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1. Experimental

All chemicals are used without further purification. BN are purchased Fujian
Schnorrall New Material Co., Co(NO3);-6H,0, Rh(acac)(CO),, Ce(NOs), 6H,0,
Cu(NO3),-9H,0, Ni(NO3),-6H,0 and FeCl; is purchased from Innochem, and
Isopropanol (AR) are purchased from Kermel (Tianjin, China).

The substrates, including aliphatic olefins and aromatic olefins, as well as
solvents, are purchased from Innochem.
1.1 Preparation of dh-BN

Pristine 1 g BN powders dispersed in 5g isopropanol are subjected to Ball-
Milling to produce dh-BN in a planetary ball mill F-P400 with protection under argon
atmosphere. The speed of planetary ball mill F-P400 with a frequency of 480 rpm.
The degree of defectiveness in dh-BN is controlled by the Ball-Milling time. Different
dh-BN samples with various Ball-Milling times (0, 20, 40, 120, 240 and 480 min) are
prepared and named BN, dh-20BN, dh-40BN, dh-120BN, dh-240BN and dh-480BN,
respectively. Structural pulverization and amorphization of dh-BN is commensurate
with the Ball-Milling time.
1.2 Typical Procedure for Preparation of RhCo/dh-BN Catalyst

In a typical preparation, Rh(acac)(CO), (0.070 g, 0.2 mmol) and
Co(NOs3),-6H,0 (0.175 g, 0.6mmol) are added to H,O (4 mL) at room temperature
and stirred until complete dissolution. Then, dh-120BN (0.1 g) is added and the
mixture is stirred for a further 24 h at room temperature. Afterward, centrifuge the
solvent of the suspension and vacuum dry the solid at 100 °C for 8 hours. The
obtained solid was then calcined under H, at 250 °C for 2 h to afford RhCo/dh-BN.To
prepare other catalysts, the solution is changed to Ce(NO;),-6H,0, Cu(NOs),-3H,0,
Ni(NOs3),-6H,0 and Fe (NO;);-9H,0 metal precursor, and the rest steps remained the
same.
1.3 Typical Procedure for Hydroformylation of 2-Octene

A mixture of RhCo/dh-BN catalyst (10 mg), 2-octene (0.224 g, 2.0 mmol), and
toluene (2.0 mL) is added into a stainless-steel autoclave (100 mL) with a magnetic
stir bar. After the autoclave is sealed and purged with CO three times, the pressure of
syngas (CO/H, = 1:1) is adjusted to 6.0 MPa. Then the reaction mixture is stirred at

90 °C for 12 h. After the reaction finished, the autoclave is cooled to room



temperature, and the pressure is carefully released. Subsequently, the catalyst is
removed from the system by centrifugation and analyzed by gas chromatography
(Agilent 7890A GC equipped with an HP-5 capillary column the FID detector).
Finally, the yield and regioselectivity are obtained by GC analysis using decane as the
internal standard.

For recycling, the catalyst was separated by centrifugation, dried under vacuum
at 100 °C for 6 h and used directly for the next run. For Hot Filtration, after 6 h of
reaction, cool to room temperature, slowly release the pressure, separate the catalyst
from the upper solution, and determine the product in the supernatant by gas
chromatography.The remaining solution was transferred into a clean autoclave,
pressurized with H, and CO, and heated again.

The TOF of product were calculated using the following equations:

Where "product is the number of moles of generated product, "k is the number of
moles of metallic Rh in practical loading, and is the reaction time.
1.4 Physical characterization

Gas chromatography analysis is performed on Agilent 7890A GC equipped with
an HP-5 capillary column and FID detector. GC-MS analysis is in general recorded on
an Agilent 5977A MSD GC-MS.

TEM is carried out by using a Tecnai G2 F30 S-Twin transmission electron
microscope operating at 300 kV. Single-particle EDX analysis is performed by using
a Tecnai G2 F30 S-Twin Field Emission TEM in STEM mode. For TEM
investigations, the catalysts are dispersed in ethanol by ultrasonication and deposited
on carbon-coated molybdenum grids.

XRD measurements are conducted by a STADIP automated transmission
diffractometer (STOE) equipped with an incident beam curved germanium
monochromator selecting Cu Kal radiation and a 6 ° position sensitive detector
(PSD). The XRD patterns are scanned in the 20 range of 10-80°. For the data
interpretation, the software WinXpow (STOE) and the database of Powder Diffraction
File (PDF) of the International Centre of Diffraction Data (ICDD) are used.

XPS is obtained using a VG ES-CALAB 210 instrument equipped with a dual
Mg/Al anode X-ray source, a hemispherical capacitor analyzer, and a 5 keV Ar+ iron

gun. The electron binding energy is referenced to the C 1s peak at 284.8 eV. The



background pressure in the chamber was less than 10—7 Pa. The peaks are fitted by
Gaussian—Lorentzian curves after linear background subtraction. For quantitative
analysis, the peak area is divided by the element-specific Scofield factor and the
transmission function of the analyzer.

The contents of Rh/Co in the catalysts are measured by inductively coupled
plasma-atomic emission spectrometry (ICP-AES), using an Iris Advantage Thermo
Jarrel Ash device.

Nitrogen adsorption-desorption isotherms are measured at 77 K using American
Quantachrome 1Q2 automated gas sorption analyzer. The pore-size distribution is
calculated by Barrett, Joyner, and Halenda (BJH) method from desorption isotherm.

IR-diffuse reflectance spectra (IR) of samples are analyzed by a Bruker
VERTEX 70 FTIR spectrometer.

The electron paramagnetic resonance (EPR) measurements of LCO solid

samples are carried out on a JEOL JES-FA200 spectrometer.

2. N, adsorption-desorption analysis
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Figure S1 N, adsorption-desorption isotherm of the BN and di-BN.
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Figure S2 N, adsorption-desorption isotherm of the RhCo/dh-BN catalyst.

Table S1 The physical properties of catalysts.




Entry Catalyst SA (m?g™) APW (nm) PV (mm3g?)
1 BN 44 0.70 256.4
2 dh-20BN 47 0.70 336.3
3 dh-40BN 54 0.70 358.8
4 dh-120BN 56 1.56 405.8
5 dh-240BN 60 1.56 476.1
6 dh-480BN 64 1.65 716.9
7 RhCo/dh-BN 53 1.66 461.8

Determined by an 1Q, automated gas sorption analyzer. SA: BET surface area; APS: average pore radius;

PV: pore volume.



3. X-Ray Diffraction analysis
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Figure S3 XRD patterns of the samples for d42-BN and RhCo/dh-BN.



4. X-ray photoelectron spectroscopy analysis
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Figure S4 N1s XPS analysis for the catalyst.




5. Transmission electron micrographs
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Figure S5 Morphology of RhCo/BN. (a) HAADF- STEM images, (b) EDX elemental mapping, (c)

Particle size distribution histogram.



6. Summary of heterogeneous hydroformylation reports in literature

Table S2 Comparison the catalytic performance for hydroformylation of alkenes presented in literatures and this work.

Entry Catalyst Substrate T ‘ P Con./Yicld Sel. L/B TOF Ref.
(4S) (h) (MPa) () (%) (")
1 Rh/RGO 1-hexene 100 1 5 100 72 44/56 508 (i
2 Rh@UiO-66 1-octene 100 21 5 >99 73 36/64 226 (2]
3 CoRhHT 1-octene 100 6 5 98 96 36/64 6 3]
4 Rh@CTF l-octene 80 20 8 68 63 66/34 107 4]
5 Rh/POL-dppe l-octene 50 24 1 97 100 29/71 30 3]
6 Rh—Co-Pi/ZnO 1-decene 100 6 4 97 89 56/44 988 6]
7 Rh/ZnO@ZIF-8 1-dodecene 90 4.5 4 99 77 48/52 87 7
8 Ce0,-R-Rh styrene 120 8 2 99 97 62/38 72 (8]
9 Rh;/CeO, styrene 120 12 3 99 72 47/53 49 ]
10 Rh-PAMAM/Si0,-Fe;04 styrene 50 16 6.9 100 100 3/97 13 [10]
11 Rh/CAM 2-octene 100 5 5 88 - 23/77 559 [t
12 Rh/Tetraphosphine 2-octene 125 1 1 84 84 98/2 706 [
13 RhCo/ BN 2-octene 90 12 6 27 41 68/33 106 This work
14 RhCo/dh-BN 2-octene 90 12 6 97 100 0/100 923 This work

Reaction conditions: the ratio of H,/CO =1:1.

TOF =Moles of converted substrate *(Moles of Rh)! *(Reaction time h)™!.




Reaction optimization in hydroformylation of 2-octene.
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Figure S6 The number of balls optimization in hydroformylation of 2-octene.
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Figure S7 The amount of dispersant optimization in hydroformylation of 2-octene.
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Figure S8 The amount of catalyst optimization in hydroformylation of 2-octene.



6. Characterization of RhCo/dh-BN used

Intensity (a.u.)

|

10 20 30 40 50 60
2 Theta (degree)

Figure S9 XRD patterns of the samples for RhCo/dh-BN used.

Figure S10 TEM images of the RhCo/dh-BN used catalysts.



Figure S11 STEM-HAADF images and EDX elemental mapping.

Table S3 Determination of metal content by ICP
Entry Catalyst Rh (wt.%) Co (Wt.%)
1 RhCo/dh-BN-Fresh 0.18 0.18
2 RhCo/dh-BN-Used 0.18 0.18




7. Quantitative GC spectra of the products
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8. Quantitative NMR spectra of the products
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