1	Supporting Information
2	
3	A highly active and regioselective cannabigerolic acid synthase
4	engineered from a promiscuous prenyltransferase NphB
5	
6	Ye Seop Park ^{1†*} , Minju Kim ^{1†} , Chae Yeong Na ¹ , Hyeon Woo Ham ² , Jun-Young Cho ³ ,
7	Boyoung Park ^{3,4} , Cheulhee Jung ⁵ , Daechan Park ^{1,6} , and Tae Hyeon Yoo ^{1,6*}
8	
9	¹ Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
10	² Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon 16499,
11	Korea
12	³ Department of Fundamental Pharmaceutical Science, College of Pharmacy, Kyung Hee
13	University, Seoul 02447, Korea
14	⁴ Department of Biomedical and Pharmaceutical Science, College of Pharmacy, Kyung Hee
15	University, Seoul 02447, Korea
16	⁵ Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University,
17	Seoul 02841, Korea
18	⁶ Advanced College of Bio-convergence Engineering, Ajou University, Suwon 16499, Korea
19	
20	[†] Ye Seop Park and Minju Kim contributed equally to this work.
21	
22	*Correspondence
23	Ye Seop Park
24	E-mail: wizard309@ajou.ac.kr
25	Tae Hyeon Yoo
26	E-mail: taehyeonyoo@ajou.ac.kr

27 Table of Contents

- 28
- 29 Steady-state concentration of CBGA
- 30 Synthesis of cannabigerol (CBG) and CBGA
- 31
- 32 Scheme S1. Synthetic pathway for production of cannabinoids
- 33 Figure S1. Synthesis of CBGA using the wild-type NphB enzyme
- 34 Figure S2. NMR spectra
- 35 Figure S3. Fitting of kinetics data for NphB variants toward OA and GPP
- 36 Figure S4. Time-course of CBGA concentrations for the reactions catalyzed by NphB
- 37 variants
- **Figure S5.** Root mean square deviation (RMSD) of backbone atoms during MD simulation
- 39 for quadruple variant modeled structure without substrates
- 40 Figure S6. RMSD of backbone atoms during MD simulation for quadruple variant
- 41 complexed with OA and GSPP
- 42
- 43 **Table S1.** Synthetic NphB genes used in this study
- 44 **Table S2.** Plasmids constructed in this study
- 45 **Table S3.** NMR peak assignments
- 46 **Table S4.** Kinetic parameters of NphB variants obtained using a three-dimensional
- 47 Michaelis-Menten equation
- 48
- 49 **References**
- 50

51 Steady-state concentration of CBGA

52 The dependence of the steady-state concentration of CBGA on the rate constant k1 of forming

53 CGBA from OA and GPP was analyzed as below:

54

55

$$[OA] + [GPP] \xrightarrow{k_1} [CBGA] \xrightarrow{k_3} (degradation)$$

 $_{56}$ where k_2 is the rate of the CBGA decomposition reaction, k_3 is the rate of the CBGA

57 degradation, [OA]₀ and [GPP]₀ are initial concentration of the substrates

59 Rate of CBGA synthesis = $k_1[OA][GPP]$

60 Rate of CBGA decomposition =
$$k_2$$
[CBGA] + k_3 [CBGA]

61

- 62 At the steady-state,
- 63 $k_1[OA][GPP] = k_2[CBGA] + k_3[CBGA]$

64

- 65 Replacing [OA] and [GPP] with ([OA]₀ [CBGA] and [GPP]₀ [CBGA]), respectively
- 66 $k_1([OA]_0 [CBGA])([GPP]_0 [CBGA]) = k_2[CBGA] + k_3[CBGA]$

67
$$k_1([OA]_0[GPP]_0 - ([OA]_0 + [GPP]_0)[CBGA] + [CBGA]^2) = k_2[CBGA] + k_3[CBGA]$$

68

69 Dividing both sides with k_1 ,

70
$$[OA]_0[GPP]_0 - ([OA]_0 + [GPP]_0)[CBGA] + [CBGA]^2 = (k_2 + k_3) / k_1[CBGA]$$

71

72 Dividing both sides with [CBGA],

73
$$[OA]_0[GPP]_0/[CBGA] - ([OA]_0 + [GPP]_0) + [CBGA] = (k_2 + k_3) / k_1$$

74

75 Defining the equilibrium constant K as k_2/k_1 ,

76
$$[OA]_0[GPP]_0/[CBGA] + [CBGA] = K + k_3 / k_1 + [OA]_0 + [GPP]_0$$

77

78 Differentiating with respect to k_1 ,

$$\frac{d}{dk_{1}} \left(\frac{[OA]_{0}[GPP]_{0}}{[CBGA]} + [CBGA] \right) = \frac{d}{dk_{1}} (K + \frac{k_{3}}{k_{1}} + [OA]_{0} + [GPP]_{0})$$

$$- \frac{[OA]_{0}[GPP]_{0}d[CBGA]}{[CBGA]^{2} \quad dk_{1}} + \frac{d[CBGA]}{dk_{1}} = -\frac{k_{3}}{k_{1}^{2}}$$

$$\frac{d[CBGA]}{dk_{1}} \left(1 - \frac{[OA]_{0}[GPP]_{0}}{[CBGA]^{2}} \right) = -\frac{k_{3}}{k_{1}^{2}}$$

$$\frac{d[CBGA]}{dk_{1}} = \frac{\frac{k_{3}}{k_{1}^{2}}}{\frac{[OA]_{0}[GPP]_{0}}{[CBGA]^{2}} - 1}$$
82
$$\frac{d[CBGA]}{dk_{1}} = \frac{k_{3}[CBGA]^{2}}{([OA]_{0}[GPP]_{0} - [CBGA]^{2})k_{1}^{2}}$$
84
Since $[OA]_{0}[GPP]_{0} - [CBGA]^{2}$ is positive,
$$\frac{d[CBGA]}{dk_{4}}$$

 85 $^{\alpha\kappa_1}$ > 0 which indicates that the steady-state concentration of CBGA increases as k1 86 increases.

88 Synthesis of cannabigerol (CBG) and CBGA

90

106

A round-bottomed 2-neck flask equipped with a magnetic stirrer bar was charged with geraniol 91 (0.867 mL, 5 mmol, 1.0 equiv.), olivetol (1.351 g, 7.5 mmol, 1.5 equiv.), acidic alumina (10 g, 92 2 g/mmol) and dichloroethane (50 mL, 0.1 M). The flask was fitted with a reflux condenser and 93 heated to reflux temperature. The reaction was monitored by thin-layer chromatography (TLC) 94 until the limiting reagent was completely consumed. After the reaction was complete, the 95 mixture was cooled to room temperature and filtered through a Celite filter. The filter cake was 96 97 rinsed with ethyl acetate, and the combined filtrate was concentrated under reduced pressure. The concentrated residue was purified by flash column chromatography (n-hexane: ethyl 98 acetate = 20:1) to afford a white to yellow solid (1.156 g, 64 % yield); ¹H Nuclear Magnetic 99 Resonance (NMR) (500 MHz, Chloroform-d) δ 6.25 (2H, s), 5.27 (1H, t, J = 7.1 Hz), 5.05 (1H, 100 t, J = 6.8 Hz), 3.40 (2H, d, J = 7.0 Hz), 2.44 (2H, t, J = 7.9 Hz), 2.10 (2H, m), 2.06 (2H, m), 101 102 1.81 (3H, s), 1.68 (3H, s), 1.59 (3H, s), 1.56 (2H, m), 1.35 – 1.27 (4H, m), 0.89 (3H, t, J = 6.8 Hz). ¹³C NMR (126 MHz, Chloroform-d) δ 154.9, 142.9, 139.1, 132.2, 123.9, 121.9, 110.7, 103 108.5, 39.8, 35.6, 31.6, 3.09, 26.5, 25.8, 22.7, 22.4, 17.8, 16.3, 14.1. 104 105

A round-bottomed 2-neck flask equipped with a magnetic stirrer bar was charged with CBG 107 (542.2 mg, 1.5 mmol, 1.0 equiv.) and a 2.0 M solution of methyl magnesium carbonate (MMC, 108 2.25 mL, 3.0 equiv.) in dimethylformamide. The reaction mixture was heated to 130 °C in an 109 oil bath and stirred for 4 hr. The reaction was monitored by thin-layer chromatography (TLC) 110 until the limiting reagent was completely consumed. After the reaction was complete, the 111 reaction mixture was cooled to room temperature. It was then diluted with a mixture of 112 dichloromethane and methanol (1:1) and carefully quenched with a 10 % hydrochloric acid 113 solution to pH 2. Once the solid was fully dissolved, the reaction mixture was extracted with 114 excess diethyl ether, and the organic layer was evaporated under reduced pressure. The 115 residue was purified using flash column chromatography (n-hexane: ethyl acetate = 5:1, with 116 a small amount of formic acid) to afford a yellow solid (178.4 mg, 33 % yield); ¹H NMR (500 117 MHz, Chloroform-d) δ : 11.88 (s, 1H), 6.29 (s, 1H), 5.29 (t, 1H, J = 7.0 Hz), 5.07 (t, 1H, J = 6.5 118

119 Hz), 3.45 (d, 2H, *J* = 7.0 Hz), 2.88 (t, 2H, *J* = 7.5 Hz), 2.09 (m, 4H), 1.83 (s, 3H), 1.69 (s, 3H), 120 1.58 (m, 5H), 1.33 (m, 4H), 0.89 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ : 176.2, 163.7, 160.6, 147.6, 139.3, 132.1, 123.8, 121.4, 111.6, 111.4, 103.2, 39.8, 36.6, 32.1, 31.5, 26.5, 122 25.8, 22.6, 22.1, 17.8, 16.3, 14.1. Melting point 81.9–82.5 °C. LRMS (ESI-TOF) m/z [M+H]⁺ 123 calculated for C₂₂H₃₂O₄ 361.49; found: 361.43.

124

125 CBG was characterized by ¹H- and ¹³C NMR. CBGA was characterized by ¹H-, ¹³C, HSQC,

- 126 and HMBC NMR. NMR spectra were recorded on a 500 MHz NMR instrument (JEOL, JNM-
- 127 ECZ500R). Chemical shifts for ¹H NMR are reported in δ units (parts per million, ppm) relative
- 128 to the residual signal of Chloroform-d (7.26 ppm). ¹³C NMR spectra are reported in ppm
- 129 relative to Chloroform-d (77.16 ppm), with all measurements obtained with ¹H decoupling. ¹H-
- 130 and ¹³C NMR Data of the CBGA compound were matched to previously reported paper¹.

Scheme S1. Biological pathways for the production of cannabinoids.

Figure S1. Synthesis of CBGA using the wild-type NphB enzyme. 5 μM enzyme and 2 mM substrates (OA and GPP) were incubated at 30 °C for 18 h. The peak for CBGA (~9.6 min) was assigned using the chemically synthesized one (Figure S2). The wild-type enzyme produces CBGA and 2-O-GOA, and the other peak (~10.2 min) was assigned to 2-O-GOA.

143 Figure S2. NMR spectra

144 (A) ¹H NMR of CBG (500 MHz, Chloroform-*d*)

167 Figure S3. Fitting of kinetics data for NphB variants toward OA and GPP

Figure S4. Time-course of CBGA concentrations for the reactions catalyzed by NphB

variants. 5 μ M of each enzyme was incubated with 2 mM OA and GPP at 30°C.

- 175 Figure S5. Root mean square deviation (RMSD) of backbone atoms during MD simulation of
- 176 the quadruple variant without substrates.

Figure S6. RMSD of backbone atoms during MD simulation for the quadruple variantcomplexed with OA and GSPP.

Table S1. Synthetic NphB genes used in this study.

Gene	Sequence (5'→3')
Wild-type NphB	CATATGAGTGAAGCGGCGGATGTGGAACGTGTGTATGCGGCAATGGAAG AAGCGGCTGGTCTGCTGGGTGTGGCGTGTGCTCGTGATAAAATCTATCC
	GCTGCTGAGCACCTTTCAGGATACGCTGGTTGAAGGCGGTTCTGTGGTT
	GTCTTCAGCATGGCCTCTGGCCGCCATAGTACCGAACTGGATTTTAGTAT
	I I CCG I I CCGACG I CCCACGG I GACCCG I ACGCGACCG I GG I I GAAAAA
	GGCCIGIIICCGGCCACGGGICAICCGGIGGAIGACCIGCIGGCAGAIA
	GCCTGCATGTCCCGAATGAACTGGGTCTGAAATTTTGCAAACGCTCATTC
	GTTTCGCAGTGATCTCCAATGACCCCGACGCTGGTTCCGAGCTCTGATGAA
	GGTGACATCGAAAAATTTCACAACTATGCAACCAAGCTCCGTATGCGTA
	CGTTGGCGAAAAACGTACGCTGGTCTACGGTCTGACCCTGAGCCCGAAA
	GAAGAATATTACAAACTGGGTGCGTATTACCACATTACGGACGTGCAACG
	CGGTCTGCTGAAAGCATTTGACTCTCTGGAAGATTGACTCGAG
NphB M1	AGTGAAGCGGCGGATGTGGAACGTGTGTATGCGGCAATGGAAGAAG
•	CGGCTGGTCTGCTGGGTGTGGCGTGTGCTCGTGATAAAATCTATCCG
	CTGCTGAGCACCTTTCAGGATACGCTGGTTGAAGGCGGTTCTGTGGT
	TTGGTTCAGCATGGCCTCTGGCCGCCATAGTACCGAACTGGATTTTA
	GTATTTCCGTTCCGACGTCCCACGGTGACCCGTACGCGACCGTGGTT
	GAAAAAGGCCTGTTTCCGGCCACGGGTCATCCGGTGGATGACCTGCT
	GGCAGATACCCAAAAACACCTGCCGGTCAGCATGTTTGCTATTGACG
	GCGAAGTGACCGGCGGTTTCAAGAAAACCTATGCGTTTTTCCCGACC
	GATAACATGCCGGGTGTGGCCGAACTGTCAGCAATCCCGTCGATGCC
	GCCGGCAGTTGCAGAAAATGCTGAACTGTTCGCGCGTTACGGCCTG
	GATAAAGTTCAGTTTACCTCAATGGACTATAAAAAACGCCAAGTCAAC
	CTGTACTTTAGTGAACTGTCCGCCCAGACCCTGGAAGCAGAATCGGT
	CCTGGCTCTGGTGCGTGAACTGGGCCTGCATGTCCCGAATGAACTG
	GGTCTGAAATTTTGCAAACGCTCATTCTCGGTGTATCCGACCCTGAAC
	TGGGAAACGGGCAAAATTGATCGTCTGTGTTTCGCAGTGATCTCCAAT
	GACCCGACGCTGGTTCCGAGCTCTGATGAAGGTGACATCGAAAAATT
	TCACAACTATGCAACCAAAGCTCCGTATGCGTACGTTGGCGAAAAAC
	GTACGCTGGTCTACGGTCTGACCCTGAGCCCGAAAGAAGAAGAATATTAC
	AAACTGGCGGCGGCGTACCACATTACGGACGTGCTGCGCGGTCTGC
	TGAAAGCATTTGACTCTCTGGAAGATTGA
NphB M2	AGTGAAGCGGCGGATGTGGAACGTGTGTATGCGGCAATGGAAGAAG
	CGGCTGGTCTGCTGGGTGTGGCGTGTGCTCGTGATAAAATCTATCCG
	CTGCTGAGCACCTTTCAGGATACGCTGGTTGAAGGCGGTTCTGTGGT
	TGTCTTCAGCATGGCCTCTGGCCGCCATAGTACCGAACTGGATTTTA
	GTATTTCCGTTCCGACGTCCCACGGTGACCCGTACGCGACCGTGGTT
	GAAAAAGGCCTGTTTCCGGCCACGGGTCATCCGGTGGATGACCTGCT
	GGCAGATACCCAAAAACACCTGCCGGTCAGCATGTTTGCTATTGACG
	GCGAAGTGACCGGCGGTTTCAAGAAAACCTATGCGTTTTTCCCGACC
	GATAACATGCCGGGTGTGGCCGAACTGTCAGCAATCCCGTCGATGCC
	GCCGGCAGTTGCAGAAAATGCTGAACTGTTCGCGCGTTACGGCCTG
	GATAAAGTTCAGTTTACCTCAATGGACTATAAAAAACGCCAAGTCAAC
	CTGTACTTTAGTGAACTGTCCGCCCAGACCCTGGAAGCAGAATCGGT
	CCTGGCTCTGGTGCGTGAACTGGGCCTGCATGTCCCGAATGAACTG
	GGTCTGAAATTTTGCAAACGCTCATACGCGGTGTATCCGACCCTGAA

	CTGGGAAACGGGCAAAATTGATCGTCTGTGTTTCGCAGTGATCTCCA
	ATGACCCGACGCTGGTTCCGAGCTCTGATGAAGGTGACATCGAAAAA
	TTTCACAACTATGCAACCAAAGCTCCGTATGCGTACGTTGGCGAAAAA
	CGTACGCTGGTCTACGGTCTGACCCTGAGCCCGAAAGAAGAAGAATATTA
	CAAACTGGAAGCGTATTACCACATTACGGACGTGCAACGCGGTCTGC
	TGAAAGCATTTGACTCTCTGGAAGATTGA
NphB M3	
	GGLAGATAUUUAAAAAUAUUTGUUGGTUAGUATGTTTGUTATTGAUG
	GUGAAGTGAUUGGUGGTTTUAAGAAAAUUTATGUGTTTTUUUGAUU
	GATAACATGCCGGGTGTGGGCCGAACTGTCAGCAATCCCGTCGATGCC
	GCCGGCAGTIGCAGAAAATGCTGAACTGTTCGCGCGTTACGGCCTG
	GATAAAGTTCAGTTTACCTCAATGGACTATAAAAAACGCCAAGTCAAC
	CTGTACTTTAGTGAACTGTCCGCCCAGACCCTGGAAGCAGAATCGGT
	CCTGGCTCTGGTGCGTGAACTGGGCCTGCATGTCCCGAATGAACTG
	GGTCTGAAATTTTGCAAACGCTCAATGCGTGTGTATCCGACCCTGAAC
	TGGGAAACGGGCAAAATTGATCGTCTGTGTTTCACCGTGATCTCCAAT
	GACCCGACGCTGGTTCCGAGCTCTGATGAAGGTGACATCGAAAAATT
	TCACAACTATGCAACCAAAGCTCCGTATGCGTACGTTGGCGAAAAAC
	GTACGCTGGTCTACGGTCTGACCCTGAGCCCGAAAGAAGAATATTAC
	AAACTGGCGGCGTATTACCACATTACGGACGTGCAACGCGGTCTGCT
	GAAAGCATTTGACTCTCTGGAAGATTGA
NphB M4	AGTGAAGCGGCGGATGTGGAACGTGTGTATGCGGCAATGGAAGAAG
	CGGCTGGTCTGCTGGGTGTGGCGTGTGCTCGTGATAAAATCTATCCG
	CTGCTGAGCACCTTTCAGGATACGCTGGTTGAAGGCGGTTCTGTGGT
	TATTTTCAGCATGGCCTCTGGCCGCCATAGTACCGAACTGGATTTTAG
	TATTTCCGTTCCGACGTCCCACGGTGACCCGTACGCGACCGTGGTTG
	GCAGATACCCAAAAACACCTGCCGGTCAGCATGTTTGCTATTGACGG
	CGAAGTGACCGCCCGTTTCAAGAAAACCTATGCGTTTTTCCCCGACCG
	CIGAAATTIIGCAAACGUICATACGUGGIGIATCUGACUUIGAAUIG
	GGAAACGGGCAAAATTGATCGTCTGTGTTTCGCAGTGATCTCCAATG
	ACCCGACGCIGGIICCGAGCICIGAIGAAGGIGACAICGAAAAAIII
	CACAACTATGCAACCAAAGCTCCGTATGCGTACGTTGGCGAAAAACG
	TACGCTGGTCTACGGTCTGACCCTGAGCCCGAAAGAAGAATATTACA
	AACTGGCGGCGTATTACCACATTACGGACGTGCAACGCGGTCTGCTG
	AAAGCATTTGACTCTCTGGAAGATTGA
NphB M5	AGTGAAGCGGCGGATGTGGAACGTGTGTATGCGGCAATGGAAGAAG
	CGGCTGGTCTGCTGGGTGTGGCGTGTGCTCGTGATAAAATCTATCCG
	CTGCTGAGCACCTTTCAGGATACGCTGGTTGAAGGCGGTTCTGTGGT
	TATTTTCAGCATGGCCTCTGGCCGCCATAGTACCGAACTGGATTTTAG
	TATTTCCGTTCCGACGTCCCACGGTGACCCGTACGCGACCGTGGTTG
	AAAAAGGCCTGTTTCCGGCCACGGGTCATCCGGTGGATGACCTGCTG
	GCAGATACCCAAAAACACCTGCCGGTCAGCATGTTTGCTATTGACGG
	CGAAGTGACCGGCGGTTTCAAGAAAACCTATGCGTTTTTCCCGACCG
	ATAACATGCCGGGTGTGGCCGAACTGTCAGCAATCCCGTCGATGCCG
	CCGGCAGTTGCAGAAAATGCTGAACTGTTCGCGCGTTACGGCCTGGA

	TAAAGTTCAGTTTACCTCAATGGACTATAAAAAACGCCAAGTCAACCT GTACTTTAGTGAACTGTCCGCCCAGACCCTGGAAGCAGAATCGGTCC TGGCTCTGGTGCGTGAACTGGGCCTGCATGTCCCGAATGAACTGGGT CTGAAATTTTGCAAACGCTCATTCGCGGTGTATCCGACCCTGAACTG GGAAACGGGCAAAATTGATCGTCTGTGTTTCGCAGTGATCTCCAATG ACCCGACGCTGGTTCCGAGCTCTGATGAAGGTGACATCGAAAAATTT CACAACTATGCAACCAAAGCTCCGTATGCGTACGTTGGCGAAAAACG TACGCTGGTCTACGGTCTGACCCTGAGCCCGAAAGAAGAATATTACA AACTGTGCGCGTATTACCACATTACGGACGTGCAACGCGGTCTGCTG AAAGCATTTGACTCTCTGGAAGATTGA
NphB M6	AGTGAAGCGGCGGATGTGGAACGTGGGTGTGTGTGGGCAATGGAAGAAG CGGCTGGTCTGCTGGGGTGTGGCGTGTGGCTCGTGATAAAATCTATCCG CTGCTGAGCACCTTTCAGGATACGCTGGTTGAAGGCGGGTTCTGTGGT TGTCTTCAGCATGGCCTCTGGCCGCCATAGTACCGAACTGGATTTTA GTATTTCCGTTCCG
NphB M7	AGTGAAGCGCGGATGTGGAACGTGTGTGTGTGTGGGGCAATGGAAGAAG CGGCTGGTCTGCTGGGTGTGGCGTGTGTGTGCGGGAATGGAAGAAG CGGCTGGTCTGCTGGGTGTGGCGTGGC
NphB M8	AGTGAAGCGGCGGATGTGGAACGTGTGTATGCGGCAATGGAAGAAG CGGCTGGTCTGCTGGGTGTGGCGTGTGCTCGTGATAAAATCTATCCG CTGCTGAGCACCTTTCAGGATACGCTGGTTGAAGGCGGTTCTGTGGT TATTTTCAGCATGGCCTCTGGCCGCCATAGTACCGAACTGGATTTTAG TATTTCCGTTCCG

	GCAGATACCCAAAAACACCTGCCGGTCAGCATGTTTGCTATTGACGG CGAAGTGACCGGCGGTTTCAAGAAAACCTATGCGTTTTTCCCGACCG ATAACATGCCGGGTGTGGCCGAACTGTCAGCAATCCCGTCGATGCCG CCGGCAGTTGCAGAAAATGCTGAACTGTTCGCGCGTTACGGCCTGGA TAAAGTTCAGTTTACCTCAATGGACTATAAAAAACGCCAAGTCAACCT GTACTTTAGTGAACTGTCCGCCCAGACCCTGGAAGCAGAATCGGTCC TGGCTCTGGTGCGTGAACTGGGCCTGCATGTCCCGAATGAACTGGGT CTGAATTTTGCAAACGCTCATTCCGTGTGTATCCGACCCTGAACTGG GAAACGGGCAAAATTGATCGTCTGTGTTTCGCAGTGATCTCCAATGAC CCGACGCTGGTTCCGAGCTCTGATGAAGGTGACATCGAAAATTTCA CAACTATGCAACCAAAGCTCCGTATGCGTACGTTGGCGAAAAACGTA CGCTGGTCTACGGTCTGACCTGAGCCCGAAAGAAGAATATTACAAA
	CTGCAGGCGTTTTACCACATTACGGACGTGCAACGCGGTCTGCTGAA AGCATTTGACTCTCTGGAAGATTGA
NphB M9	AGTGAAGCGGCGGATGTGGGAACGTGTGTGTATGCGGCAATGGAAGAAG CGGCTGGTCTGCTGGGTGTGGCGTGTGCTCGTGATAAAATCTATCCG CTGCTGAGCACCTTTCAGGATACGCTGGTTGAAGGCGGTTCTGTGGT TATGTTCAGCATGGCCTCTGGCCGCCATAGTACCGAACTGGATTTTA GTATTTCCGTTCCG
NphB M10	AGTGAAGCGGCGGATGTGGAACGTGTGTATGCGGCAATGGAAGAAG CGGCTGGTCTGCTGGGGTGTGGCGTGTGGTCGTGATAAAATCTATCCG CTGCTGAGCACCTTTCAGGATACGCTGGTTGAAGGCGGTTCTGTGGT TATTTCAGCATGGCCTCTGGCCGCCATAGTACCGAACTGGATTTAG TATTTCCGTTCCG

Plasmids	Information
pSPEL1066	Wild-type NphB
pSPEL1067	NphB-V49W/Y288P
pSPEL1132	NphB-M1
pSPEL1133	NphB-M2
pSPEL1134	NphB-M3
pSPEL1135	NphB-M4
pSPEL1136	NphB-M5
pSPEL1137	NphB-M6
pSPEL1138	NphB-M7
pSPEL1139	NphB-M8
pSPEL1140	NphB-M9
pSPEL1141	NphB-M10
pSPEL1214	NphB-F213M
pSPEL1215	NphB-S214R
pSPEL1216	NphB-A232T
pSPEL1252	NphB-S214G
pSPEL1253	NphB-S214C
pSPEL1254	NphB-S214F
pSPEL1255	NphB-S214K
pSPEL1256	NphB-S214H
pSPEL1257	NphB-S214T
pSPEL1258	NphB-S214N
pSPEL1265	NphB-S214V
pSPEL1266	NphB-S214A
pSPEL1269	NphB-S214D
pSPEL1296	NphB-S214R/V288V
pSPEL1297	NphB-S214R/V288G
pSPEL1299	NphB-S214R/V288A
pSPEL1300	NphB-S214R/V288P
pSPEL1306	NphB-S214H/V288V
pSPEL1307	NphB-S214H/V288G
pSPEL1309	NphB-S214H/V288A
pSPEL1310	NphB-S214H/V288P
pSPEL1318	NphB-G286S/Y288A
pSPEL1337	NphB-V49W/S214H/V288P
pSPEL1352	NphB-S214H/V288P/A232S
pSPEL1353	NphB-S214H/V288P/A232T
pSPEL1355	NphB-S214H/V288P/A232N
pSPEL1358	NphB-V49W/S214H/A232S/V288P

Table S3. NMR peak assignments

(A) Structure of CBGA with atom numbering and ¹H/¹³C NMR assignments

7	0	5'	3' 9	1'	0 3 ²	н		.H	
8	6'	4	'	2'	Ĭ	\int_{0}^{1}	2"	4"	
				HO	4 5		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3"	` 5"

No.	¹³ C (ppm)	¹ H (ppm)			
1	103.2	-			
2	163.7	-			
3	111.4	-			
4	160.6	-			
5	111.6	6.29 (s, 1H)			
6	147.6	-			
7	132.1	-			
8	17.8	1.58 (m, 2H)			
9	16.3	1.83 (s, 3H)			
10 25.8		1.69 (s, 3H)			
1'	22.1	3.45 (d, 2H, <i>J</i> = 7.0 Hz)			
2'	121.4	5.29 (t, 1H, <i>J</i> = 7.0 Hz)			
3'	139.3	-			
4'	39.8	2.09 (m, 2H)			
5'	26.5	2.09 (m, 2H)			
6'	123.8	5.07 (t, 1H, <i>J</i> = 6.5 Hz)			
1"	36.6	2.88 (t, 2H, <i>J</i> = 7.5 Hz)			
2"	31.5	1.58 (m, 3H)			
3" 32.1		1.33 (m, 4H)			
4"	22.6	1.33 (m, 4H)			
5"	14.1	0.89 (s, 3H)			
COOH	176.2	11.88 (s, 1H)			

212	Atom	δ (ppm)	HSQC	HMBC
213	C1	103.2	-	1", 5, COOH
	C2	163.7	-	1'. COOH
214	C3	111.4	-	5. 1". COOH
215	C4	160.6	-	5, 1', COOH
216	C5	111.6	5	1", COOH
210	H5	6.29 (s, 1H)	5	1, 3, 4, 1", COOH
217	C6	147.6	-	1"
218	C7	132.1	-	8, 10
210	C8	17.8	8	10
219	H8	1.58 (m, 2H)	8	7, 10, 6'
220	C9	16.3	9	2', 4'
221	H9	1.83 (s, 3H)	9	2', 3', 4'
221	C10	25.8	10	8
222	H10	1.69 (s, 3H)	10	7, 8, 6'
223	<u>C1'</u>	22.1	1'	-
224	<u>H1'</u>	3.45 (d, 2H, <i>J</i> = 7.0 Hz)	1'	2, 3, 4, 2', 3',
224	<u>C2'</u>		2'	9, 1', 4'
225	H2 ²	5.29 (t, 1H, $J = 7.0$ Hz)	2'	9, 4',
226	<u>C3</u>	139.3	-	9, 1', 4'
220		39.8	4	9, 2, 5
227		2.09 (m, 2H)	4	9, 2, 3, 5
228		20.5	5 5'	4
220		2.09 (III, 2⊓)	5	4
229	<u> </u>	5.07 (t 1H 1 - 6.5 Hz)	6'	0, 10
230	C1"	36.6	1"	-
231	H1"	2.88 (t. 2H. l = 7.5 Hz)	1"	1562"
201	C2"	31.5	2"	1" 3"
232	H2"	1.58 (m. 3H)	2"	-
233	C3"	32.1	3"	4"
224	H3"	1.33 (m. 4H)	3"	2".4"
254	C4"	22.6	4"	3", 5"
235	H4"	1.33 (m, 4H)	4"	3"
236	C5"	14.1	5"	-
227	H5"	0.89 (s, 3H)	5"	3", 4"
257	COOH	176.2	-	5
238	COOH	11.88 (s, 1H)	-	1, 2, 3, 4, 5,

210 (B) Chemical shifts of 1D NMR signals and 2D NMR correlations of CBGA 211

242 Table S4. Kinetic parameters of NphB variants obtained using a three-dimensional Michaelis-

243 Menten equation

244

	k _{cat} (min ⁻¹)	K _m (OA) (mM)	K_m (GPP) (mM)
WT	0.0028 ± 0.00028	0.604 ± 0.1679	0.0208 ± 0.00651
G286S/Y288A	4.39 ± 0.935	2.26 ± 0.804	0.0386 ± 0.00762
V49W/Y288P	1.60 ± 0.112	0.204 ± 0.0425	0.130 ± 0.0294
V49W/S214H/Y288P	0.494 ± 0.0460	0.0336 ± 0.01545	0.0225 ± 0.01085
V49W/S214H/A232S/Y288P	3.04 ± 0.137	0.0129 ± 0.00317	0.0646 ± 0.01490

245

246 The three-dimensional Michaelis-Menten equation is shown below:

$$v = \frac{kcat \times [Enzyme]}{\left(1 + \frac{Km(OA)}{[OA]}\right) \times \left(1 + \frac{Km(GPP)}{[GPP]}\right)}$$
247
248

References

1. L. Marchetti, V. Brighenti, M. C. Rossi, J. Sperlea, F. Pellati and D. Bertelli, *Molecules*, 2019, 24.