis loops, confirming their superparamagnetic nature. The saturation magnetization (M_s) of the synthesized nanocomposite was found to be 20.12 emu/g. The low M_s value was observed due to the covering of the polymer core around the core Fe₃O₄ NPs. Magnetic separability of the nanocomposite is well demonstrated wherein the nanocomposite suspended in ethanol was attracted towards the external bar magnet placed across the glass indicating easy separation of the nanocomposite.

Figure S5. VSM analysis of Cu@PANI@Fe₃O₄ nanocomposite. The inset images demonstrate the magnetic separability using an external magnet

3. General experimental procedure for the optimization study of triazolo quinoline and triazolyl benzamide derivatives.

Initially, the Cu@PANI@Fe₃O₄ nanocomposite (Cu content, w/w: 29.61%, 0-20 mol%) and base (0-1.5 equiv.), was taken in an oven-dried 10 mL sealed tube. Later, 2-bromo benzaldehyde (1equiv.) acetophenone (1 equiv.) and sodium azide (NaN₃, 4 equiv.) along with the solvent (2 mL) was added to the same sealed tube and the reaction mixture was stirred at 60-120 °C for 12-30 h. After the completion of the reaction (monitored by TLC), the catalyst was separated from the reaction mixture using an external magnet. Further, the crude compound was extracted using ethyl acetate (EtOAc) and brine solution (10 x 3). Then the organic layer was collected and evaporated using a rota evaporator to obtain the crude compound **3** (**a** - **i**). The crude compound was purified by column chromatography (eluent: 3-10% EA/Hexane). The reaction was repeated twice and the product was purified by column chromatography (eluent: 3-10% EA/Hexane). The reaction was repeated twice of a base to synthesize triazolyl benzamide derivatives **6** (**a** - **l**). The crude compound was purified by column chromatography (eluent: 3-10% EA/Hexane). The reaction was repeated twice and the product was isolated to determine the yield (by an average of two runs). A similar procedure was followed in the absence of a base to synthesize triazolyl benzamide derivatives **6** (**a** - **l**). The crude compound was purified by column chromatography (eluent: 3-10% EA/Hexane). The reaction was repeated twice and the product was isolated to determine the yield to determine the yield (by an average of two runs).

4. Exact experimental procedure for the synthesis of 1*H*-[1,2,3]triazolo[4,5-c]quinoline (3a) and *N*-(p-tolyl)-2-(1*H*-1,2,3-triazol-4-yl)benzamide (6a)

In an oven tried 10 mL sealed tube containing 10 mol % of Cu@PANI@Fe₃O₄ (Cu content, w/w: 29%) nanocomposite, Cs₂CO₃ (1.2 mmol) as a base was added 2-bromo benzaldehyde **1a** (0.5 mmol), acetophenone **2a** (0.6 mmol) and NaN₃ (1.6 mmol) and ethanol as a solvent. This reaction mixture is stirred at 80 °C for 20 h. After the completion of the reaction (monitored by TLC), the

catalyst was separated using an external magnet. Further, the crude compound was extracted using ethyl acetate (EtOAc) and brine solution (10 x 3). Then the organic layer was collected, and evaporated using a rota evaporator to obtain the crude compound 1H-[1,2,3]triazolo[4,5c]quinoline (**3a**). The crude compound was purified by column chromatography (eluent: 3-10% EA/Hexane). The reaction was repeated twice and the product was isolated to determine the yield (by an average of two runs). A similar procedure was followed in the absence of base and stirred for 2 h to obtain *N*-(p-tolyl)-2-(1*H*-1,2,3-triazol-4-yl)benzamide (**6a**). The crude compound was purified by column chromatography (eluent: 10-20% EA/Hexane). The reaction was repeated twice and the product was isolated to determine the yield (by an average of two runs).

5. Representative procedure for the gram-scale synthesis of 1*H*-[1,2,3]triazolo[4,5-c]quinoline (3a) and *N*-(p-tolyl)-2-(1*H*-1,2,3-triazol-4-yl)benzamide (6a)

In an oven tried 60 mL sealed tube containing 10 mol % of Cu@PANI@Fe₃O₄ (Cu content, w/w: 29%) nanocomposite, Cs₂CO₃ (1.2 mmol) as a base was added 2-bromo benzaldehyde **1a** (0.5 mmol), acetophenone **2a** (0.6 mmol) and NaN₃ (1.6 mmol) and ethanol as a solvent. This reaction mixture is stirred at 80 °C for 20 h. After the completion of the reaction (monitored by TLC), the catalyst was separated by an external magnet. Further, the crude compound was extracted using ethyl acetate (EtOAc) and brine solution (10 x 3). Then the organic layer was collected, and evaporated using a rota evaporator to obtain the crude compound 1H-[1,2,3]triazolo[4,5-c]quinoline (**3a**). The crude compound was purified by column chromatography (eluent: 3-10% EA/Hexane). The reaction was repeated twice and the product was isolated to determine the yield

(by an average of two runs). A similar procedure was followed in the absence of base and stirred for 2 h to obtain N-(p-tolyl)-2-(1H-1,2,3-triazol-4-yl)benzamide (6a). The crude compound was purified by column chromatography (eluent: 10-20% EA/Hexane). The reaction was repeated twice and the product was isolated to determine the yield (by an average of two runs).

6. Table S1: Optimization for the synthesis of 1H-[1,2,3]triazolo[4,5-c]quinoline^a

 Cs_2CO_3

 Cs_2CO_3

Cs₂CO₃

Ethanol

Ethanol

Ethanol

15

16

 17^{e}

Cu@PANI@Fe₃O₄

CuI

PANI@Fe₃O₄

95

61

NR

100/08

80/12

80/12

^{*a*}Reaction conditions: **1a** (0.4 mmol), **2a** (0.4 mmol), NaN₃ (1.6 mmol), catalyst (0-25 mol%, 29.61 w/w %), base (1.2 mmol), solvent (2 mL), temperature (80-120 °C) in oil bath for 16 h - 24 h, ^{*c*}no base, ^{*d*}no catalyst, ^{*e*}PANI@Fe₃O₄. ^{*b*}Yields are stated upon purification from the silica column (average of two runs).

7. Table S2: Optimization for the synthesis of N-(p-tolyl)-2-(1H-1,2,3-triazol-4-yl)benzamide

^{*a*}Reaction conditions: 1 (0.4 mmol), 2 (0.4 mmol), NaN₃ (0.6 mmol), Cu@PANI@Fe₃O₄ (0-25 mol%, 29.61% w/w), Solvent (2 mL), temperature (rt - 100 °C) in oil bath for 2 - 12 h, ^{*c*}no base, ^{*d*}no catalyst, ^{*e*}catalyst (10 mol%), ^{*b*}Yields are stated upon purification from silica column (average of two runs).

In a similar context, we have attempted to access 2-(1,2,3-triazolyl)benzamide derivatives using the same Cu@PANI@Fe₃O₄ nanocomposite (Table S2). Initially, we examined the reaction by

treating 2-iodo-*N*-phenylbenzamide (**4a**) and phenylacetylene (**5a**) in the presence of NaN₃, DIPEA as a base, and ethanol as solvent at 100 °C for 12 h resulted in **6a** in 80% yield (entry 1). Next, we tried the reaction using different bases like triethyl amine (TEA), Cs₂CO₃, NaHCO₃ and a reaction without base (entry 2-5). Unfortunately, we found that there was not much change by changing the base TEA and NaHCO₃ but only a trace amount of product was observed in the case of Cs₂CO₃ while surprisingly the reaction went smoothly in the absence of base and the expected product **6a** was formed in 90% yield (entry 5). Later on, other solvents such as ethanol, ethylene glycol, ACN and H₂O were also included in the optimization process and we found that the reaction was formed in ACN and no reaction was seen in H₂O (entry 7 - 10). Further, we tried the reaction even at lower temperatures like room temperature, 60 °C, and 80 °C but there was no conversion at rt and 60 °C while similar conversion as 100 °C was observed in case of 80 °C and the reaction was completed in 2 h (entry 11-13).

8. Plausible mechanism

Based on control experiments and literature precedents, a plausible mechanism for $Cu@PANI@Fe_3O_4$ catalyzed reaction sequence has been proposed (Scheme S1). Initially, basepromoted condensation between 2-bromobenzaldehyde (1a) and acetophenone (2a) forms a 2bromo chalcone A. Next, [3+2] cycloaddition reaction of activated chalcone with NaN₃ forms a triazoline intermediate B which subsequently undergoes air oxidation to form triazole metal complex IN2. It then subsequently undergoes Cu-catalyzed SNAr reaction which upon N₂ extrusion leads to the form of an amine intermediate IN7. Finally, intermolecular cyclization furnishes desired product **3a** with the recovery of the active catalyst.

Scheme S1. Plausible mechanism for the synthesis of 3a

Following a similar mechanistic pathway, triazolyl benzamide formation also took place *via* simple copper-catalyzed insertion of azide group followed by simultaneous (3+2) cycloaddition of phenylacetylene and azide group to give the desired triazoles product **6a** (Scheme S2).

Scheme S2. Plausible mechanism for the synthesis of 6a

9. Catalyst recyclability for 1*H*-[1,2,3]triazolo[4,5-c]quinoline synthesis

The recyclability test for the freshly synthesized Cu@PANI@Fe₃O₄ nanocomposite was examined for 1H-[1,2,3]triazolo[4,5-c]quinoline (**3a**) under optimal condition (Figure S6). Once the reaction is completed, the heterogeneous Cu@PANI@Fe₃O₄ nanocomposite was separated from the reaction mixture using external magnet and the crude compound was subjected to column chromatography to obtain the desired product. Later on, the separated catalyst was washed with distilled water (3x10 mL) and ethanol (3x10 mL) and dried at 80 °C for 12 h. This catalyst is further used for the next cycle and so on. The reaction was repeated up to 5 consecutive cycles and observed that there was no much loss in the yield which tells us the efficiency of the catalyst. The recycled catalyst was subjected to FESEM analysis which demonstrates that copper is stable even after 5 cycles.

Figure S6. (a) Reaction scheme, (b) Recyclability efficiency of Cu@PAN@Fe₃O₄ nanocomposite, and (d-e) FESEM images of nanocomposite after 5th cycle

10. Biologica	l activity-	Anti-cancer	study
---------------	-------------	-------------	-------

IC50 (µM)				
Compounds	HCT116			
3a	>50			
3c	>50			
3d	>50			
3e	45.6 <u>±</u> 0.21			
3f	>50			
3g	>50			
3 i	28.6±0.56			

Table S3. Comparative results of synthesized compounds against colon cancer cells

Materials and Methods:

Cell lines and culture condition:

Human colon cancer cells, HCT116; and Human normal kidney cell lines, HEK; were procured from National centre for Cell Sciences (NCCS) Pune, the cell lines were authenticated by STR analysis and the cells were tested for mycoplasma contaminations. Cells were cultured in IMDM, with 2 mM L- glutamine and 1mM Sodium pyruvate (Thermo Fisher Scientific, Inc.; Waltham, MA USA) containing 10% FBS (Gibco; Grand Island, NY, USA). Cells were cultured in a humidified Incubator with 5% CO₂ at 37 °C.

MTT and Trypan Blue Dye Exclusion assay:

MTT and Trypan Blue dye exclusion assays were performed as described in. Briefly, cells treated with different concentrations of compound **3i** (1, 10, 25, and 50 μ M), incubated and subjected to MTT and Trypan Blue dye assays; DMSO was used as a negative control. The plates were subjected to spectrophotometric absorbance at 570 nm using a Tecan Microplate Reader (Tecan Instruments, Switzerland). The Trypan Blue-treated cells were counted using the Thermo Fisher Countess III FL for calculating the percentage of live and dead cells. The data were analysed Microsoft Excel.

Apoptotic analysis by Acridine orange / PI Staining:

The Acridine orange / PI double staining assay was performed following the protocol described in. Briefly, HCT116 cells were seeded at a density of 1 x 105 cells per well in 6-well plates and allowed to attach overnight. Subsequently, they were treated with increasing concentrations of Gin A and incubated for 48 hours before undergoing Hoechst/PI double staining.

Hoechst / Propidium iodide analysis:

The Hoechst/PI double staining assay was conducted following the protocol described in33. Briefly, Rh28 and Rh41 cells were seeded at a density of 1 x 105 cells per well in 6-well plates and allowed to attach overnight. Subsequently, they were treated with increasing concentrations of Gin A and incubated for 48 hours before undergoing Hoechst/PI double staining.

Figure S7: Representation of the effect of compound 3i on proliferation and cell viability

Figure S8: Representation of the effect of compound 3i on cell death

11. Hot filtration test

A hot filtration test was performed during the triazolo quinoline synthesis process under optimal reaction conditions for 8 hours, at the conclusion of which the reaction mixture was filtered to remove the catalyst in order to determine the leaching of $Cu@PAN@Fe_3O_4$ nanocomposite. The filtrate was additionally agitated for up to 20 hours, during which the presence of 2-bromo chalcone caused a little rise in the yield of the desired product and the remaining starting material was as such terminating the reaction. By this, catalyst's heterogeneous nature during the triazolo quinoline synthesis was confirmed.

12	Tahla	51.	Com	naricon	with	the	nrovious	ronorte
14.	Table	ют.	COM	pai 15011	W I U I I	unu	previous	reports

Entr	Catalyst	Ligand	Solvent	Base	Temp./time	Yield	Reference
У							
01	CuO		DMF		100 °C/24 h	80%	EJOC,
							2013
02	$Pd(OAc)_2$		DMF	TBAI	120 °C/24 h	84%	RSC
							Adv.,2013
03	Pd-C/H ₂		MeOH		RT/12 h	93%	Tet, 2013
04	CuBr ₂	L-proline	DMSO	Cs_2CO_3	100 °C/20 h	85%	JOC, 2018

05			DMF	TBAF	RT/8 h	93%	EJOC,
							2020
06	Cu@PANI@Fe3O4	-	EtOH	Cs ₂ CO ₃	80 °C/12 h	95%	Present
							work

13. Computational studies

All calculation were performed employing a DFT method implemented in the Gaussian 09 suite of programs.⁸ For geometry optimization and frequency analysis, we adopted the BP86 functional.⁹ During geometry optimization we used the split-valence plus single polarization basis set def2-SVP¹⁰ for non-metals and the Stuttgart/Dresden small core RECP (relativistic effective core potential) plus valence double- ζ -basis set (SDD)¹¹ for Copper. The geometries were optimized without any symmetry constraints. For each transition state, in addition to analyzing the character of the normal mode associated with the imaginary frequency, intrinsic reaction coordinate (IRC) analysis¹² was performed to confirm that it connects the correct reactant and product on the potential energy surface. To refine the computed energy, singlepoint calculations were performed using the hybrid-meta-GGA M06 functional¹³ with the def2- TZVP¹⁰ basis set for nonmetals and SDD for Cu. Solvation energies were evaluated implicitly by a self-consistent reaction field (SCRF) approach for all the intermediates and transitions states, in Ethanol-water solvent ($\varepsilon =$ 24.852), using the SMD continuum solvation model.¹⁴ The free energies (ΔG), calculated at the M06(SMD)/SDD/def2- TZVP//BP86/SDD/def2-SVP level are reported throughout the article unless otherwise mentioned. The ΔG value is obtained by augmenting the in solvent electronic energy (ΔE), calculated at M06(SMD)/SDD/def2-TZVP, with the corresponding free energy corrections calculated at BP86/SDD/def2-SVP in the gas phase.

Table S5. Cartesian coordinates (Å) of the optimized structures of all intermediates and transition states at BP86/SDD(Cu)/Def2-SVP level of theory. E_e^S represents the absolute electronic energy in Hartree at M06/SDD(Cu)/Def2-TZVP level of theory in the ethanol solvent.

A $E_{e}^{S} = -3227.250789$

С	-3.521977000	-5.994373000	-5.514137000
С	-3.269262000	-5.770118000	-4.139627000
С	-4.542518000	-5.302415000	-6.177949000
Н	-2.887411000	-6.729023000	-6.033293000
С	-4.068725000	-4.831113000	-3.446970000
С	-2.147912000	-6.561506000	-3.509008000
С	-5.332061000	-4.369685000	-5.477624000
Н	-4.727498000	-5.487770000	-7.248120000
С	-5.092559000	-4.136240000	-4.112371000
Н	-3.901470000	-4.629767000	-2.378523000
Н	-6.135612000	-3.823807000	-5.997552000
Н	-5.707394000	-3.407482000	-3.560665000
0	-1.494743000	-7.357355000	-4.192660000
С	-1.847482000	-6.366269000	-2.061127000
Н	-2.451502000	-5.651903000	-1.481926000
С	-0.837033000	-7.070684000	-1.480117000
Н	-0.293152000	-7.760601000	-2.148670000
С	-0.395133000	-7.017771000	-0.086151000
С	-1.020750000	-6.168427000	0.868613000
С	0.686985000	-7.815735000	0.389386000
С	-0.606563000	-6.110645000	2.201937000
Н	-1.860205000	-5.537131000	0.539193000
С	1.112036000	-7.765738000	1.728439000
С	0.465727000	-6.913181000	2.636035000
Н	-1.119185000	-5.438951000	2.907758000
Н	1.951013000	-8.398032000	2.053874000
Η	0.803057000	-6.878214000	3.683848000
Br	1.629768000	-9.008166000	-0.774132000

NaN₃

 $E_{\rm e}{}^{\rm S} = -326.5182406$

2.144483000	1.416816000	-0.789668000
2.080629000	0.479224000	-2.626953000
2.043269000	-0.069080000	-3.702916000
2.007125000	-0.600202000	-4.745551000
	2.144483000 2.080629000 2.043269000 2.007125000	2.1444830001.4168160002.0806290000.4792240002.043269000-0.0690800002.007125000-0.600202000

TS1

 $E_{\rm e}^{\rm S} = -5235.745884$

С	-1.978241000	0.087545000	-1.176852000
С	-2.613246000	1.347567000	-1.360840000
С	-1.383586000	-0.154129000	0.095678000
С	-2.653809000	2.309553000	-0.347703000
С	-1.440410000	0.801392000	1.113432000

С	-2.075595000	2.059954000	0.928014000
Н	-3.052538000	1.573298000	-2.348655000
Н	-0.912383000	-1.128495000	0.295757000
Н	-3.129604000	3.283655000	-0.540186000
Н	-1.000310000	0.579384000	2.099997000
Ν	-2.036665000	-0.874966000	-2.198418000
С	-1.000785000	-1.762210000	-2.457676000
С	0.357405000	-1.532532000	-2.077917000
С	-1.264609000	-2.956581000	-3.193330000
С	1.366919000	-2.445154000	-2.405068000
С	-0.255949000	-3.869300000	-3.510331000
С	1.076461000	-3.627043000	-3.116513000
Н	0.621770000	-0.607242000	-1.546028000
Н	-2.303342000	-3.162479000	-3.504222000
Н	2.407825000	-2.223704000	-2.114200000
Н	-0.497467000	-4.797532000	-4.054376000
Ν	-2.079697000	3.002284000	1.969107000
С	-3.168753000	3.845831000	2.203032000
Č	-2.992998000	5.131618000	2.787616000
C	-4.510704000	3.424732000	1.959078000
C	-4.085425000	5.940040000	3.129491000
C	-5.595848000	4.246188000	2.293553000
Č	-5.402298000	5.510616000	2.882027000
н	-1.959239000	5.488329000	2.957396000
Н	-4.687124000	2.428252000	1.526775000
н	-3.901605000	6.928833000	3,580999000
н	-6 618667000	3 882441000	2.098434000
н	-6 260883000	6 1 50 50 60 00	3 138035000
Cu	-3 635417000	-0.958504000	-3 16260800
Cu	-0 425877000	3 549382000	2.62691200
N	2 122774000	-4 588781000	-3 420897000
C	2.799328000	-4 508906000	-4 700041000
C	4 086872000	-5.078841000	-4 817163000
C	2 193230000	-3 919612000	-5 826941000
C	4 759037000	-5.053587000	-6.047898000
C	2 875056000	-3 904355000	-7.055970000
C	4 156885000	-4 467824000	-7 176655000
н	4 558055000	-5 548763000	-3 937806000
н	1 196045000	-3 464904000	-5 738256000
н	5 764241000	-5 497968000	-6 123373000
н	2 393380000	-3 436590000	-7 929483000
н	4 684988000	-4.449993000	-8 142572000
н	2 833982000	-4.566632000	-2 675048000
n C	-3 559725000	-4.500052000	-6.462056000
C	4 524352000	0.560306000	5 456123000
C C	-4.524552000	0.500590000	-5.450125000 6.871221000
C C	-3.201/04000	2.120200000	4 886017000
C C	-3.223034000	2 201050000	-4.00071/000
C	-3.9/20/9000	2 063867000	-0.292320000 5 306107000
с u	-4.74/430000	2.90360/000	-3.300107000
п	-2.321309000	2.505055000	-1.04/203000

Н	-6.011973000	1.478850000	-4.140958000
Н	-3.754873000	4.232899000	-6.613804000
Н	-5.502554000	3.806145000	-4.863794000
Н	-3.038691000	-0.053300000	-6.903585000
С	-4.763544000	-0.871957000	-5.061512000
0	-4.328355000	-1.812902000	-5.75889600
С	-5.637105000	-1.166126000	-3.859242000
Н	-5.746778000	-0.405835000	-3.056980000
С	-5.859558000	-2.621349000	-3.544626000
Н	-5.082267000	-3.214049000	-4.073001000
С	-5.940036000	-3.031552000	-2.084592000
С	-6.423168000	-2.153257000	-1.083820000
С	-5.622378000	-4.338087000	-1.648280000
С	-6.536426000	-2.540020000	0.258783000
С	-5.720419000	-4.754456000	-0.311652000
С	-6.177000000	-3.840623000	0.651435000
Н	-6.718185000	-1.132908000	-1.373252000
Br	-5.001897000	-5.686263000	-2.916613000
Н	-6.903985000	-1.817978000	1.003989000
Н	-5.437702000	-5.778734000	-0.027863000
Н	-6.250628000	-4.151856000	1.704870000
Na	-7.471356000	-5.207701000	-4.47632100
Ν	-7.213200000	-3.032534000	-4.212438000
Ν	-7.766077000	-1.951965000	-4.646652000
Ν	-7.324524000	-0.811574000	-4.631692000
Cu	1.477856000	-6.574296000	-3.104785000

IN2

 $E_{\rm e}^{\rm S} = -5234.640273$

С	-1.746332000	-0.685451000	-0.626882000
С	-2.781063000	-0.257397000	0.257241000
С	-0.426784000	-0.757254000	-0.081991000
С	-2.524168000	0.096417000	1.580155000
С	-0.174461000	-0.421938000	1.247538000
С	-1.208091000	0.016545000	2.123257000
Н	-3.808286000	-0.180840000	-0.141366000
Н	0.398325000	-1.129408000	-0.707351000
Н	-3.348122000	0.450793000	2.218156000
Η	0.847401000	-0.515541000	1.651911000
Ν	-2.071495000	-1.067310000	-1.926145000
С	-1.158096000	-1.015859000	-2.977785000
С	-0.106531000	-0.057300000	-3.079473000
С	-1.312258000	-1.909388000	-4.080629000
С	0.726095000	0.007743000	-4.205530000
С	-0.481182000	-1.848811000	-5.200126000
С	0.555323000	-0.890248000	-5.277263000
Н	0.039188000	0.672016000	-2.269504000
Н	-2.111182000	-2.668308000	-4.035718000
Н	1.516250000	0.771918000	-4.241450000
Н	-0.635716000	-2.562132000	-6.027413000

Ν	-0.902329000	0.367214000	3.441740000
С	-1.816148000	0.181491000	4.488092000
С	-1.879600000	1.084900000	5.583880000
С	-2.649883000	-0.974116000	4.544440000
С	-2.711576000	0.841339000	6.686117000
С	-3.486974000	-1.201838000	5.644578000
С	-3.529372000	-0.302006000	6.727045000
Н	-1.262587000	2.002301000	5.540946000
Н	-2.607791000	-1.705252000	3.723063000
Н	-2.731693000	1.566500000	7.515925000
Н	-4.110811000	-2.110746000	5.660136000
Н	-4.191615000	-0.488141000	7.586617000
Cu	-3.811048000	-1.581105000	-2.34508800
Cu	0.419574000	1.647134000	3.72419800
Ν	1.347032000	-0.839944000	-6.496255000
С	2.618540000	-0.146589000	-6.494087000
С	3.821042000	-0.880011000	-6.477481000
С	2.655151000	1.262252000	-6.550193000
С	5.054167000	-0.207468000	-6.519542000
С	3.891509000	1.927830000	-6.574653000
С	5.093336000	1.196949000	-6.561509000
Н	3.791435000	-1.980984000	-6.429469000
Н	1.710109000	1.827162000	-6.589794000
Н	5.989787000	-0.788311000	-6.512385000
Н	3.913551000	3.027934000	-6.619696000
Н	6.060461000	1.722385000	-6.590340000
Н	1.491920000	-1.805191000	-6.825882000
C	-7.440296000	-4.240015000	-2.988923000
Ĉ	-7.010403000	-3.504507000	-4.123880000
C	-8.477960000	-5.172295000	-3.100752000
Ĉ	-7.643135000	-3.727905000	-5.373229000
C	-9.099935000	-5.389009000	-4.346473000
C	-8 678408000	-4 667822000	-5 478518000
н	-8.806215000	-5.737804000	-2.214356000
н	-7 301519000	-3 172139000	-6 257338000
н	-9 916331000	-6 123913000	-4 433760000
н	-9.162949000	-4.837983000	-6.452832000
н	-6 941972000	-4 059464000	-2.025073000
C	-5 920850000	-2 516757000	-3 964010000
0	-5 474462000	-2 302033000	-2 78693700
C	-5 339490000	-1 807030000	-5 104727000
C	-4 852140000	-0.467090000	-5 178659000
c	-4.920821000	0.683253000	-4 251296000
C	-3.736745000	1 427933000	-4.008846000
C	-6.107291000	1.427533000	-3 619783000
C	-3.724490000	2 549210000	-3 169550000
c	-6 103258000	2.547210000	-2 767300000
C	-4.91026000	2.257150000	-2.707333000
с н	-7.808381000	1.086654000	-2.55050000
II Br	-2.000301000	0.3020034000	-4.490032000
ы	-1.177421000 2782167000	3 004/20000	-3.744214000 2.000014000
п	-2.765407000	3.094439000	-2.999014000

Н	-7.043661000	2.582278000	-2.297209000	С	5.814265000	4.994767000	-1.638383000
Н	-4.915068000	3.836696000	-1.868748000	С	6.467955000	4.906457000	-0.396787000
Na	-2.698633000	-0.357210000	-8.11116600	Н	3.731936000	5.183518000	1.672344000
Ν	-4.262846000	-0.349756000	-6.390672000	Н	3.902198000	5.181537000	-2.666720000
Ν	-4.370041000	-1.554828000	-7.019064000	Н	6.226524000	4.900599000	1.768813000
Ν	-5.024809000	-2.432539000	-6.284013000	Н	6.392542000	4.949557000	-2.574368000
Cu	0.172495000	-0.136085000	-8.119631000	Н	7.562545000	4.794523000	-0.356223000
				Н	1.994629000	5.886206000	-1.418099000
TS2				Cu	1.600547000	6.736562000	0.82237700
E_{s}^{S}	5234 593845			С	6.420783000	-3.558861000	0.844436000
Le ·				С	5.186257000	-3.388125000	1.516946000
C	-2 436184000	0 792822000	-0.296867000	С	7.613725000	-3.670180000	1.569362000
C	-2.430184000	-0.325283000	-0.290807000	С	5.168356000	-3.324358000	2.931323000
C	3.006004000	1 881707000	0.375138000	С	3.942342000	-3.298832000	0.696798000
C	-3.090004000	0.360208000	0.373138000	С	7.588783000	-3.605388000	2.976630000
C	-4.014291000	1 820465000	-0.393390000	Н	8.570307000	-3.807036000	1.040194000
C	-4.430371000	0.704308000	0.001333000	С	6.367803000	-3.429531000	3.652597000
с u	-3.200904000	1 152201000	1 221265000	Н	4.212554000	-3.163069000	3.450479000
п u	-2.777509000	-1.133391000	-1.221303000	Н	8.527166000	-3.691707000	3.548090000
п	-2.301703000	2.742040000	0.710282000	Н	6.349794000	-3.374165000	4.752583000
п u	-3.2112/8000	-1.230008000	-0.727450000	0	4.006901000	-3.379777000	-0.557347000
п	-4.927641000	2.038300000	0.542208000	С	2.626040000	-3.073886000	1.319505000
N C	-1.092073000	1.802210000	-0.343398000	С	1.354616000	-3.417862000	0.796515000
C	-0.304400000	1.892210000	-0.516/42000	С	0.652830000	-4.164725000	-0.258812000
C	-0.091088000	3.089393000	-1.185397000	С	0.757785000	-5.558354000	-0.488762000
C	0.962621000	1.803930000	1 208157000	С	-0.162883000	-3.349645000	-1.100429000
C	0.154539000	4.200440000	-1.208157000	С	0.046122000	-6.141747000	-1.551515000
C	1.790038000	2.980431000	0.123908000	Н	1.386517000	-6.182208000	0.166256000
U U	1.403223000	4.138221000	-0.333498000	С	-0.854027000	-3.951856000	-2.166311000
п	-1.040552000	5.116967000	-1.730273000	С	-0.759713000	-5.343051000	-2.386080000
п	1.203445000	5 108220000	1 754824000	Н	0.118584000	-7.226893000	-1.727729000
п	-0.132443000	3.108239000	-1.734834000	Н	-1.467634000	-3.341135000	-2.850336000
н N	2.703381000	2.930332000	0.6438/4000	Н	-1.313269000	-5.804859000	-3.220619000
N C	-0.003008000	0.707048000	0.013082000	Ν	0.462247000	-2.645647000	1.481094000
C	-7.300807000	-0.4/15/1000	0.721727000	Ν	1.123466000	-1.881014000	2.377443000
C	-8./05116000	-0.512042000	0.250055000	N	2.416858000	-2.138725000	2.316735000
C	-0.838330000	-1.021/03000	1.388013000	Н	6.409310000	-3.605098000	-0.255213000
C	-9.303180000	-1.048007000	0.457809000	Br	1.372579000	-2.491205000	-2.258897000
C	-7.003077000	-2.756079000	1.501011000	Na	5.459923000	-1.565792000	-2.078874000
U U	-8.989513000	-2./82/65000	1.090023000				
н	-9.101852000	0.3/1096000	-0.282935000	IN3			
Н	-5.835/06000	-1.601929000	1.793285000		5070 42570		
Н	-10.539836000	-1.649/64000	0.05914300	$Ee^{S} =$	= -50/2.435/8		
H	-7.248311000	-3.629872000	2.089608000	C	0 28461 4000	0.010150000	2 9 4 7 9 0 2 0 0 0
Н	-9.6150/2000	-3.677258000	1.233288000	C	-0.384614000	-0.810156000	-2.84/803000
Cu	-0.282689000	-1.055680000	-0.77468500	C	-1.354254000	-0.794589000	-1./96869000
Cu	-/.588838000	2.289166000	0.4/862800	C	0.91013/000	-1.336056000	-2.534981000
N	2.223987000	5.361415000	-0.5601//000	C	-1.045323000	-1.23/864000	-0.512943000
C	3.6/42/3000	5.196551000	-0.499964000	C	1.211056000	-1./82804000	-1.2535/2000
C	4.324822000	5.116354000	0.745368000	C	0.249109000	-1./53095000	-0.198391000
C	4.417110000	5.131788000	-1.693480000	Н	-2.349097000	-0.3/3601000	-2.016216000
C	5.721011000	4.964412000	0.792780000	Н	1.654665000	-1.428513000	-3.338518000

6.467955000	4.906457000	-0.396787000
3.731936000	5.183518000	1.672344000
3.902198000	5.181537000	-2.666720000
6.226524000	4.900599000	1.768813000
6.392542000	4.949557000	-2.574368000
7.562545000	4.794523000	-0.356223000
1.994629000	5.886206000	-1.418099000
1.600547000	6.736562000	0.82237700
6.420783000	-3.558861000	0.844436000
5.186257000	-3.388125000	1.516946000
7.613725000	-3.670180000	1.569362000
5.168356000	-3.324358000	2.931323000
3.942342000	-3.298832000	0.696798000
7.588783000	-3.605388000	2.976630000
8.570307000	-3.807036000	1.040194000
6.367803000	-3.429531000	3.652597000
4.212554000	-3.163069000	3.450479000
8.527166000	-3.691707000	3.548090000
6.349794000	-3.374165000	4.752583000
4.006901000	-3.379777000	-0.557347000
2.626040000	-3.073886000	1.319505000
1.354616000	-3.417862000	0.796515000
0.652830000	-4.164725000	-0.258812000
0.757785000	-5.558354000	-0.488762000
-0.162883000	-3.349645000	-1.100429000
0.046122000	-6.141747000	-1.551515000
1.386517000	-6.182208000	0.166256000
-0.854027000	-3.951856000	-2.166311000
-0.759713000	-5.343051000	-2.386080000
0.118584000	-7.226893000	-1.727729000
-1.467634000	-3.341135000	-2.850336000
-1.313269000	-5.804859000	-3.220619000
0.462247000	-2.645647000	1.481094000
1.123466000	-1.881014000	2.377443000
2.416858000	-2.138725000	2.316735000
6.409310000	-3.605098000	-0.255213000
1.372579000	-2.491205000	-2.258897000
5.459923000	-1.565792000	-2.078874000

С	-0.384614000	-0.810156000	-2.847803000
С	-1.354254000	-0.794589000	-1.796869000
С	0.910137000	-1.336056000	-2.534981000
С	-1.045323000	-1.237864000	-0.512943000
С	1.211656000	-1.782804000	-1.253572000
С	0.249109000	-1.753095000	-0.198391000
Н	-2.349097000	-0.373601000	-2.016216000
Н	1.654665000	-1.428513000	-3.338518000

Н	-1.805037000	-1.172968000	0.280869000
Н	2.206557000	-2.207629000	-1.036951000
Ν	-0.754823000	-0.378390000	-4.106746000
С	0.098972000	0.216950000	-5.002716000
С	1.252483000	0.965424000	-4.600676000
С	-0.206292000	0.210773000	-6.399852000
С	2.048082000	1.633969000	-5.535165000
С	0.598223000	0.872906000	-7.327669000
С	1.741314000	1.587291000	-6.910259000
Н	1.486455000	1.056671000	-3.530159000
Н	-1.093413000	-0.340888000	-6.747289000
Н	2.913654000	2.231473000	-5.199628000
Н	0.339203000	0.826530000	-8.398860000
N	0.614889000	-2 184728000	1 073642000
C	-0 301499000	-2 732932000	1.975193000
C	-0.151951000	-2 538652000	3 377497000
C	-0.151551000	-3.587010000	1 544498000
C	-1.001668000	-3.167532000	1.3444,28000
C	2 210500000	-3.107532000	4.298237000
C	-2.210399000	4.201083000	2.473092000
U U	-2.043437000	-4.001837000	3.837938000
н	0.052585000	-1.804421000	3.724684000
п	-1.487749000	-3.781913000	0.408972000
н	-0.852549000	-2.989561000	5.576270000
Н	-3.013057000	-4.861693000	2.103825000
Н	-2.720043000	-4.48/915000	4.580213000
Cu	-2.463991000	-1.191363000	-4.73127900
Cu	2.23/14/000	-1.549827000	1.78142400
Ν	2.569781000	2.288493000	-7.880962000
С	3.661235000	1.571761000	-8.506802000
С	4.272197000	0.465332000	-7.884228000
С	4.144080000	2.025800000	-9.754862000
С	5.355173000	-0.174936000	-8.509941000
С	5.223142000	1.375742000	-10.37170100
С	5.837883000	0.271868000	-9.752512000
Н	3.888000000	0.102471000	-6.919863000
Н	3.670632000	2.897063000	-10.23751500
Н	5.820005000	-1.043789000	-8.017022000
Н	5.585491000	1.737473000	-11.34747400
Н	6.684697000	-0.238439000	-10.23755400
Η	1.967214000	2.674448000	-8.623824000
Cu	3.311760000	4.121626000	-7.17478000
С	-0.989008000	-8.587125000	-6.989815000
С	-0.590507000	-7.307047000	-6.533438000
С	-0.043151000	-9.589531000	-7.240924000
С	0.787757000	-7.055775000	-6.333075000
С	-1.711822000	-6.309095000	-6.293687000
С	1.326314000	-9.330966000	-7.038484000
Н	-0.372117000	-10.580227000	-7.59584800
С	1.733909000	-8.064499000	-6.585230000
Н	1.091993000	-6.058986000	-5.980106000
Н	2.073813000	-10.117722000	-7.23411700

Н	2.804186000	-7.855233000	-6.423962000
0	-2.878208000	-6.686409000	-6.49802700
С	-1.450526000	-4.930944000	-5.833447000
С	-2.375696000	-3.887881000	-5.556155000
С	-3.805401000	-3.577416000	-5.538963000
С	-4.853621000	-4.471967000	-5.855543000
С	-4.110506000	-2.238510000	-5.147630000
С	-6.187678000	-4.040068000	-5.773809000
Н	-4.584448000	-5.494810000	-6.158332000
С	-5.442800000	-1.820267000	-5.070674000
С	-6.483407000	-2.724880000	-5.380878000
Н	-7.002093000	-4.741249000	-6.019945000
Н	-5.675739000	-0.785115000	-4.777967000
Н	-7.531007000	-2.385106000	-5.315268000
Ν	-1.593118000	-2.836989000	-5.170575000
Ν	-0.285562000	-3.165944000	-5.200119000
Ν	-0.189693000	-4.411995000	-5.594247000
Η	-2.066466000	-8.759018000	-7.136187000
Br	-3.600211000	0.868730000	-4.571425000

IN4

 $E_{\rm e}^{\rm S} = -2498.201636$

С	0.416052000	-1.063362000	-2.322763000
С	-0.493150000	-1.843920000	-1.546315000
С	1.096798000	-0.001414000	-1.649304000
С	-0.708110000	-1.596116000	-0.196042000
С	0.900400000	0.228538000	-0.291533000
С	0.001577000	-0.558303000	0.488807000
Н	-1.066093000	-2.637927000	-2.054909000
Н	1.833532000	0.605464000	-2.196231000
Н	-1.448887000	-2.196231000	0.352438000
Н	1.469216000	1.028150000	0.215859000
Ν	0.657926000	-1.402945000	-3.648154000
С	1.166611000	-0.446215000	-4.551672000
С	0.705668000	0.898028000	-4.597718000
С	2.112275000	-0.859233000	-5.526341000
С	1.169874000	1.778553000	-5.578018000
С	2.582492000	0.022491000	-6.506395000
С	2.110095000	1.349189000	-6.542401000
Η	-0.056434000	1.234649000	-3.879144000
Н	2.479862000	-1.897612000	-5.498932000
Н	0.784889000	2.811821000	-5.608258000
Η	3.311883000	-0.330929000	-7.248972000
Ν	-0.175892000	-0.279765000	1.834228000
С	-0.680743000	-1.208456000	2.763064000
С	-1.550593000	-0.786074000	3.801755000
С	-0.275545000	-2.572084000	2.747128000
С	-1.997458000	-1.681649000	4.784203000
С	-0.738753000	-3.463219000	3.725275000
С	-1.601010000	-3.030500000	4.750288000

Η	-1.883134000	0.268480000	3.813773000
Н	0.425776000	-2.918145000	1.973074000
Н	-2.672403000	-1.322236000	5.577383000
Η	-0.404394000	-4.512752000	3.693376000
Η	-1.955809000	-3.736413000	5.516817000
Cu	-0.043715000	-2.899072000	-4.503292000
Cu	-0.043822000	1.468160000	2.430767000
Ν	2.593553000	2.315270000	-7.511469000
С	3.024662000	1.817421000	-8.814708000
С	4.358473000	1.410848000	-9.006975000
С	2.104936000	1.759732000	-9.878662000
С	4.767243000	0.937549000	-10.265535000
С	2.524293000	1.298531000	-11.137825000
С	3.853230000	0.882433000	-11.332194000
Η	5.072349000	1.480165000	-8.169500000
Н	1.059029000	2.070078000	-9.721699000
Н	5.811112000	0.620009000	-10.412998000
Η	1.803463000	1.258381000	-11.969171000
Η	4.177779000	0.516807000	-12.318656000
Н	1.850968000	3.016328000	-7.656474000
Cu	4.025311000	3.560020000	-6.685634000
С	-2.039315000	-9.298431000	-8.580717000
С	-1.090008000	-8.468809000	-7.934340000
С	-1.643807000	-10.480123000	-9.219756000
С	0.271759000	-8.854935000	-7.943956000
С	-1.637935000	-7.219266000	-7.277869000
С	-0.286757000	-10.856734000	-9.224396000
Н	-2.395047000	-11.114356000	-9.717806000
С	0.664078000	-10.041836000	-8.586102000
Η	1.006942000	-8.209176000	-7.441647000
Η	0.027698000	-11.786649000	-9.725977000
Н	1.727217000	-10.332310000	-8.586137000
0	-2.859632000	-7.005402000	-7.339623000
С	-0.768259000	-6.250400000	-6.569789000
С	-1.138061000	-5.047822000	-5.912063000
С	-2.300649000	-4.204403000	-5.596145000
С	-3.649672000	-4.445612000	-5.940416000
С	-1.984174000	-3.028224000	-4.861045000
С	-4.642815000	-3.526595000	-5.554150000
Н	-3.881738000	-5.359616000	-6.508227000
С	-2.966357000	-2.116369000	-4.475688000
С	-4.314568000	-2.370175000	-4.827884000
Н	-5.692675000	-3.721712000	-5.826413000
Н	-2.713019000	-1.209402000	-3.900479000
Н	-5.100155000	-1.656571000	-4.528328000
Ν	0.041986000	-4.547739000	-5.434563000
Ν	1.078026000	-5.350918000	-5.757193000
Ν	0.601745000	-6.369926000	-6.435160000
Н	-3.092584000	-8.979604000	-8.560163000

$E_{\rm e}^{\rm S} = -2824.712289$

С	2.194401000	0.886492000	0.414247000
С	3.084514000	-0.160535000	0.833083000
С	2.778821000	1.969910000	-0.332397000
С	4.436561000	-0.144580000	0.529978000
С	4.128501000	1.977808000	-0.644116000
С	5.008266000	0.921297000	-0.241182000
Н	2.662808000	-0.980883000	1.440157000
Н	2.130454000	2.774456000	-0.709017000
Н	5.087608000	-0.950538000	0.899514000
Н	4.547936000	2.797730000	-1.252734000
Ν	0.860229000	0.772114000	0.692095000
С	0.007854000	1.876018000	0.616900000
С	0.338273000	3.129519000	1.206340000
С	-1.267012000	1.739903000	0.003906000
C	-0.569288000	4.191143000	1.185908000
C	-2.162845000	2.812355000	-0.039823000
C	-1.827201000	4.041361000	0.561573000
Ĥ	1.299456000	3.243943000	1.729933000
н	-1.527469000	0.786199000	-0.483683000
н	-0.304655000	5.144766000	1.673522000
н	-3.135030000	2.678335000	-0.535261000
N	6.344110000	0.980971000	-0.580837000
C	7.169766000	-0.157432000	-0.636102000
C	8.516529000	-0.095801000	-0.192195000
C	6.715867000	-1.370822000	-1.225053000
C	9 376524000	-1 194901000	-0.331623000
C	7 580421000	-2.466587000	-1 351174000
C	8.914555000	-2.391847000	-0.907282000
н	8 871919000	0.837496000	0.281835000
н	5 686368000	-1 431603000	-1 608850000
н	10 416252000	-1 116322000	0.02430000
н	7.206601000	-3.391251000	-1.819768000
н	9.587354000	-3.256805000	-1.012907000
Cu	0.158725000	-1.048625000	1.04206600
Cu	7.238536000	2.620827000	-0.55480800
N	-2 712921000	5 195332000	0 517478000
C	-4 152312000	4 946543000	0.497718000
C	-4 819708000	4 758248000	-0 726874000
c	-4 868491000	4 909554000	1 708585000
C	-6 205604000	4 526101000	-0 735746000
C	-6 256340000	4.691780000	1 691216000
C	-6.926343000	4.495439000	0.470881000
н	-4 248517000	4 804677000	-1 668624000
н	-4 339688000	5 044188000	2 666210000
н	-6 724275000	4 377810000	-1 695562000
н	-6 814038000	4 668571000	2 640402000
н	-8 013333000	4 320405000	0.460132000
н	-2 498313000	5 780857000	1 33915000
Cu	-2.194001000	6.520864000	-0.95386500

С	-6.419514000	-4.011642000	-0.288838000
С	-5.209115000	-3.811432000	-0.996175000
С	-7.617124000	-4.231141000	-0.980625000
С	-5.220523000	-3.828686000	-2.411951000
С	-3.957642000	-3.605534000	-0.209181000
С	-7.621433000	-4.246570000	-2.389513000
Н	-8.554605000	-4.390354000	-0.424226000
С	-6.424911000	-4.042210000	-3.100303000
Н	-4.285032000	-3.644583000	-2.959726000
Н	-8.563582000	-4.418059000	-2.934974000
Н	-6.430033000	-4.049646000	-4.201791000
0	-3.994735000	-3.617276000	1.048629000
С	-2.667799000	-3.343842000	-0.871629000
С	-1.369572000	-3.585464000	-0.357256000
С	-0.607360000	-4.229681000	0.723504000
С	-0.628566000	-5.611357000	1.034333000
С	0.175721000	-3.323012000	1.499904000
С	0.134327000	-6.091652000	2.113020000
Н	-1.232511000	-6.306186000	0.429345000
С	0.919261000	-3.823029000	2.583220000
С	0.908352000	-5.202273000	2.883522000
Н	0.127007000	-7.167138000	2.352018000
Н	1.509381000	-3.140457000	3.218231000
Н	1.502358000	-5.583406000	3.730896000
Ν	-0.535202000	-2.805524000	-1.103451000
Ν	-1.255049000	-2.132133000	-2.027399000
Ν	-2.530345000	-2.457713000	-1.924546000
Н	-6.385489000	-3.993480000	0.811167000
Ν	-1.273246000	-0.856000000	2.240195000
Ν	-1.878745000	-1.966983000	2.713906000
Ν	-1.248703000	-3.040937000	2.275008000
Na	0.868606000	-3.676721000	-2.399730000

IN5

 $E_{\rm e}^{\rm S} = -2715.25079$

С	3.850441000	-3.320275000	3.797467000
С	2.952771000	-2.592199000	4.636166000
С	5.037847000	-3.824839000	4.412795000
С	3.212147000	-2.379342000	5.989286000
С	5.286430000	-3.629846000	5.769206000
С	4.386914000	-2.906903000	6.607139000
Η	2.055874000	-2.144735000	4.172411000
Н	5.743268000	-4.423149000	3.816650000
Η	2.514249000	-1.774808000	6.588161000
Η	6.192998000	-4.061857000	6.226976000
Ν	3.504485000	-3.566546000	2.468846000
С	4.478767000	-3.729725000	1.484184000
С	5.732145000	-3.048484000	1.504153000
С	4.204717000	-4.547832000	0.350948000
С	6.646533000	-3.188590000	0.457297000

С	5.121390000	-4.694228000	-0.693943000
С	6.354262000	-4.012042000	-0.652288000
Н	5.965871000	-2.367636000	2.335864000
Н	3.240293000	-5.080474000	0.312245000
Н	7.599794000	-2.634007000	0.493818000
Н	4.870291000	-5.340200000	-1.547720000
Ν	4.691130000	-2.716708000	7.951936000
С	3.706756000	-2.489549000	8.928906000
C	3.933476000	-1.582699000	9.997433000
C	2.488218000	-3.226071000	8,935719000
C	2.996591000	-1.422714000	11.02900800
C	1 551169000	-3 049401000	9 962869000
C	1 792841000	-2 149082000	11 01797900
н	4 865876000	-0.987456000	9 991743000
н	2 301966000	-3 960476000	8 137494000
и П	2.301700000	-3.700470000	11 84260600
п п	0.620380000	-0.709730000	0.046517000
п u	1.052205000	-3.039491000	9.940317000
п Сч	1.032203000	-2.01/4/4000	2 04086200
Cu	1.088154000	-3.700780000	2.04986200
Cu	6.420049000	-2.242424000	8.42650300
N	7.364292000	-4.1/09//000	-1.685842000
C	6.901229000	-4.395428000	-3.052639000
C	6.6/1901000	-5.705924000	-3.512070000
C	6.702635000	-3.298495000	-3.912087000
С	6.236074000	-5.915494000	-4.8317/7000
С	6.280439000	-3.516115000	-5.234450000
С	6.042227000	-4.823128000	-5.695114000
Н	6.852758000	-6.556129000	-2.833697000
Н	6.875239000	-2.273183000	-3.546225000
Н	6.059430000	-6.942136000	-5.188348000
Н	6.132687000	-2.656090000	-5.906051000
Н	5.709002000	-4.990629000	-6.731046000
Н	7.952635000	-3.323709000	-1.678146000
Cu	8.809050000	-5.548992000	-1.18044200
С	-7.150494000	-1.096427000	2.180720000
С	-6.442862000	-2.138589000	2.828798000
С	-8.337658000	-0.587385000	2.722161000
С	-6.959164000	-2.663169000	4.037794000
С	-5.180756000	-2.613404000	2.131929000
С	-8.845032000	-1.116400000	3.924687000
Н	-8.874044000	0.225581000	2.206131000
С	-8.152999000	-2.152317000	4.575630000
Н	-6.398527000	-3.462483000	4.543905000
Н	-9.780388000	-0.720038000	4.352912000
Н	-8.545906000	-2.570057000	5.516927000
0	-4.889006000	-2.111597000	1.035363000
C	-4.294782000	-3.645937000	2.726186000
Ċ	-3.060753000	-4.182988000	2.211749000
c	-2.354195000	-3,999113000	0.942454000
č	-3 105744000	-3 959217000	-0 255418000
č	-0.877006000	-3 866261000	0.856451000
C	0.077000000	5.000201000	0.000401000

С	-2.507809000	-3.808174000	-1.510058000
Н	-4.196958000	-4.055553000	-0.189454000
С	-0.320616000	-3.699740000	-0.482046000
С	-1.098645000	-3.667724000	-1.624369000
Н	-3.137590000	-3.800974000	-2.413931000
Н	-6.732871000	-0.706821000	1.239674000
Н	-0.632965000	-3.540409000	-2.615108000
Ν	-2.580638000	-5.002094000	3.191065000
Ν	-3.435636000	-4.969333000	4.236461000
Ν	-4.447057000	-4.154047000	3.984722000
Ν	-0.092313000	-3.866317000	1.936319000
Na	-0.529058000	-4.811547000	3.99984100
Н	0.776370000	-3.597494000	-0.536606000

TS4

 $E_{\rm e}{}^{\rm S} = -2629.452805$

С	-1.894187000	0.593848000	0.510883000
С	-1.425290000	1.826852000	1.067630000
С	-3.070641000	0.666553000	-0.306724000
С	-2.069488000	3.035040000	0.837650000
С	-3.706835000	1.876966000	-0.546837000
С	-3.235200000	3.110656000	0.005978000
Н	-0.537086000	1.792969000	1.721761000
Н	-3.446494000	-0.245026000	-0.794393000
Н	-1.692689000	3.948056000	1.321948000
Н	-4.592741000	1.913352000	-1.204935000
Ν	-1.172619000	-0.563902000	0.729079000
С	-1.758634000	-1.829274000	0.597816000
С	-3.088357000	-2.111279000	1.025207000
С	-0.972288000	-2.909847000	0.103697000
С	-3.613869000	-3.405667000	0.938438000
С	-1.509860000	-4.196234000	0.005792000
С	-2.836828000	-4.456673000	0.408470000
Н	-3.691580000	-1.310072000	1.477752000
Н	0.066214000	-2.705328000	-0.214601000
Н	-4.627951000	-3.620180000	1.315782000
Н	-0.888262000	-5.010946000	-0.402308000
Ν	-3.932106000	4.276815000	-0.237768000
С	-3.348105000	5.546288000	-0.139233000
С	-4.112826000	6.648988000	0.332697000
С	-2.018973000	5.806503000	-0.582710000
С	-3.576973000	7.943908000	0.365594000
С	-1.490247000	7.103730000	-0.538312000
С	-2.258357000	8.184269000	-0.063060000
Н	-5.142722000	6.457092000	0.682549000
Н	-1.415268000	4.980694000	-0.988381000
Н	-4.196781000	8.774821000	0.740816000
Н	-0.461058000	7.273604000	-0.894794000
Н	-1.835135000	9.200521000	-0.031772000
Cu	0.686347000	-0.491955000	1.07668600

Cu	-5.813616000	4.204056000	-0.45520100
Ν	-3.374160000	-5.801647000	0.328017000
С	-4.222209000	-6.161629000	-0.791339000
С	-4.954666000	-5.201188000	-1.515836000
С	-4.333502000	-7.528053000	-1.133889000
С	-5.788641000	-5.611008000	-2.570391000
С	-5.165363000	-7.924349000	-2.191119000
С	-5.901086000	-6.968608000	-2.915583000
Н	-4.862226000	-4.135420000	-1.263140000
Н	-3.766132000	-8.281377000	-0.562486000
Н	-6.351812000	-4.849579000	-3.133310000
Н	-5.237489000	-8.992887000	-2.449555000
Н	-6.554709000	-7.280700000	-3.744901000
Н	-2.595460000	-6.476018000	0.372773000
Cu	-4.357859000	-6.387444000	2.09673400
С	9.973284000	0.341875000	0.924868000
С	8.841450000	0.070008000	0.118488000
С	11.253066000	-0.082310000	0.54226900
С	9.027280000	-0.641726000	-1.090581000
С	7.507407000	0.585715000	0.654220000
С	11.428478000	-0.789737000	-0.66256300
Н	12.121478000	0.138138000	1.18545200
С	10.312806000	-1.064446000	-1.47259500
Н	8.139378000	-0.841601000	-1.710651000
Н	12.433806000	-1.125629000	-0.96779400
Н	10.441953000	-1.617508000	-2.41792100
0	7.527812000	1.198972000	1.736143000
С	6.240907000	0.363582000	-0.068959000
С	4.879056000	0.593855000	0.351140000
С	4.295010000	1.280102000	1.505267000
С	4.906671000	2.447152000	2.023212000
С	3.005148000	0.865914000	2.078347000
С	4.302778000	3.232609000	3.012150000
Н	5.888010000	2.733842000	1.624663000
С	2.391877000	1.745630000	3.055102000
С	3.029312000	2.882982000	3.528284000
Н	4.817287000	4.136737000	3.376098000
Н	9.802207000	0.896925000	1.860312000
Н	2.552890000	3.505553000	4.303690000
Ν	4.093224000	0.116331000	-0.664033000
Ν	4.893316000	-0.358112000	-1.634775000
Ν	6.166921000	-0.247531000	-1.291621000
Ν	2.411503000	-0.310356000	1.819834000
0	2.003588000	-1.546763000	-0.132958000
Η	2.518499000	-0.893531000	-0.696789000
Η	2.604349000	-1.162972000	0.853576000
Н	1.420324000	1.422164000	3.462725000

IN6

 $E_{\rm e}^{\rm S} = -2553.533539$

С	2.865415000	-3.680063000	3.279409000
С	1.738206000	-2.850522000	3.573188000
С	3.768524000	-3.955505000	4.355403000
С	1.525823000	-2.323491000	4.842071000
С	3.543153000	-3.445209000	5.627717000
С	2.416470000	-2.617953000	5.923551000
Н	1.041381000	-2.590048000	2.755748000
Н	4.623524000	-4.627497000	4.188665000
Н	0.666711000	-1.657198000	5.009272000
Н	4.231264000	-3.703422000	6.451891000
Ν	2.999833000	-4.225154000	2.008624000
С	4.244352000	-4.570258000	1.483227000
С	5.445406000	-3.860714000	1.782530000
С	4.332926000	-5.626793000	0.530812000
С	6.652756000	-4.197370000	1.166431000
C	5.541801000	-5.971310000	-0.077368000
C	6.716512000	-5.254327000	0.231723000
н	5.410739000	-3.001778000	2.468397000
н	3 416139000	-6 187151000	0.283941000
н	7 559662000	-3 613597000	1 399319000
н	5 569255000	-6 798719000	-0.801358000
N	2 246946000	-2.126767000	7 206770000
C	1 009891000	-1.693769000	7 718903000
C	0.947264000	-0.580522000	8 597226000
C	-0 194302000	-0.380322000	7 454830000
C	-0.261977000	-0.191229000	9 190637000
C	-0.201777000	1 000501000	2.120037000 8.042884000
C	1 447821000	-1.777501000	8.042684000
с u	-1.447821000	-0.894074000	8.913073000
п u	0.168157000	-0.010531000	6 804272000
н U	-0.108157000	-3.290343000	0.804273000
п	-0.278037000	0.078390000	7.824552000
п	-2.318037000	-2.308733000	7.824333000
п	-2.399729000	-0.380807000	9.572810000
Cu	2 7201 42000	-4.424555000	0.9088/300
Cu M	5.750142000 9.002570000	-1.033003000	8.21334000
N C	8.003579000	-5.010455000	-0.337707000
C	7.041245000	-0.038174000	-1.738702000
C	7.941243000	-7.403474000	-2.000090000
C	8.096287000	-5.0/115/000	-2./58105000
C	7.952197000	-7.804591000	-3.408//4000
C	8.119214000	-5.4//509000	-4.102485000
C H	8.043/44000	-6.843338000	-4.429887000
Н	7.891989000	-8.150/64000	-1.249104000
Н	8.138800000	-4.000408000	-2.500515000
н	/.898/46000	-8.8/5599000	-3.658393000
н	8.191956000	-4./19939000	-4.898166000
Н	8.059423000	-/.158954000	-5.484581000
Н	8.620158000	-4.787607000	-0.249765000
Cu	9.064578000	-6.910139000	0.83723000
C	-1.791379000	-0.203245000	2.628583000
С	-2.683829000	-1.206190000	2.173755000

С	-2.157210000	0.675457000	3.656984000
С	-3.959541000	-1.304665000	2.780487000
С	-2.168040000	-2.105687000	1.066487000
С	-3.425027000	0.563562000	4.259634000
Н	-1.453976000	1.456155000	3.990021000
С	-4.318782000	-0.427072000	3.817708000
Η	-4.657219000	-2.069320000	2.408479000
Н	-3.715195000	1.251802000	5.070276000
Н	-5.314178000	-0.517711000	4.282182000
0	-0.960828000	-2.019665000	0.760131000
С	-3.048792000	-3.040777000	0.339871000
С	-2.817170000	-3.805182000	-0.869616000
С	-1.684204000	-4.024044000	-1.761733000
С	-1.914958000	-4.012522000	-3.161419000
С	-0.337109000	-4.319667000	-1.295490000
С	-0.877353000	-4.193174000	-4.078200000
Н	-2.946662000	-3.839151000	-3.500993000
С	0.717240000	-4.464451000	-2.262645000
С	0.453628000	-4.403846000	-3.621421000
Н	-1.087899000	-4.159544000	-5.158783000
Н	-0.806981000	-0.132908000	2.141001000
Η	1.272161000	-4.529271000	-4.348051000
Ν	-4.016790000	-4.363535000	-1.216013000
Ν	-4.905513000	-4.008499000	-0.279802000
Ν	-4.382866000	-3.188740000	0.610918000
Ν	-0.077697000	-4.492448000	0.017567000
Н	-0.940474000	-4.405977000	0.576322000
Н	1.735919000	-4.654709000	-1.886673000

IN7

 $E_{\rm e}^{\rm S} = -872.7441284$

С	-1.738285000	-0.909383000	3.061465000
С	-2.693885000	-1.681146000	2.352728000
С	-2.145231000	0.063515000	3.981523000
С	-4.071585000	-1.451229000	2.588801000
С	-2.145972000	-2.681176000	1.375019000
С	-3.517437000	0.284970000	4.209927000
Н	-1.391909000	0.655136000	4.525738000
С	-4.473954000	-0.473739000	3.513270000
Н	-4.816562000	-2.059569000	2.058152000
Н	-3.839978000	1.051138000	4.933383000
Н	-5.547887000	-0.304506000	3.690799000
0	-0.914602000	-2.737998000	1.191841000
С	-3.020377000	-3.592518000	0.599473000
С	-2.712963000	-4.277051000	-0.609944000
С	-1.615692000	-4.391335000	-1.589813000
С	-1.943629000	-4.192449000	-2.957237000
С	-0.289989000	-4.829278000	-1.246546000
С	-1.022480000	-4.422136000	-3.984775000
Н	-2.952851000	-3.825252000	-3.206920000

С	0.622237000	-5.073961000	-2.311283000
С	0.267059000	-4.881046000	-3.648025000
Η	-1.302067000	-4.241494000	-5.033546000
Η	-0.672942000	-1.099269000	2.862229000
Η	1.009482000	-5.076070000	-4.438549000
Ν	-3.895819000	-4.912090000	-0.875395000
Ν	-4.853637000	-4.678687000	0.054807000
Ν	-4.328553000	-3.880269000	0.935647000
Ν	0.063939000	-5.072047000	0.063484000
Η	-0.295591000	-4.345910000	0.715060000
Η	1.638345000	-5.418685000	-2.057162000
Η	1.062194000	-5.252295000	0.199320000
Н	-4.082325000	-5.546627000	-1.657690000

TS5

 $E_{\rm e}^{\rm S} = -872.6957634$

С	-2.479889000	-1.178478000	3.695294000
С	-2.700422000	-2.333793000	2.899357000
С	-2.624935000	-1.236014000	5.086631000
С	-3.062406000	-3.548502000	3.539097000
С	-2.518205000	-2.242137000	1.441933000
С	-2.989068000	-2.445463000	5.709306000
Н	-2.456604000	-0.332135000	5.693352000
С	-3.206297000	-3.598890000	4.931256000
Н	-3.234460000	-4.450731000	2.935508000
Н	-3.102972000	-2.490115000	6.804275000
Н	-3.490169000	-4.545828000	5.416730000
0	-2.288171000	-1.011880000	0.955771000
С	-3.096883000	-3.282807000	0.570112000
С	-2.578394000	-3.957205000	-0.564990000
С	-1.227953000	-4.132602000	-1.059431000
С	-0.914716000	-5.017010000	-2.122986000
С	-0.155483000	-3.497795000	-0.325508000
С	0.408428000	-5.314457000	-2.458000000
Н	-1.726264000	-5.489241000	-2.701119000
С	1.186677000	-3.884419000	-0.642269000
С	1.461539000	-4.752709000	-1.696556000
Н	0.627654000	-5.993617000	-3.295792000
Н	-2.201447000	-0.243160000	3.188693000
Н	2.507201000	-5.001530000	-1.939426000
Ν	-3.670812000	-4.667877000	-0.998357000
Ν	-4.756787000	-4.492447000	-0.202099000
Ν	-4.411160000	-3.675980000	0.751064000
Ν	-0.473798000	-2.550838000	0.596583000
Н	-1.466283000	-1.255595000	0.373177000
Н	2.009061000	-3.438408000	-0.059029000
Η	0.312258000	-2.356458000	1.237293000
Η	-3.732739000	-5.313622000	-1.787958000

IN8

 $E_{\rm e}^{\rm S} = -872.750296$

С	-2.845744000	-1.196748000	3.306126000
С	-2.179855000	-2.301366000	2.739212000
С	-3.104437000	-1.160259000	4.686495000
С	-1.787843000	-3.371577000	3.568844000
С	-1.933735000	-2.360832000	1.222952000
С	-2.704686000	-2.225311000	5.512458000
Н	-3.624450000	-0.290959000	5.119883000
С	-2.046231000	-3.332394000	4.949457000
Н	-1.278206000	-4.241478000	3.125845000
Н	-2.908803000	-2.194233000	6.594728000
Н	-1.733046000	-4.173862000	5.588021000
0	-1.895763000	-1.002407000	0.763508000
С	-2.994984000	-3.140909000	0.487419000
С	-2.707951000	-4.030938000	-0.553706000
С	-1.370123000	-4.380906000	-0.974453000
С	-1.026330000	-5.201078000	-2.071990000
С	-0.338400000	-3.813200000	-0.153659000
С	0.313048000	-5.475898000	-2.373462000
Η	-1.826704000	-5.625949000	-2.699464000
С	1.012557000	-4.099552000	-0.476818000
С	1.327981000	-4.919964000	-1.566233000
Η	0.569515000	-6.115791000	-3.231013000
Η	-3.153345000	-0.370052000	2.651354000
Η	2.385860000	-5.126380000	-1.793802000
Ν	-3.950368000	-4.420227000	-0.970955000
Ν	-4.934321000	-3.811799000	-0.241171000
Ν	-4.350331000	-3.036099000	0.635484000
Ν	-0.659523000	-3.046455000	0.955099000
Н	-2.048637000	-1.025655000	-0.201623000
Н	1.816023000	-3.670445000	0.143899000
Н	0.130452000	-2.634453000	1.458201000
Н	-4.210965000	-5.085030000	-1.702128000

TS6

 $E_{\rm e}^{\rm S} = -872.695882$

С	-0.785099000	-2.622116000	3.889574000
С	-1.913813000	-2.955390000	3.105409000
С	-0.937890000	-2.248067000	5.234016000
С	-3.198339000	-2.930102000	3.701545000
С	-1.730427000	-3.337964000	1.671583000
С	-2.216646000	-2.211330000	5.816692000
Η	-0.049311000	-1.993289000	5.833505000
С	-3.342640000	-2.556757000	5.045824000
Н	-4.075886000	-3.217676000	3.104680000
Н	-2.336217000	-1.922188000	6.873058000
Н	-4.346790000	-2.539707000	5.498714000

0	-2.041118000	-1.531028000	0.911584000
С	-2.547422000	-4.357032000	1.043929000
С	-2.072583000	-5.072623000	-0.074106000
С	-0.777141000	-4.862313000	-0.656470000
С	-0.249795000	-5.537527000	-1.785188000
С	-0.014274000	-3.828225000	-0.008423000
С	1.001186000	-5.189858000	-2.297374000
Н	-0.838510000	-6.334181000	-2.268493000
C	1 249838000	-3 484661000	-0 560879000
C	1 742847000	-4 151668000	-1 682822000
н	1 405642000	-5 715287000	-3 175761000
н	0.212828000	-2 673137000	3 428918000
н	2 727201000	-2.079197000	-2 080733000
N	-3 103095000	-5.917038000	-0.358137000
N	4 150572000	5 720254000	-0.536137000
N	-4.130372000	-3.739234000	1 252720000
IN N	-5.811281000	-4.808188000	1.333729000
IN II	-0.453706000	-3.160210000	1.123242000
н	-0.723235000	-2.011/50000	0.991919000
Н	1.833770000	-2.689265000	-0.072947000
Н	-2.320883000	-0.905488000	1.614393000
Н	-3.185042000	-6.618841000	-1.096434000
3a			
_ (
$E_{\rm e}^{\rm S}$	⁵ = -796.3229791		
Ee^{S}	³ = -796.3229791	2 202500000	2 (02 (02 00 0
Ee^{S}	-1.084976000	-2.282780000	3.693682000
E_{e}^{S} C	-1.084976000 -1.945486000	-2.282780000 -3.274226000	3.693682000 3.157894000
Ee ^S C C C	³ = -796.3229791 -1.084976000 -1.945486000 -1.374134000	-2.282780000 -3.274226000 -1.673858000	3.693682000 3.157894000 4.920702000
Ee ^s C C C C	³ = -796.3229791 -1.084976000 -1.945486000 -1.374134000 -3.104899000	-2.282780000 -3.274226000 -1.673858000 -3.638048000	3.693682000 3.157894000 4.920702000 3.886976000
Ee ^S C C C C C	³ = -796.3229791 -1.084976000 -1.945486000 -1.374134000 -3.104899000 -1.599862000	-2.282780000 -3.274226000 -1.673858000 -3.638048000 -3.895163000	3.693682000 3.157894000 4.920702000 3.886976000 1.851251000
Ee ^S C C C C C C C	-1.084976000 -1.945486000 -1.374134000 -3.104899000 -1.599862000 -2.528426000	-2.282780000 -3.274226000 -1.673858000 -3.638048000 -3.895163000 -2.041687000	3.693682000 3.157894000 4.920702000 3.886976000 1.851251000 5.639113000
Ee ^s C C C C C C C H	-1.084976000 -1.945486000 -1.374134000 -3.104899000 -1.599862000 -2.528426000 -0.695234000	-2.282780000 -3.274226000 -1.673858000 -3.638048000 -3.895163000 -2.041687000 -0.905105000	3.693682000 3.157894000 4.920702000 3.886976000 1.851251000 5.639113000 5.323532000
Ee ^S C C C C C C C H C	-1.084976000 -1.945486000 -1.374134000 -3.104899000 -1.599862000 -2.528426000 -0.695234000 -3.388499000	-2.282780000 -3.274226000 -1.673858000 -3.638048000 -3.895163000 -2.041687000 -0.905105000 -3.023217000	3.693682000 3.157894000 4.920702000 3.886976000 1.851251000 5.639113000 5.323532000 5.117183000
Ee ^S C C C C C C C H C H C H	-1.084976000 -1.945486000 -1.374134000 -3.104899000 -1.599862000 -2.528426000 -0.695234000 -3.388499000 -3.779498000	-2.282780000 -3.274226000 -1.673858000 -3.638048000 -3.895163000 -2.041687000 -0.905105000 -3.023217000 -4.405406000	3.693682000 3.157894000 4.920702000 3.886976000 1.851251000 5.639113000 5.323532000 5.117183000 3.480348000
Ee ^S C C C C C C C C H C H H H	-1.084976000 -1.945486000 -1.374134000 -3.104899000 -1.599862000 -2.528426000 -0.695234000 -3.388499000 -3.779498000 -2.755935000	-2.282780000 -3.274226000 -1.673858000 -3.638048000 -3.895163000 -2.041687000 -0.905105000 -3.023217000 -4.405406000 -1.562224000	3.693682000 3.157894000 4.920702000 3.886976000 1.851251000 5.639113000 5.323532000 5.117183000 3.480348000 6.604861000
Ee ^s C C C C C C C C H C H H H H	3 = -796.3229791 -1.084976000 -1.945486000 -1.374134000 -3.104899000 -1.599862000 -2.528426000 -0.695234000 -3.388499000 -3.779498000 -2.755935000 -4.293315000	-2.282780000 -3.274226000 -3.673858000 -3.638048000 -3.895163000 -2.041687000 -0.905105000 -3.023217000 -4.405406000 -1.562224000 -3.316187000	3.693682000 3.157894000 4.920702000 3.886976000 1.851251000 5.639113000 5.323532000 5.117183000 3.480348000 6.604861000 5.673305000
Ee ^s C C C C C C C H C H H H H C	3 = -796.3229791 -1.084976000 -1.945486000 -1.374134000 -3.104899000 -1.599862000 -2.528426000 -0.695234000 -3.388499000 -3.779498000 -2.755935000 -4.293315000 -2.404056000	-2.282780000 -3.274226000 -1.673858000 -3.638048000 -3.895163000 -2.041687000 -0.905105000 -3.023217000 -4.405406000 -1.562224000 -3.316187000 -4.912663000	3.693682000 3.157894000 4.920702000 3.886976000 1.851251000 5.639113000 5.323532000 5.117183000 3.480348000 6.604861000 5.673305000 1.206410000
Ee ^s C C C C C C C C C C H C H H H C C	3 = -796.3229791 -1.084976000 -1.945486000 -1.374134000 -3.104899000 -1.599862000 -2.528426000 -0.695234000 -3.388499000 -3.779498000 -2.755935000 -4.293315000 -2.404056000 -1.992831000	-2.282780000 -3.274226000 -3.673858000 -3.638048000 -3.895163000 -2.041687000 -0.905105000 -3.023217000 -4.405406000 -1.562224000 -3.316187000 -4.912663000 -5.444014000	3.693682000 3.157894000 4.920702000 3.886976000 1.851251000 5.639113000 5.323532000 5.117183000 3.480348000 6.604861000 5.673305000 1.206410000 -0.037862000
Ee ^s C C C C C C C C C C C C C C C C C C C	3 = -796.3229791 -1.084976000 -1.945486000 -1.374134000 -3.104899000 -1.599862000 -2.528426000 -0.695234000 -3.388499000 -3.779498000 -2.755935000 -4.293315000 -2.404056000 -1.992831000 -0.800892000	-2.282780000 -3.274226000 -1.673858000 -3.638048000 -3.895163000 -2.041687000 -0.905105000 -3.023217000 -4.405406000 -1.562224000 -3.316187000 -4.912663000 -5.444014000 -5.015563000	3.693682000 3.157894000 4.920702000 3.886976000 1.851251000 5.639113000 5.323532000 5.117183000 3.480348000 6.604861000 5.673305000 1.206410000 -0.037862000 -0.696825000
E_{e}^{S} C C C C C C H H H C	-1.084976000 -1.945486000 -1.945486000 -1.374134000 -3.104899000 -1.599862000 -2.528426000 -0.695234000 -3.388499000 -3.779498000 -2.755935000 -4.293315000 -2.404056000 -1.992831000 -0.800892000 -0.307441000	-2.282780000 -3.274226000 -1.673858000 -3.638048000 -3.895163000 -2.041687000 -0.905105000 -3.023217000 -4.405406000 -1.562224000 -3.316187000 -4.912663000 -5.444014000 -5.015563000 -5.486676000	3.693682000 3.157894000 4.920702000 3.886976000 1.851251000 5.639113000 5.323532000 5.117183000 3.480348000 6.604861000 5.673305000 1.206410000 -0.037862000 -0.696825000 -1.941535000
Ee ^S C C C C C C C C C C C C C C C C C C C	-1.084976000 -1.945486000 -1.374134000 -3.104899000 -1.599862000 -2.528426000 -0.695234000 -3.388499000 -3.779498000 -2.755935000 -4.293315000 -2.404056000 -1.992831000 -0.800892000 -0.307441000 -0.079643000	-2.282780000 -3.274226000 -1.673858000 -3.638048000 -3.895163000 -2.041687000 -0.905105000 -3.023217000 -4.405406000 -1.562224000 -3.316187000 -4.912663000 -5.444014000 -5.015563000 -5.486676000 -3.999391000	3.693682000 3.157894000 4.920702000 3.886976000 1.851251000 5.639113000 5.323532000 5.117183000 3.480348000 6.604861000 5.673305000 1.206410000 -0.037862000 -0.696825000 -1.941535000 0.038559000
Ee ^S C C C C C C C C C C C C C C C C C C C	-1.084976000 -1.945486000 -1.374134000 -3.104899000 -1.599862000 -2.528426000 -0.695234000 -3.388499000 -3.779498000 -2.755935000 -4.293315000 -2.404056000 -1.992831000 -0.800892000 -0.307441000 -0.079643000 0.878363000	-2.282780000 -3.274226000 -1.673858000 -3.638048000 -3.895163000 -2.041687000 -0.905105000 -3.023217000 -4.405406000 -1.562224000 -3.316187000 -4.912663000 -5.444014000 -5.015563000 -5.486676000 -3.999391000 -4.971925000	3.693682000 3.157894000 4.920702000 3.886976000 1.851251000 5.639113000 5.639113000 5.117183000 3.480348000 6.604861000 5.673305000 1.206410000 -0.037862000 -0.696825000 -1.941535000 0.038559000 -2.463220000
Ee ^S CCCCCHCHHHCCCCCCH	3 = -796.3229791 -1.084976000 -1.945486000 -1.374134000 -3.104899000 -1.599862000 -2.528426000 -0.695234000 -3.779498000 -3.779498000 -2.755935000 -4.293315000 -2.404056000 -1.992831000 -0.800892000 -0.307441000 -0.079643000 0.878363000 -0.861878000	-2.282780000 -3.274226000 -3.673858000 -3.638048000 -3.895163000 -2.041687000 -0.905105000 -3.023217000 -4.405406000 -1.562224000 -3.316187000 -4.912663000 -5.444014000 -5.015563000 -5.486676000 -3.999391000 -4.971925000 -6.260614000	3.693682000 3.157894000 4.920702000 3.886976000 1.851251000 5.639113000 5.323532000 5.117183000 3.480348000 6.604861000 5.673305000 1.206410000 -0.037862000 -0.696825000 -1.941535000 0.038559000 -2.463220000 -2.496902000
E ^e ^S CCCCCHCHHHCCCCCCHC	3 = -796.3229791 -1.084976000 -1.945486000 -1.374134000 -3.104899000 -1.599862000 -2.528426000 -0.695234000 -3.388499000 -3.779498000 -2.755935000 -4.293315000 -2.404056000 -1.992831000 -0.307441000 -0.307441000 -0.079643000 0.878363000 -0.861878000 1.129321000	-2.282780000 -3.274226000 -3.673858000 -3.638048000 -3.895163000 -2.041687000 -0.905105000 -3.023217000 -4.405406000 -1.562224000 -3.316187000 -4.912663000 -5.444014000 -5.015563000 -5.486676000 -3.999391000 -4.971925000 -6.260614000 -3.499053000	3.693682000 3.157894000 4.920702000 3.886976000 1.851251000 5.639113000 5.323532000 5.117183000 3.480348000 6.604861000 5.673305000 1.206410000 -0.037862000 -0.696825000 -1.941535000 0.038559000 -2.463220000 -2.496902000 -0.530796000
Ee ^s CCCCCCHCHHHCCCCCCHCCCCCCCCCCCCCCCCCCC	$^{-1.084976000}$ -1.945486000 -1.945486000 -1.374134000 -3.104899000 -1.599862000 -2.528426000 -0.695234000 -3.388499000 -3.3779498000 -2.755935000 -4.293315000 -2.404056000 -1.992831000 -0.800892000 -0.307441000 -0.307441000 -0.878363000 -0.861878000 1.129321000 1.596678000	-2.282780000 -3.274226000 -3.673858000 -3.638048000 -3.895163000 -2.041687000 -0.905105000 -3.023217000 -4.405406000 -3.316187000 -4.912663000 -5.444014000 -5.015563000 -5.486676000 -3.999391000 -4.971925000 -6.260614000 -3.499053000 -3.974853000	3.693682000 3.157894000 4.920702000 3.886976000 1.851251000 5.639113000 5.323532000 5.117183000 3.480348000 6.604861000 5.673305000 1.206410000 -0.037862000 -0.696825000 -1.941535000 0.038559000 -2.463220000 -2.496902000 -0.530796000 -1.752760000
E ^{e^s} C C C C C C C C C C C C C C C C C C	= -796.3229791 = -796.3229791 = -1.084976000 = -1.945486000 = -1.374134000 = -3.104899000 = -3.7048000 = -2.528426000 = -0.695234000 = -3.388499000 = -3.779498000 = -2.755935000 = -4.293315000 = -2.404056000 = -1.992831000 = -0.800892000 = -0.307441000 = -0.079643000 = -0.878363000 = -0.861878000 = -1.29321000 = -2.58485000 = -2.58485000	-2.282780000 -3.274226000 -3.673858000 -3.638048000 -3.895163000 -2.041687000 -0.905105000 -3.023217000 -4.405406000 -3.316187000 -4.912663000 -5.444014000 -5.015563000 -5.486676000 -3.999391000 -4.971925000 -6.260614000 -3.499053000 -3.974853000 -5.339568000	3.693682000 3.157894000 4.920702000 3.886976000 1.851251000 5.639113000 5.323532000 5.117183000 3.480348000 6.604861000 5.673305000 1.206410000 -0.037862000 -0.696825000 -1.941535000 0.038559000 -2.463220000 -2.496902000 -0.530796000 -1.752760000 -3.429071000
E ^e ^S CCCCCHCHHHCCCCCCHCCHH	= -796.3229791 = -796.3229791 = -1.084976000 = -1.945486000 = -1.374134000 = -3.104899000 = -3.104899000 = -2.528426000 = -0.695234000 = -3.388499000 = -3.779498000 = -2.755935000 = -4.293315000 = -2.404056000 = -1.992831000 = -0.800892000 = -0.307441000 = -0.307441000 = -0.307441000 = -0.878363000 = -0.861878000 = -1.29484000 = -1.89484000	-2.282780000 -3.274226000 -3.673858000 -3.638048000 -3.895163000 -2.041687000 -0.905105000 -3.023217000 -4.405406000 -1.562224000 -3.316187000 -4.912663000 -5.444014000 -5.015563000 -5.486676000 -3.999391000 -4.971925000 -6.260614000 -3.499053000 -3.974853000 -5.339568000 -2.011636000	3.693682000 3.157894000 4.920702000 3.886976000 1.851251000 5.639113000 5.323532000 5.117183000 3.480348000 6.604861000 5.673305000 1.206410000 -0.037862000 -0.696825000 -1.941535000 0.038559000 -2.463220000 -2.496902000 -0.530796000 -1.752760000 -3.429071000 3.115408000
E ² C C C C C C C H C H H H C C C C C C H C H H H	= -796.3229791 = -796.3229791 = -1.084976000 = -1.945486000 = -1.374134000 = -3.104899000 = -3.528426000 = -2.528426000 = -0.695234000 = -3.388499000 = -3.779498000 = -2.755935000 = -4.293315000 = -2.404056000 = -1.992831000 = -0.800892000 = -0.307441000 = -0.307441000 = -0.307441000 = -0.861878000 = -1.29321000 = -2.58485000 = -0.189484000 = -2.532528000	-2.282780000 -3.274226000 -1.673858000 -3.638048000 -3.895163000 -2.041687000 -0.905105000 -3.023217000 -4.405406000 -1.562224000 -3.316187000 -5.444014000 -5.015563000 -5.486676000 -3.999391000 -4.971925000 -6.260614000 -3.499053000 -3.499053000 -3.39568000 -2.011636000 -3.575121000	3.693682000 3.157894000 4.920702000 3.886976000 1.851251000 5.639113000 5.323532000 5.117183000 3.480348000 6.604861000 5.673305000 1.206410000 -0.037862000 -0.696825000 -1.941535000 0.038559000 -2.496902000 -2.496902000 -1.752760000 -3.429071000 3.115408000 -2.174249000
E ^e ^S CCCCCCHCHHHCCCCCCHCCHHHN	$^{-1.084976000}$ -1.945486000 -1.945486000 -1.374134000 -3.104899000 -1.599862000 -2.528426000 -0.695234000 -3.388499000 -3.779498000 -2.755935000 -4.293315000 -2.404056000 -1.992831000 -0.800892000 -0.307441000 -0.307441000 -0.307441000 -0.878363000 -0.861878000 1.129321000 1.596678000 1.258485000 -0.189484000 2.532528000 -2.968676000	-2.282780000 -3.274226000 -1.673858000 -3.638048000 -3.895163000 -2.041687000 -0.905105000 -3.023217000 -4.405406000 -1.562224000 -3.316187000 -4.912663000 -5.444014000 -5.015563000 -5.486676000 -3.999391000 -4.971925000 -6.260614000 -3.499053000 -3.499053000 -3.974853000 -5.339568000 -2.011636000 -3.575121000 -6.351732000	3.693682000 3.157894000 4.920702000 3.886976000 1.851251000 5.639113000 5.323532000 5.117183000 3.480348000 6.604861000 5.673305000 1.206410000 -0.037862000 -0.696825000 -1.941535000 0.038559000 -2.463220000 -2.463220000 -2.496902000 -0.530796000 -1.752760000 -3.429071000 3.115408000 -2.174249000 -0.331752000
E ² CCCCCHCHHHCCCCCCHCCHHHNN	$^{-1.084976000}$ -1.945486000 -1.945486000 -1.374134000 -3.104899000 -1.599862000 -2.528426000 -0.695234000 -3.388499000 -3.779498000 -2.755935000 -4.293315000 -2.404056000 -1.992831000 -0.800892000 -0.307441000 -0.307441000 -0.079643000 0.878363000 -0.861878000 1.129321000 1.596678000 1.258485000 -0.189484000 2.532528000 -2.968676000 -3.920249000	-2.282780000 -3.274226000 -1.673858000 -3.638048000 -3.895163000 -2.041687000 -0.905105000 -3.023217000 -4.405406000 -1.562224000 -3.316187000 -4.912663000 -5.444014000 -5.015563000 -5.486676000 -3.999391000 -4.971925000 -6.260614000 -3.974853000 -5.339568000 -2.011636000 -3.575121000 -6.351732000 -6.390489000	3.693682000 3.157894000 4.920702000 3.886976000 1.851251000 5.639113000 5.639113000 5.323532000 5.117183000 3.480348000 6.604861000 5.673305000 1.206410000 -0.037862000 -0.696825000 -1.941535000 0.038559000 -2.463220000 -2.463220000 -2.496902000 -0.530796000 -1.752760000 -3.429071000 3.115408000 -2.174249000 -0.331752000 0.652158000

Ν	-0.486918000	-3.489216000	1.245366000
Н	1.671263000	-2.726183000	0.034810000
Η	-3.067402000	-6.965815000	-1.142415000

TS1'

 $E_{\rm e}^{\rm S} = -4909.208852$

С	-0.213019000	0.913622000	-0.558941000	
С	1.163309000	0.715500000	-0.258219000	
С	-0.648046000	2.262449000	-0.718975000	
С	2.048924000	1.784117000	-0.103257000	
С	0.241572000	3.329711000	-0.582188000	
С	1.613182000	3.129119000	-0.266442000	
Н	1.526623000	-0.319561000	-0.122076000	
Н	-1.692805000	2.465527000	-0.998553000	
Н	3.101370000	1.587311000	0.152518000	
Н	-0.113140000	4.362084000	-0.737712000	
Ν	-1.048973000	-0.192821000	-0.756006000	
С	-2.416342000	-0.158490000	-0.493016000	
С	-3.005256000	0.667627000	0.512139000	
С	-3.292797000	-1.040842000	-1.191505000	
С	-4.375598000	0.612732000	0.787258000	
С	-4.664962000	-1.084623000	-0.922446000	
С	-5.226637000	-0.251774000	0.065850000	
Н	-2.361895000	1.326244000	1.113386000	
Н	-2.867804000	-1.683273000	-1.982337000	
Н	-4.797084000	1.228566000	1.599730000	
Н	-5.310773000	-1.766016000	-1.501249000	
Ν	2.461631000	4.235913000	-0.107955000	
С	3.811614000	4.194001000	-0.479124000	
С	4.794316000	4.948233000	0.218842000	
С	4.242724000	3.474244000	-1.632655000	
С	6.124445000	5.007206000	-0.220515000	
С	5.577760000	3.527585000	-2.055013000	
С	6.534115000	4.292959000	-1.360547000	
Η	4.485179000	5.483415000	1.137411000	
Н	3.506239000	2.893862000	-2.208551000	
Н	6.853439000	5.605680000	0.349991000	
Н	5.872800000	2.964501000	-2.955833000	
Н	7.581308000	4.325963000	-1.698661000	
Cu	-0.301924000	-1.827264000	-1.249454000	
Cu	2.010434000	5.481706000	1.193225000	
Ν	-6.646435000	-0.313142000	0.369596000	
С	-7.542567000	0.665296000	-0.219338000	
С	-7.085370000	1.918924000	-0.668194000	
С	-8.916983000	0.349287000	-0.303438000	
С	-8.002095000	2.845111000	-1.196489000	
С	-9.820639000	1.279711000	-0.836412000	
С	-9.369562000	2.535269000	-1.284279000	
Н	-6.015014000	2.165055000	-0.615871000	
Н	-9.277817000	-0.628171000	0.057728000	

Н	-7.633500000	3.821452000	-1.549266000	
Н	-10.889002000	1.019209000	-0.899923000	
Н	-10.080774000	3.265824000	-1.699460000	
Н	-6.999285000	-1.253779000	0.138795000	
Cu	-6.982479000	-0.388273000	2.433824000	
С	7.552352000	-1.922852000	-0.184480000	
С	6.422300000	-2.175831000	0.630232000	
С	8.794034000	-1.618635000	0.386744000	
Br	0.481515000	-3.880453000	-2.086608000	
С	6.572385000	-2.116496000	2.036101000	
С	5.127015000	-2.494363000	-0.069678000	
С	8.931055000	-1.562559000	1.787420000	
Н	9.663770000	-1.421495000	-0.260176000	
С	7.818021000	-1.812572000	2.609216000	
Н	5.716739000	-2.306899000	2.701121000	
Н	9.906865000	-1.322146000	2.238938000	
Н	7.920085000	-1.769025000	3.705188000	
0	5.083085000	-2.548807000	-1.306610000	
С	3.904504000	-2.741390000	0.744445000	
Н	3.970955000	-2.696950000	1.841880000	
С	2.723071000	-3.013105000	0.113996000	
Н	2.777450000	-3.013863000	-0.988802000	
С	1.433169000	-3.303288000	0.723668000	
С	1.262691000	-3.430199000	2.134462000	
С	0.239429000	-3.484272000	-0.038576000	
С	0.033143000	-3.736846000	2.720999000	
Н	2.146495000	-3.292626000	2.775719000	
С	-1.002163000	-3.835751000	0.523259000	
С	-1.106822000	-3.946807000	1.917513000	
Н	-0.040948000	-3.824784000	3.815755000	
Н	-1.878132000	-4.001267000	-0.120402000	
Н	-2.078735000	-4.195627000	2.369973000	
Н	7.413617000	-1.973450000	-1.275309000	
IN2	,			
$E_{\rm e}^{\rm S}$ =	= -4909.255777			
~				
C	0.240656000	-1.732503000	-0.397481000	
C	-0.216044000	-2.501634000	0.721690000	
C	-0.013745000	-0.321063000	-0.354480000	
C	-0.888597000	-1.92/293000	1.788282000	
C	-0.661168000	0.25/586000	0.728809000	
С	-1.121/8/000	-0.512/18000	1.841358000	
H	-0.059829000	-3.591728000	0.730513000	
н	0.348667000	0.323870000	-1.16/8/1000	
H	-1.251957000	-2.5/921/000	2.595469000	
H	-0.816/05000	1.351651000	0.753958000	
N	0.944668000	-2.354522000	-1.406483000	
C	1.256008000	-1.65/509000	-2.598681000	

0.272656000 -1.004179000 -3.387556000

2.587656000 -1.688872000 -3.080801000

C C

С	0.618901000	-0.391756000	-4.596224000
С	2.938862000	-1.068703000	-4.287526000
С	1.955241000	-0.414381000	-5.053748000
Н	-0.777067000	-1.013485000	-3.058335000
Н	3.350745000	-2.212109000	-2.484559000
Н	-0.161482000	0.100990000	-5.200338000
Н	3.981073000	-1.109672000	-4.633952000
Ν	-1.778565000	0.111786000	2.882360000
С	-1.927569000	-0.447798000	4.165071000
С	-3.134488000	-0.264755000	4.888739000
С	-0.859732000	-1.131740000	4.808757000
С	-3.274050000	-0.745753000	6.198372000
С	-1.012754000	-1.619073000	6.114235000
Č	-2.215952000	-1.432629000	6.820357000
Н	-3.974230000	0.254236000	4.391231000
н	0.098010000	-1 256842000	4 282011000
н	-4 224367000	-0 590290000	6 733724000
н	-0.168388000	-2 141555000	6 591925000
н	-2 325612000	-1 814526000	7 847053000
Cu	1.076360000	-1.014520000	-1 701909000
Cu	-2 770563000	-4.224447000	2 5/1793000
N	2 268466000	0.282070000	-6 291159000
C	2.200400000	0.182711000	7 082077000
C C	<i>3.399</i> 490000	-0.182711000	-7.082377000
C	4.703398000	1.045542000	-0.774233000
C C	5 787236000	-1.043343000	7 551420000
C	J.787230000	-0.190148000	-7.331429000
C	4.208723000	-1.470330000	-8.930408000 8.642506000
U U	3.373034000	-1.049551000	-8.043390000
п	4.838278000	1 288710000	-3.933343000
п	2.101191000	-1.566/19000	-8.410220000
н	0.804855000	0.151867000	-7.306/3/000
н	4.092796000	-2.140835000	-9.811949000
H	6.423639000	-1.38/688000	-9.255266000
H	1.424337000	0.268118000	-6.883399000
Cu	2.398464000	2.328550000	-5.977222000
C	-3.257500000	-6.639047000	3.948026000
C	-3.385917000	-6.805851000	2.549007000
C	-4.16/412000	-7.239057000	4.828119000
Br	2.54017/000	-5.989345000	-1.524743000
С	-4.445406000	-7.600958000	2.054065000
С	-2.354320000	-6.137165000	1.669449000
С	-5.221127000	-8.025616000	4.323722000
Н	-4.056791000	-7.097699000	5.915285000
С	-5.355201000	-8.207667000	2.936197000
Н	-4.559668000	-7.766820000	0.972425000
Н	-5.936862000	-8.500581000	5.013948000
Н	-6.172678000	-8.829418000	2.537499000
0	-1.381751000	-5.570966000	2.191310000
С	-2.542272000	-6.158737000	0.197981000
Η	-3.512425000	-6.479036000	-0.212370000
С	-1.537157000	-5.738858000	-0.622955000

Н	-0.594650000	-5.459650000	-0.117555000	С	-0.405791000	-4.781867000	-4.101664000
С	-1.527926000	-5.593196000	-2.076334000	С	-1.473923000	-5.250446000	-4.890978000
С	-2.597421000	-6.056280000	-2.894092000	Н	-3.404995000	-6.266245000	-4.897341000
С	-0.425763000	-4.944824000	-2.704769000	Н	0.452396000	-4.293992000	-4.594204000
С	-2.572198000	-5.889859000	-4.282148000	Н	-1.443419000	-5.124594000	-5.986189000
Н	-3.453291000	-6.567346000	-2.423456000	Н	-2.417881000	-6.027035000	4.311819000

14. Spectroscopic data of triazolo quinolines and triazolyl benzamide derivatives

4-phenyl-1*H*-[1,2,3]triazolo[4,5-c]quinoline (3a): Purified by column chromatography, Light yellow solid,

¹H NMR (500 MHz, DMSO-*d*₆) 8.86 (d. J = 7 Hz, 2H), 8.42 (d, J = 7.5 Hz, 1H), 8.25 (d, J = 8 Hz, 1H), 7.87 (t, J = 7.5 Hz, 1 H), 7.79, (t, J = 7.25 Hz, 1H), 7.67 – 7.60 (m, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 149.4, 142.8, 141.7, 135.8, 135.2, 135.0, 134.5, 133.9, 133.6, 132.9, 132.7, 128.0, 127.9. HRMS calcd for C₁₅H₁₀N₄ [M+H]

247.0939; found, 247.0977. 55

4-(4-methoxyphenyl)-1*H*-[1,2,3]triazolo[4,5-c]quinoline (**3b**): Purified by column chromatography,

White solid, ¹H NMR (400 MHz, DMSO- d_6) δ 9.03 (d, J = 7.2 Hz, 2H), 8.53, (d, J = 7.6 Hz, 1H), 8.35 (d, J = 7.4 Hz, 1H), 7.98 (t, J = 7.2 Hz, 1H), 7.88 (t, J = 7.4 Hz, 1H), 7.34 (d, J = 8.8 Hz, 2H), 4.03 (s,3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 161.8, 149.6, 144.7, 131.4, 130.2, 130.0, 129.5, 127.4, 123.2, 114.6, 55.8. HRMS

calcd for $C_{16}H_{12}N_4O$ [M+H] 277.1045; found, 277.1088. ^{S5}

4-(p-tolyl)-1*H*-[1,2,3]triazolo[4,5-c]quinoline (**3c**): Purified by column chromatography, White solid, ¹H

NMR (400 MHz, DMSO- d_6) δ 8.81 (s, 2H), 8.42 (d, J = 7.6 Hz, 1H), 8.25 (d, J = 8 Hz, 1H), 7.87 (t, J = 7.6 Hz, 1H), 7.78 (t, J = 7.4 Hz, 1H), 7.47 (d, J = 7.6 Hz, 2H), 2.45 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 164.6, 144.6, 140.9, 134.3, 130.6, 130.3, 130.1, 129.7, 129.7, 127.7, 123.2, 21.6. HRMS calcd for C₁₆H₁₂N₄ [M+H]

261.1096; found, 261.1136. s5

4-(4-fluorophenyl)-1*H*-[1,2,3]triazolo[4,5-c]quinoline (3d): Purified by column chromatography, White

solid, ¹H NMR (500 MHz, DMSO- d_6) δ 8.95 (t, J = 7 Hz, 2H), 8.41 (d, J = 8 Hz, 1H), 8.23 (d, J = 8 Hz, 1H), 7.87 (t, J = 7.75 Hz, 1H), 7.78 (t, J = 7.25 Hz, 1H), 7.49 (t, J = 8.75 Hz, 2H); ¹³C NMR (125 MHz, DMSO- d_6) δ 165.1, 163.1, 148.6, 144.4, 133.4, 133.4, 132.0, 131.9, 130.3, 130.1, 127.8, 123.2, 116.1, 116.0. HRMS calcd for

C₁₅H₉N₄F [M+H] 265.0845; found, 265.0885. ^{S5}

4-(4-chlorophenyl)-1H-[1,2,3]triazolo[4,5-c]quinoline (3e): Purified by column chromatography, White

solid, ¹H NMR (400 MHz, DMSO- d_6) δ 8.93 (s, 2H), 8.42 (d, J = 7.2 Hz, 1H), 8.26 (d, J = 8.4 Hz, 1H), 7.89 (t, J = 7.2 Hz, 1H), 7.81 (t, J = 7.4 Hz, 1H), 7.73 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 148.6, 144.4, 137.9, 135.9, 135.7, 131.4, 130.5, 130.2, 129.2, 128.2, 123.3, 115.1. HRMS calcd for C₁₅H₉N₄Cl [M+H]

282.0486, found, 281.0587. 55

8-methyl-4-phenyl-1*H*-[1,2,3]triazolo[4,5-c]quinoline (3f): Purified by column chromatography, White

solid, ¹H NMR (500 MHz, DMSO- d_6) δ 8.87 (d, J = 6.5 Hz, 2H), 8.22 (s, 1H), 8.17 (d, J = 8.5 Hz, 1H), 7.72 – 7.66 (m, 3H), 7.63 (d, J = 7 Hz, 1H), 2.62 (s, 3H); ¹³C NMR (125 MHz, DMSO- d_6) δ 149.0, 142.9, 137.7, 137.0, 130.8, 130.0, 129.6, 129.1, 122.4, 115.6, 21.8. HRMS calcd for C₁₆H₁₂N₄ [M+H] 261.1096; found, 261.1130. ⁵⁶

8-chloro-4-phenyl-1H-[1,2,3]triazolo[4,5-c]quinoline (3g): Purified by column chromatography, White

solid, ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.79 (s, 2H), 8.36 (d, J = 2.5 Hz, 1H), 8.17 (d, J = 9 Hz, 1H), 7.79 (dd, J = 2.5 Hz, 9 Hz, 1H), 7.65 – 7.58 (m, 3H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 150.3, 142.9, 136.6, 132.1, 132.0, 131.2, 130.4, 129.7, 129.1, 122.3. HRMS calcd for C₁₅H₉N₄Cl [M+H] 282.0486; found, 281.0586. ^{*S*6}

4-(naphthalen-1-yl)-1*H*-[1,2,3]triazolo[4,5-c]quinoline (3h): Purified by column chromatography, Yellow

solid, ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.51 (s, 1H), 8.26 (d, J = 8 Hz, 1H), 8.16 (d, J = 8Hz, 1H), 8.08 (d, J = 8.4 Hz, 2H), 8.01 (d, J = 7.2 Hz, 1H), 7.91 – 7.83 (m, 2H), 7.74 (t, J = 7.6 Hz, 1H), 7.58 (t, J = 7.6 Hz, 1H), 7.48 (t, J = 7.8 Hz, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 153.0, 144.6, 134.5, 133.9, 132.0, 131.4, 130.3, 130.2, 129.5,

129.1, 128.8, 127.1, 126.6, 126.2, 125.7, 123.3. HRMS calcd for $C_{19}H_{12}N_4$ [M+H] 297.1096; found, 297.1132⁵⁶

4-(thiophen-2-yl)-1H-[1,2,3]triazolo[4,5-c]quinoline (3i): Purified by column chromatography, Brown

solid, ¹H NMR (500 MHz, DMSO- d_6) δ 8.88 (d, J = 2.5 Hz, 1H), 8.40 (d, J = 7.5 Hz, 1H), 8.17 (d, J = 8.5 Hz, 1H), 7.93 (d, J = 5 Hz, 1H), 7.85 (t, 7.5 Hz, 1H), 7.76 (t, J = 7.25 Hz, 1H), 7.40 (t, J = 4.25 Hz, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 156.1, 145.6, 144.6, 143.4, 143.2, 142.0, 132.0, 131.3, 130.4, 129.6, 129.3, 129.3, 128.8, 127.6, 115.7,

112.5. HRMS calcd for C13H8N4S [M+H] 253.0503; found, 253.0543 S6

N-phenyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)benzamide (6a): Purified by column chromatography, Yellow

solid, ¹H NMR (500 MHz, DMSO- d_6) δ 8.20 (s, 1H), 8.12 (s, 1H), 7.87 – 7.81 (m, 3H), 7.63 – 7.62 (m, 2H), 7.56 – 7.55 (m, 1H), 7.47 – 7.42 (m, 4H), 7.38 – 7.35 (m, 1H), 7.27 (t, J = 8.5 Hz, 2H), 7.10 (t, J = 9 Hz, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 164.3, 148.4, 137.3, 133.8, 133.0, 131.4, 130.3, 129.7, 129.0, 128.9, 128.6, 126.3, 125.9,

126.0, 122.1, 120.4. HRMS calcd for $C_{21}H_{16}N_4O$ [M+H] 341.1358; found 341.1402. ⁸⁷

N-phenyl-2-(4-(p-tolyl)-1H-1,2,3-triazol-1-yl)benzamide (6b): Purified by column chromatography, White

solid, ¹H NMR (500 MHz, DMSO- d_6) δ 8.25 (s, 1H), 8.08 (s, 1H), 7.83 -7.81 (m, 1H), 7.67 (d, J = 10 Hz, 2H), 7.59 - 7.57 (m, 2H), 7.51 - 7.49 (m, 1H), 7.43 (d, J = 10 Hz, 2H), 7.26 - 7.20 (m, 4H), 7.07 (t, J = 9.25 Hz, 1H), 2.37 (s.1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 164. 3, 148.5, 138.5, 137.3, 133.8, 132.9, 131.4, 130.2,

129.8, 129.6, 128.9, 126.9, 126.3, 125.9, 124.9, 121.7, 120.4, 21.3. HRMS calcd for $C_{22}H_{18}N_4NaO$ [M+Na]⁺ 378.1412; found 377.1370.

2-(4-(4-fluorophenyl)-1H-1,2,3-triazol-1-yl)-N-phenylbenzamide (6c): Purified by column

chromatography, Light pink solid, ¹H NMR (500 MHz, DMSO- d_6) δ 10.55 (s, 1H), 9.00 (s, 1H), 7.95 (q, J = 5.5 Hz, 8.5 Hz, 2H), 7.82 (d, J = 7.5 Hz, 1H), 7.76 (d, J = 4 Hz, 2H), 7.73 – 7.70 (m, 1H), 7.59 (d, J = 8 Hz, 2H), 7.34 – 7.28 (m, 4H), 7.07 (t, J = 7.25 Hz, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 165.2, 163.4, 161.4, 146.1,

139.4, 134.6, 133.4, 131.5, 130.1, 129.6, 129.1, 127.8, 127.8, 127.4, 127.3, 125.6, 124.2, 122.9, 120.2, 116.5, 116.3. HRMS calcd for $C_{21}H_{15}FN_4NaO$ [M+Na]⁺ 382.1161; found 381.1107.

2-(4-(4-chlorophenyl)-1*H*-1,2,3-triazol-1-yl)-*N*-phenylbenzamide (6d): Purified by column

chromatography, Yellow solid, ¹H NMR (500 MHz, DMSO- d_6) δ 10.54 (s, 1H), 9.06 (s, 1H), 7.94 – 7.92 (m, 2H), 7.82 (d, J = 7.5 Hz, 1H), 7.77 – 7.75 (m, 2H), 7.73 – 7.70 (m, 1H), 7.59 – 7.54 (m, 4H), 7.29 (t, J = 8 Hz, 2H), 7.07 (t, J = 7.5 Hz, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 165.1, 145.9, 139.4, 134.5, 133.4,

133.0, 131.5, 130.1, 129.7, 129.6, 129.5, 129.1, 127.4, 125.7, 124.2, 123.3, 120.2. HRMS calcd for $C_{21}H_{15}ClN_4NaO \ [M+Na]^+$ 399.0803; found 397.0826.

2-(4-([1,1'-biphenyl]-4-yl)-1H-1,2,3-triazol-1-yl)-N-phenylbenzamide (6e): Purified by column

chromatography, Whitish solid, ¹H NMR (500 MHz, DMSO- d_6) δ 10.57 (s, 1H), 9.07 (s, 1H), 8.01 (d, J = 8 Hz, 2H), 7.83 – 7.77 (m, 6H), 7.75 – 7.72 (m, 2H), 7.61 (d, J = 8 Hz, 2H), 7.49 (t, J = 7.5 Hz, 2H), 7.38 (t, J = 7.25 Hz, 1H), 7.31 (t, J = 7.75 Hz, 2H), 7.07 (t, J = 7.25 Hz, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ

32

165.2, 146.7, 140.2, 140.0, 139.5, 134.6, 133.4, 131.5, 130.1, 129.9, 129.7, 129.5, 129.1, 128.1, 127.7, 127.0, 126.3, 125.6, 124.2, 123.0, 120.2. HRMS calcd for $C_{27}H_{20}N_4NaO~[M+Na]^+$ 440.1768; found 439.1530.

N-phenyl-2-(4-(thiophen-2-yl)-1H-1,2,3-triazol-1-yl)benzamide (6f): Purified by column chromatography,

Brown solid, ¹H NMR (500 MHz, DMSO- d_6) δ 10.55 (s, 1H), 8.91 (s, 1H), 7.81 (d, J = 7 Hz, 1H), 7.77 – 7.76 (m, 2H), 7.72 – 7.69 (m, 1H), 7.61 – 7.56 (m, 3H), 7.51 (d, J = 3 Hz, 1H), 7.30 (t, J = 7.75 Hz, 2H), 7.16 (t, J = 4.25 Hz, 1H), 7.07 (t, 7.25 Hz, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 165.1, 142.4, 139.4, 134.4, 133.4, 132.9, 131.5,

130.2, 129.6, 129.1, 128.4, 126.2, 125.7, 125.0, 124.2, 122.2, 120.2. HRMS calcd for $C_{19}H_{14}N_4NaOS$ [M+Na]⁺ 370.0820; found 369.0779.

N-(naphthalen-1-yl)-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)benzamide (**6g**): Purified by column chromatography, Yellow solid, ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.55 (s, 1H), 9.05 (s, 1H), 7.99 – 7.91 (m, 6H), 7.81 – 7.76 (m, 4H), 7.52 – 7.47 (m, 4H), 7.42 – 7.35 (m, 2H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 166.2, 147.1, 134.7, 134.1, 133.6, 131.4, 130.8, 130.1, 129.8, 129.4, 129.0, 128.6, 128.4, 126.5, 126.5, 126.2, 125.9, 125.8, 125.7, 122.2

123.7, 123.3, 123.2. HRMS calcd for $C_{25}H_{18}N_4NaO$ [M+Na]⁺ 414.1412; found 413.1375.

N-benzyl-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)benzamide (**6h**): Purified by column chromatography, Light brown solid, ¹H NMR (500 MHz, DMSO- d_6) δ 9.05 (s, 1H), 8.82 (s, 1H), 7.91 (s, 2H), 7.70 (s, 4H), 7.49 (s, 2H), 7.38 (s, 1H), 7.22 (s, 5H), 4.35 (s, 2H); ¹³C NMR (125 MHz, DMSO- d_6) δ 166.6, 146.9, 139.4, 134.6, 133.5, 131.2, 130.9, 129.4, 129.3, 128.7,

128.6, 127.6, 127.2, 126.1, 125.8, 123.2. HRMS calcd for $C_{22}H_{18}N_4NaO$ [M+Na]⁺

378.1412; found 377.1382.

N-cyclohexyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)benzamide (6i): Purified by column chromatography,

6h

Light yellow solid, ¹H NMR (500 MHz, DMSO- d_6) δ 8.80 (s, 1H), 8.28 (d, J = 8 Hz, 1H), 7.93 – 7.91 (m, 2H), 7.69 – 7.67 (m, 2H), 7.65 – 7.59 (m, 2H), 7.49 (t, J = 7.75 Hz, 2H), 7.37 (t, J = 7.25 Hz, 1H), 3.60 – 3.53 (m, 1H), 1.70 – 1.67 (m, 2H), 1.63 – 1.60 (m, 2H), 1.23 – 1.03 (m, 6H); ¹³C NMR (125 MHz, DMSO- d_6) δ 165.5, 146.8,

134.5, 134.1, 130.9, 130.8, 130.0, 129.5, 129.3, 128.5, 125.8, 125.7, 123.1, 48.5, 32.4, 25.6, 25.0. HRMS calcd for $C_{21}H_{22}N_4NaO$ [M+Na]⁺ 370.1725; found 369.1693.

N-(benzyloxy)-2-(4-phenyl-1H-1,2,3-triazol-1-yl)benzamide (6j): Purified by column chromatography,

Light yellow solid, ¹H NMR (500 MHz, DMSO- d_6) δ 11.73 (s, 1H), 8.96 (s, 1H), 6.45 (d, J = 8 Hz, 2H), 7.74 (d, J = 4 Hz, 2H), 7.67 – 7.60 (m, 2H), 7.49 (t, J = 7.5 Hz, 2H), 7.39 – 7.34 (m, 6H), 4.81 (s, 2H); ¹³C NMR (125 MHz, DMSO- d_6) δ 163.7, 147.0, 136.2, 135.0, 131.8, 130.8, 130.6, 130.1, 129.8, 129.5, 129.4, 128.8,

 $128.8, 128.6, 125.8, 123.1, 77.3, 31.2. \text{ HRMS calcd for } C_{22}H_{18}N_4NaO_2 \text{ [M+Na]}^+ 394.1361; \text{ found } 393.1327.$ 2-(4-(4-fluorophenyl)-1*H*-1,2,3-triazol-1-yl)-*N*-methoxybenzamide **(6k)**: Purified by column

chromatography, Light yellow solid, ¹H NMR (500 MHz, DMSO- d_6) δ 11.63 (s, 1H), 8.93 (s, 1H), 7.98 (q, J = 7 Hz, 10.5 Hz, 2H), 7.74 – 7.73 (m, 2H), 7.67 – 7.64 (m, 2H), 7.49 (t, J = 11 Hz, 2H), 3.58 (s, 3H); ¹³C NMR (125 MHz, DMSO- d_6) δ 163.7, 163.3, 161.2, 146.1, 134.9, 131.8, 130.6, 130.2, 129.7, 127.9, 127.8, 127.3,

125.9, 123.0, 116.5, 116.3, 63.4. HRMS calcd for C₂₆H₁₃FN₄O₂ [M+2H] 313.1056; found 315.1717. 2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)-*N*-(2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)phenyl)benzamide (**6**): Purified

by column chromatography, Light yellow solid, ¹H NMR (500 MHz, DMSO- d_6) δ 10.54 (s, 1H), 9.04 (d, J = 14 Hz, 2H), 7.96 (dd, J = 7.5 Hz, 18.5 Hz, 4H), 7.77 – 7.66 (m, 6H), 7.59 (t, J = 7.5 Hz, 1H), 7.46 (q, J = 7.5 Hz, 15 Hz, 5 H), 7.35 (q, J = 7.5 Hz, 15.5 Hz, 2H); ¹³C NMR (125 MHz, DMSO- d_6) δ 165.7, 147.2, 147.0, 134.6, 132.5,

131.7, 131.6, 130.9, 130.7, 130.2, 129.9, 129.5, 129.4, 128.6, 128.5, 127.8, 127.2, 126.3, 125.8, 125.5, 125.5, 123.1, 122.9. HRMS calcd for $C_{29}H_{21}N_7NaO$ [M+Na]⁺ 507.1739; found 506.1716.

15. References

- 1. M. Rawat, T. Taniike, and D. S. Rawat, Chem. Cat. Chem. 2022, 14, e202101926.
- 2. T. Wang, L. Zhang, H. Wang, W. Yang, Y. Fu, W. Zhou, W. Yu, K. Xiang, Z. Su, S. Dai, and L. Chai, *ACS Appl. Mater. Interfaces.* 2013, **5**, 12449-12459.
- 3. Sun, C.; Zhou, R.; Jianan, E.; Sun, J.; Ren, H., RSC Adv. 2015, 5, 57058-57066.
- 4. T. Wang, L. Zhang, C. Li, W. Yang, T. Song, C. Tang, Y. Meng, S. Dai, H. Wang, and L. Chai, *Environ. Sci. Technol.* 2015, **49**, 5654-5662.
- 5. K. Upadhyaya, A. Ajay, R. Mahar, R. Pandey, B. Kumar, S. K. Shukla, and R. P. Tripathi, *Tetrahedron* 2013, **69**, 8547-8558.
- C. Xu, S. -F. Jiang, Y. -D. Wu, F. -C. Jia, and A.-X. Wu, J. Org. Chem., 2018, 83, 14802-14810.
- 7. A. Hayeebueraheng, B. Kaewmee, V. Rukachaisirikul, and J. Kaeobamrung, *Eur. J. Chem.*, 2017, **2017**, 6714-6721.

- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. Gaussian 09, revision D.01; Gaussian, Inc.: Wallingford CT, 2013.
- a) A. Becke, *Phys. Rev. A.*, 1988, **38**, 3098-3100; b) J. P. Perdew, *Phys. Rev., B.* 1986, **33**, 8822-8824.
- 10. F. Weigend, and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-3305.
- 11. U. Häussermann, M. Dolg, H. Stoll, H. Preuss, P. Schwerdtfeger, and R. M. Pitzer, *Mol. Phys.*, 1993, **78**, 1211-1224.
- a) K. Fukui, Acc. Chem. Res. 1981, 14, 363–368; b) S. Maeda, Y. Harabuchi, Y. Ono, T. Taketsugu, and K. Morokuma, Int. J. Quantum Chem., 2015, 115, 258–269; c) C. Gonzalez, and H. B. Schlegel, J. Phys. Chem. 1990, 94, 5523–5527.
- 13. Y. Zhao, and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215-241.
- 14. A. V. Marenich, C. J. Cramer, and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378-6396.

Appendix I: Spectral copies of ¹H and ¹³C NMR of compounds obtained in this study

4-(4-methoxyphenyl)-1*H*-[1,2,3]triazolo[4,5-c]quinoline (3b)

4-(4-chlorophenyl)-1*H*-[1,2,3]triazolo[4,5-c]quinoline (3e)

41

8-methyl-4-phenyl-1*H*-[1,2,3]triazolo[4,5-c]quinoline (3f)

8-chloro-4-phenyl-1*H*-[1,2,3]triazolo[4,5-c]quinoline (3g)

4-(naphthalen-1-yl)-1*H*-[1,2,3]triazolo[4,5-c]quinoline (3h)

N-phenyl-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)benzamide (6a)

N-phenyl-2-(4-(p-tolyl)-1*H*-1,2,3-triazol-1-yl)benzamide (6b)

2-(4-(4-fluorophenyl)-1*H*-1,2,3-triazol-1-yl)-*N*-phenylbenzamide (6c)

2-(4-(4-chlorophenyl)-1*H*-1,2,3-triazol-1-yl)-*N*-phenylbenzamide (6d)

2-(4-([1,1'-biphenyl]-4-yl)-1*H*-1,2,3-triazol-1-yl)-*N*-phenylbenzamide (6e)

N-phenyl-2-(4-(thiophen-2-yl)-1H-1,2,3-triazol-1-yl)benzamide (6f)

N-(naphthalen-1-yl)-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)benzamide (6g)

N-benzyl-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)benzamide (6h)

N-cyclohexyl-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)benzamide (6i)

N-(benzyloxy)-2-(4-phenyl-1H-1,2,3-triazol-1-yl)benzamide (6j)

2-(4-(4-fluorophenyl)-1*H*-1,2,3-triazol-1-yl)-*N*-methoxybenzamide (6k)

2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)-*N*-(2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)phenyl)benzamide (6l)

Appendix II: Crystallogaphic data

Crystallographic data of compound 3b

The crystals were mounted in turn, on a Gemini A Ultra Oxford Diffraction automatic diffractometer equipped with a CCD detector, and used for data collection. X–ray intensity data were collected with graphite monochromated MoK α radiation (λ =0.71073 Å) at a temperature of 295(2) K, with ω scan mode. Lorentz, polarization and empirical absorption correction using spherical harmonics implemented in SCALE3 ABSPACK scaling algorithm (CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.37.46) were applied. All the non–hydrogen atoms were refined anisotropically using full–matrix, least–squares technique. All the hydrogen atoms were found from difference Fourier synthesis after four cycles of anisotropic refinement and refined as "riding" on the adjacent carbon atom with individual isotropic temperature factor equal 1.2 times the value of equivalent temperature factor of the parent atom. The Olex2^[3] and SHELXS, SHELXL^[4] programs were used for all the calculations. Four fluorine atoms of the hexafluorophosphate anion were disordered over two sets. The geometrical calculations were carried out using the PLATON program. The graphics for molecular structures, pi-pi stacking and packing images for publication were obtained using Olex2 and MERCURY software packages.

Crystal sample preparation of 3b

Crystal of **3b** was prepared by using dichloromethane and pentane as solvent, the solution of which was kept at room temperature for a period of 4 days to get the single crystal.

Characterization

Table S6: Crystallographic data and the structure refinement detail for 4-(p-tolyl)-1H-

[1,2,3]triazolo[4,5-c]quinoline

Name	4-(p-tolyl)-1 <i>H</i> -[1,2,3]triazolo[4,5-c]quinoline
Formula	$C_{16}H_{12}N_4$
Formula weight	260.29
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
Unit cell dimensions	
a (Å)	7.0728
b (Å)	12.2024
c (Å)	16.3422
α (°)	90
β (°)	90
γ (°)	90
$V(Å^3)$	1410.42(17)
Z	4
Density(calcd) (g/cm ³)	1.311
Abs. coeff. (mm ⁻¹)	0.086
F(000)	584.0
Crystal size (mm)	0.14×0.06×0.04
Temperature (K)	295 (2)
Radiation (Å)	0.71073
θ Min, Max (°)	29.506, 58.54
Data set	3540/0/203

R (int)	0.0493
N _{ref} , N _{par}	4045, 203
R, wR ₂ , S	0.0493, 0.1220, 1.054

Important bond lengths of 4-(p-tolyl)-1*H*-[1,2,3]triazolo[4,5-c]quinoline

Bond distances	
Module	Bond distance (Å)
N1-N2	1.303(3)
N1-C2	1.378 (3)
N2-N3	1.347 (3)
N3-C3	1.344 (3)
N4-C9	1.384 (3)
C1-C2	1.429 (3)
C1-C10	1.480 (3)
C2-C3	1.373 (3)
C3-C4	1.410 (3)
C4-C5	1.404 (3)
C4-C9	1.416 (3)
C5-C6	1.368 (4)
C6-C7	1.384 (4)
C7-C8	1.370 (4)
C8-C9	1.387 (4)
C10-C11	1.389 (3)
C10-C15	1.381 (3)
C11-C12	1.372 (4)
C12-C13	1.377 (4)
C13-C14	1.382 (4)

C13-C16	1.504 (4)
C14-C15	1.382 (4)

Important bond angles of 4-(p-tolyl)-1*H*-[1,2,3]triazolo[4,5-c]quinoline

Module	Bond angle (°)
N2-N1-C2	107.75 (19)
N1-N2-N3	108.77 (19)
C3-N3-N2	110.1 (2)
C1-N4-C9	121.89 (18)
N4-C1-C2	118.3 (2)
N4-C1-C10	117.46 (18)
C2-C1-C10	124.3 (2)
N1-C2-C1	131.5 (2)
C3-C2-N1	108.21 (3)
C3-C2-C1	120.3 (2)
N3-C3-C2	105.1 (2)
N3-C3-C4	132.2 (2)
C2-C3-C4	122.64 (19)
C3-C4-C9	113.7 (2)
C5-C4-C3	126.3 (2)
C5-C4-C9	119.9 (2)
C6-C5-C4	119.7 (2)
C5-C6-C7	120.3 (3)
C8-C7-C6	120.9 (3)
C7-C8-C9	120.7 (3)
N4C9-C4	123.2 (2)
N4-C9-C8	118.4 (2)
C8-C9-C4	118.5 (2)

C11-C10-C1	119.5 (2)
C15-C10-C1	122.3 (2)
C15-C10-C11	118.2 (2)
C12-C11-C10	120.5 (3)
C11-C12-C13	122.1 (3)
C12-C13-C14	117.1 (2)
C12-C13-C16	121.3 (3)
C14-C13-C16	121.7 (3)
C16-C17-C22	121.8 (3)
C10-C15-C14	120.3 (2)

Crystal sample preparation of 3d

Crystal of **3d** was prepared by using dichloromethane and pentane as solvent, the solution of which was kept at room temperature for a period of 4 days to get the single crystal.

Characterization

Table S7: Crystallographic data and the structure refinement detail for 4-(4-chlorophenyl)-1H-

[1,2,3]triazolo[4,5-c]quinoline

Name	4-(4-chlorophenyl)-1 <i>H</i> -[1,2,3]triazolo[4,5-c]quinoline
Formula	C ₁₅ H ₉ ClN ₄
Formula weight	280.71
Crystal system	orthorhombic
Space group	P212121
Unit cell dimensions	
a (Å)	7.0038
b (Å)	12.3433
c (Å)	16.3586
α (°)	90
β (°)	90
γ (°)	90
$V(Å^3)$	1414.2(3)
Z	4
Density(calcd) (g/cm ³)	1.403
Abs. coeff. (mm ⁻¹)	0.274
F(000)	616.0
Crystal size (mm)	0.17×0.05×0.05
Temperature (K)	295 (2)
Radiation (Å)	0.71073
θ Min, Max (°)	7.056, 58.738
Data set	3557/0/202
R (int)	0.0634
N _{ref} , N _{par}	3905, 202
R, wR ₂ , S	0.0552, 0.1150, 0.995

Bond distances	
Module	Bond distance (Å)
C11-C13	1.742 (4)
N1-N2	1.349 (4)
N1-C3	1.345 (4)
N2-N3	1.318 (5)
N3-C2	1.376 (4)
N4-C1	1.311 (4)
N4-C9	1.386 (4)
C1-C2	1.424 (4)
C1-C10	1.494 (4)
C2-C3	1.389 (4)
C3-C4	1.419 (5)
C4-C5	1.406 (5)
C4-C9	1.412(5)
C5-C6	1.371(5)
C6-C7	1.381(7)
C7-C8	1.377(6)
C8-C9	1.397(5)
C10-C11	1.381(5)
C10-C15	1.396(5)
C11-C12	1.386(5)
C12-C13	1.366(5)
C14-C15	1.376(5)

Important bond lengths of 4-(4-chlorophenyl)-1*H*-[1,2,3]triazolo[4,5-c]quinoline

Important bond angles of 4-(4-chlorophenyl)-1*H*-[1,2,3]triazolo[4,5-c]quinoline

Module	Bond angle (°)
C3-N1-N2	110.6(3)
N3-N2-N1	108.1(3)
N2-N3-N1	108.4(3)
C1-N4-C9	121.8(3)
N4-C1-C2	119.0(3)
N4-C1-C10	117.4(3)
C2-C1-C10	123.6(3)
N3-C2-C1	132.6(3)
C3-C2-C1	107.6(3)
N1-C3-C2	119.7(3)
N1-C3-C4	105.2(3)
C2-C3-C4	132.3(3)
C5-C4-C9	122.4(3)
C9-C4-C3	126.0(3)
C6-C5-C4	120.4(3)
C6-C5-C4	113.6(3)
C5-C6-C7	119.3(4)
C8-C7-C6	120.5(4)
C8-C7-C6	121.2(4)
C7-C8-C9	120.0(4)
N4C9-C4	123.5(3)
N4-C9-C8	118.0(3)
C8-C9-C4	118.5(3)
C11-C10-C1	122.4(3)
C11-C10-C15	118.7(3)
C15-C10-C1	118.9(3)
C10-C11-C12	120.9(4)

C13-C12-C11	119.4(4)
C12-C13-C11	119.5(4)
C12-C13-C14	121.1(4)
C14-C13-C16	119.4(3)
C16-C17-C11	119.5(4)
C14-C15-C10	120.4(4)

Crystal sample preparation of 6b

Crystal of **6b** was prepared by using dichloromethane and pentane as solvent, the solution of which was kept at room temperature for a period of 4 days to get the single crystal.

Characterization

Table S8: Crystallographic data and the structure refinement detail for *N*-phenyl-2-(4-(p-tolyl)-1*H*-1,2,3-triazol-1-yl)benzamide

Name	<i>N</i> -phenyl-2-(4-(p-tolyl)-1 <i>H</i> -1,2,3-triazol-1-yl)benzamide
Formula	C ₂₂ H ₁₈ N ₄ O
Formula weight	354.41
Crystal system	triclinic
Space group	P-1
Unit cell dimensions	
a (Å)	7.5949(8)
b (Å)	9.8677(12)
c (Å)	12.6331(15)
α (°)	80.581(10)
β (°)	89.926(9)
γ (°)	73.743(10)
$V(Å^3)$	895.68(18)
Ζ	2
Density(calcd) (g/cm ³)	1.314
Abs. coeff. (mm ⁻¹)	0.084
F(000)	372.0
Crystal size (mm)	0.11×0.08×0.04
Temperature (K)	295 (2)
Radiation (Å)	0.71073
θ Min, Max (°)	6.612, 59.14
Data set	4233/0/249
R (int)	0.1362
N _{ref} , N _{par}	4233, 249
R, wR ₂ , S	0.0566, 0.0922, 0.898

Important bond lengths of N-phenyl-2-(4-(p-tolyl)-1H-1,2,3-triazol-1-yl)benzamide

Bond distances	
Module	Bond distance (Å)
01-C16	1.219(3)
N1-N2	1.352(3)
N1-C1	1.343(3)
N1-C10	1.433(3)
N2-N3	1.309(3)
N3-C2	1.362(3)
N4-C16	1.354(3)
N4-C17	1.409(3)
C1-C2	1.363(3)
C2-C3	1.463(3)
C3-C4	1.368(4)
C3-C8	1.389(3)
C4-C5	1.383(4)
C5-C6	1.372(4)
C6-C7	1.372(4)
C6-C9	1.506(4)
C7-C8	1.371(4)
C10-C11	1.390(3)
C10-C15	1.383(3)
C11-C12	1.396(3)
C11-C16	1.494(4)
C12-C13	1.360(4)
C13-C14	1.371(4)
C14-C15	1.368(3)
C17-C18	1.388(4)
C17-C22	1.369(4)

C18-C19	1.370(4)
C19-C20	1.357(5)
C20-C21	1.379(5)
C21-C22	1.382(4)

Important bond angles of N-phenyl-2-(4-(p-tolyl)-1H-1,2,3-triazol-1-yl)benzamide

Module	Bond angle (°)
N2-N1-C10	117.5(2)
C1-N1-N2	110.6(2)
C1-N1-C10	131.7(2)
N3-N2-N1	106.6(2)
N3-N2-C2	109.6(2)
C16-N4-C17	126.4(3)
N1-C1-C2	105.5(2)
N3-C2-C1	107.6(2)
N3-C2-C3	121.4(2)
C1-C2-C3	130.8(3)
C4-C3-C2	120.8(2)
C4-C3-C8	118.3(2)
C8-C3-C2	120.7(3)
C3-C4-C5	120.4(3)
C6-C5-C4	121.5(3)
C5-C6-C9	121.7(3)
C7-C6-C5	117.9(3)
C7-C6-C9	120.4(3)
C8-C7-C6	121.3(3)
C7-C8-C3	120.6(3)
C11-C10-N1	122.0(2)

C15-C10-N1	117.3(2)
C15-C10-C11	120.6(2)
C10-C11-C12	117.5(2)
C10-C11-C16	126.3(2)
C12-C11-C16	116.1(2)
C13-C12-C11	121.7(3)
C12-C13-C14	119.6(3)
C15-C14-C13	120.6(3)
C14-C15-C10	119.8(3)
01-C16-N4	123.5(3)
01-C16-C11	120.0(2)
N4-C16-C11	116.5(3)
C18-C17-N4	117.4(3)
C22-C17-N4	123.4(3)
C22-C17-C18	119.1(3)
C19-C18-C17	119.8(3)
C20-C19-C18	121.2(3)
C19-C20-C21	119.4(3)
C20-C21-C22	119.9(4)
C17-C22-C21	120.5(3)

Crystal sample preparation of 6d

Crystal of **6d** was prepared by using dichloromethane and pentane as solvent, the solution of which was kept at room temperature for a period of 4 days to get the single crystal.

Characterization

Table S9: Crystallographic data and the structure refinement detail for 2-(4-(4-fluorophenyl)-1H-1,2,3-triazol-1-yl)-N-phenylbenzamide

Name	2-(4-(4-fluorophenyl)-1 <i>H</i> -1,2,3-triazol-1-yl)- <i>N</i> -phenylbenzamide
Formula	C ₂₁ H ₁₅ FN ₄ O
Formula weight	358.37
Crystal system	triclinic
Space group	P-1
Unit cell dimensions	
a (Å)	7.6099(9)
b (Å)	9.9948(13)
c (Å)	12.3384(12)
α (°)	101.580(10)
-------------------------------------	-------------------------------
β(°)	91.165(9)
γ (°)	107.833(11)
$V(\text{\AA}^3)$	871.81(18)
Z	2
Density(calcd) (g/cm ³)	1.365
Abs. coeff. (mm ⁻¹)	0.095
F(000)	372.0
Crystal size (mm)	$0.17 \times 0.1 \times 0.06$
Temperature (K)	295 (2)
Radiation (Å)	0.71073
θ Min, Max (°)	6.832, 59.014
Data set	4170/0/248
R (int)	0.1362
N _{ref} , N _{par}	4170, 248
R, wR ₂ , S	0.0488, 0.1154, 1.011

Important bond lengths of 2-(4-(4-fluorophenyl)-1H-1,2,3-triazol-1-yl)-N-phenylbenzamide

Bond distances	
Module	Bond distance (Å)
F1-C6	1.361(2)
01-C15	1.2212(18)
N1-N2	1.3530(16)
N1-C1	1.3435(19)
N1-C9	1.4343(19)
N2-N3	1.3050(18)
N3C2	1.362(2)
N4-C15	1.3491(19)

N4-C16	1.412(2)
C1-C2	1.362(2)
C2-C3	1.461(2)
C3-C4	1.388(2)
C3-C8	1.381(3)
C4-C5	1.373(3)
C5-C6	1.346(3)
C6-C7	1.368(3)
C7-C8	1.379(3)
C9-C10	1.395(2)
C9-C14	1.381(2)
C10-C11	1.391(2)
C10-C15	1.499(2)
C11-C12	1.369(3)
C12-C13	1.374(3)
C13-C14	1.380(2)
C16-C17	1.388(2)
C16-C21	1.380(2)
C17-C18	1.370(3)
C18-C19	1.372(3)
C19-C20	1.370(3)
C20-C21	1.377(3)

Important bond angles of 2-(4-(4-fluorophenyl)-1H-1,2,3-triazol-1-yl)-N-phenylbenzamide

Module	Bond angle (°)
N2-N1-C9	117.75(12)
C1-N1-N2	110.42(12)

C1-N1-C9	131.70(12)
N3-N2-N1	106.69(12)
N2-N3-C2	109.76(12)
C15-N4C16	126.52(14)
N1-C1-C2	105.58(13)
N3-C2-C3	121.70(13)
C1-C2-N3	107.50(14)
C1-C2-C3	130.61(15)
C4-C3-C2	121.08(15)
C8-C3-C2	120.27(16)
C8-C3-C4	118.59(17)
C5-C4-C3	120.83(19)
C6-C5-C4	119.0(2)
F1-C6-C7	117.9(3)
C5-C6-F1	119.7(2)
C5-C6-C7	122.4(2)
C6-C7-C8	118.7(2)
C7-C8-C3	120.5(2)
C10-C9-N1	122.04(14)
C14-C9-N1	117.20(14)
C14-C9-C10	120.75(15)
C9-C10-C15	126.47(14)
C11-C10-C9	117.31(15)
C11-C10-C15	116.17(14)
C12-C11-C10	122.06(17)
C11-C12-C13	119.71(17)
C12-C13-C14	119.93(18)
C13-C14-C9	120.19(17)

01-C15-N4	123.52(15)
01-C15-C10	119.60(13)
N4-C15-C10	116.84(13)
C17-C16-N4	117.58(15)
C21-C16-N4	123.26(15)
C21-C16-C17	119.08(16)
C18-C17-C16	120.00(18)
C17-C18-C19	120.9(2)
C20-C19-C18	119.1(2)
C19-C20-C21	120.9(2)
C20-C21-C16	119.98(18)

Crystal sample preparation of 6h

Crystal of **6h** was prepared by using dichloromethane and pentane as solvent, the solution of which was kept at room temperature for a period of 4 days to get the single crystal.

Characterization

Table S10: Crystallographic data and the structure refinement detail for *N*-(benzyloxy)-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)benzamide

Name	N-(benzyloxy)-2-(4-phenyl-1H-1,2,3-triazol-1-yl)benzamide
Formula	$C_{22}H_{18}N_4O_2$
Formula weight	370.40
Crystal system	triclinic
Space group	P-1
Unit cell dimensions	
a (Å)	8.7311(8)
b (Å)	9.2400(7)
c (Å)	12.1350(8)
α (°)	98.305(6)
β (°)	97.293(7)
γ (°)	105.502(7)
$V(\text{\AA}^3)$	919.32(13)
Z	2
Density(calcd) (g/cm ³)	1.338
Abs. coeff. (mm ⁻¹)	0.089
F(000)	388.0
Crystal size (mm)	$0.26 \times 0.14 \times 0.06$
Temperature (K)	295 (2)
Radiation (Å)	0.71073
θ Min, Max (°)	7.564, 58.542
Data set	4315/0/257
R (int)	0.0922
N _{ref} , N _{par}	4315, 257
R, wR ₂ , S	0.0506, 0.1226, 1.033

Bond distances	
Module	Bond distance (Å)
01-C9	1.2179(19)
O2-N4	1.3919(17)
O2-C10	1.448(2)
N1-N2	1.3537(18)
N1-C1	1.345(2)
N1-C3	1.428(2)
N2-N3	1.3071(19)
N3-C2	1.358(2)
N4-C9	1.331(2)
C1-C2	1.364(2)
C2-C17	1.461(2)
C3-C4	1.391(2)
C3-C8	1.387(2)
C4-C5	1.389(2)
C4-C9	1.503(2)
C5-C6	1.372(2)
C6-C7	1.376(3)
C7-C8	1.369(3)
C10-C11	1.491(3)
C11-C12	1.378(3)
C11-C16	1.372(2)
C12-C13	1.375(3)
C13-C14	1.366(3)
C14-C15	1.365(3)
C15-C16	1.378(3)

Important bond lengths of N-(benzyloxy)-2-(4-phenyl-1H-1,2,3-triazol-1-yl)benzamide

C17-C18	1.380(3)
C17-C22	1.387(2)
C18-C19	1.372(3)
C19-C20	1.368(3)
C20-C21	1.359(3)
C21-C22	1.378(3)

Important bond angles of N-(benzyloxy)-2-(4-phenyl-1H-1,2,3-triazol-1-yl)benzamide

Module	Bond angle (°)
N4-O2-C10	108.30(12)
N2-N1-C3	118.09(13)
C1-N1-N2	110.28(13)
C1-N1-C3	131.59(13)
N3-N2-N1	106.51(13)
N-N3-C2	110.17(13)
C9-N4-O2	119.58(15)
N1-C1-C2	105.78(14)
N3-C2-C1	107.26(14)
N3-C2-C17	121.36(14)
C1-C2-C17	131.36(16)
C4-C3-N1	121.62(14)
C8-C3-N1	118.07(15)
C8-C3-C4	120.31(15)
C3-C4-C9	126.26(14)
C5-C4-C3	118.14(15)
C5-C4-C9	115.58(14)
C6-C5-C4	121.31(17)

C5-C6-C7	119.85(17)
C8-C7-C6	120.17(18)
C7-C8-C3	120.21(17)
O1-C9-N4	125.21(16)
01-C9-C4	121.89(17)
N4-C9-C4	112.71(15)
O2-C10-C11	113.40(14)
C12-C11-C10	121.40(16)
C16-C11-C10	120.47(18)
C16-C11-C12	118.12(19)
C13-C12-C11	120.76(18)
C14-C13-C12	120.6(2)
C15-C14-C13	119.2(2)
C14-C15-C16	120.5(2)
C11-C16-C15	120.9(2)
C18-C17-C2	121.16(15)
C18-C17-C22	118.23(17)
C22-C17-C2	120.61(16)
C19-C18-C17	120.86(18)
C20-C19-C18	120.3(2)
C21-C20-C19	119.7(2)
C20-C21-C22	120.72(19)
C21-C22-C17	120.2(2)