Design and catalytic performance investigation of Ni-N-C catalyst for CO₂RR: A theoretical study

Yiming Sun^a, Xiaoyu Wang^a, Zhuofan Wu^a, Anmin Liu^a, Xuefeng Ren^{a,*}

School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology,

Panjin 124221, China.

E-mail: renxuefeng@dlut.edu.cn

Figure S1 Isomers of the Ni-pyridine N₂V₁-C-CO₂ intermediate (a) Ni-pyridine N₂V₁-C-CO₂ single-site adsorption; (b) Ni-pyridine N₂V₁-C-CO₂ Ni-C N-O double-site adsorption; (c) Ni-pyridine N₂V₁-C-CO₂ Ni-O N-C double-site adsorption

Figure S2 Isomers of the Ni-pyridine N₁V₃-C-CO₂ intermediate
(a) Ni-pyridineN₁V₃-C-CO₂ single-site adsorption A; (b) Ni-pyridineN₁V₃-C-CO₂ single-site adsorption B; (c) Ni-pyridine N₁V₃-C-CO₂ Ni-C N-O double-site adsorption A; (d) Ni-pyridine N₁V₃-C-CO₂ Ni-C N-O double-site adsorption B;
(e) Ni-pyridine N₁V₃-C-CO₂ Ni-O N-C double-site adsorption A; (f) Ni-pyridine N₁V₃-C-CO₂ Ni-O N-C double-site adsorption B

(a) Ni-pyrrole N₁V₃-C-CO₂ single-site adsorption;
 (b) Ni-pyrrole N₁V₃-C-CO₂ Ni-C N-O double-site adsorption;
 (c) Ni-pyrrole N₁V₃-C-CO₂ Ni-O N-C double-site adsorption

				19505			
	Atom	Mulliken	Hirshfeld	Atom	Mulliken	Hirshfeld	
	C (1)	0.012	0.014	C (1)	0.012	0.014	
	C (2)	0.013	0.013	C (2)	0.013	0.013	
	C (3)	0.015	0.013	C (3)	0.015	0.013	
	C (4)	0.013	0.013	C (4)	0.013	0.013	
	C (5)	0.013	0.013	C (5)	0.013	0.013	
	C (6)	0.013	0.013	C (6)	0.013	0.013	
	C (7)	0.015	0.015	C (7)	0.015	0.015	
	C (8)	0.014	0.013	C (8)	0.014	0.013	
	C (9)	0.01	0.011	C (9)	0.011	0.011	
	C (10)	0.013	0.013	C (10)	0.013	0.013	
	C (11)	0.013	0.012	C(11)	0.014	0.012	
	C (12)	0.014	0.013	C (12)	0.014	0.013	
	C (13)	0.013	0.012	C (13)	0.013	0.012	
	C (14)	0.013	0.013	C (14)	0.013	0.013	
Ni-pyridine N ₂ C ₁ -C Catalyst Ni-C N-O	C (15)	0.015	0.015	C (15)	0.016	0.015	
	C (16)	0.013	0.013	C (16)	0.013	0.013	
	C (17)	0.012	0.013	C (17)	0.012	0.013	
	C (18)	0.013	0.013	C (18)	0.013	0.013	
	C (19)	0.015	0.013	C (19)	0.015	0.013	
	C (20)	0.014	0.015	C (20)	0.014	0.015	
	C (21)	0.015	0.016	C (21)	0.016	0.016	
	C (22)	0.016	0.014	C (22)	0.015	0.014	
	C (23)	0.013	0.013	C (23)	0.013	0.013	
	C (24)	0.014	0.012	C (24)	0.014	0.012	
	C (25)	0.014	0.013	C (25)	0.014	0.013	
	C (26)	0.021	0.016	C (26)	0.02	0.016	
	C (27)	0.014	0.014	C (27)	0.014	0.014	
	N (28)	0.004	0.015	N (28)	0.005	0.015	
	C (29)	0.013	0.013	C (29)	0.013	0.013	
	C (30)	0.019	0.017	C (30)	0.018	0.017	
	C (31)	0.015	0.015	C (31)	0.015	0.015	
	C (32)	0.024	0.025	C (32)	0.025	0.025	
	C (33)	0.014	0.013	C (33)	0.014	0.013	
	C (34)	0.016	0.016	C (34)	0.016	0.016	
	C (35)	0.015	0.015	C (35)	0.015	0.015	
	C (36)	0.016	0.013	C (36)	0.016	0.013	
	C (37)	0.015	0.015	C (37)	0.015	0.015	
	C (38)	0.015	0.014	C (38)	0.015	0.014	

Table S1 Fukui index for Ni-N-C catalysts

Continued Table S1 Fukui index for Ni-N-C catalysts

		f(+)			f(-)	
	Atom	Mulliken	Hirshfeld	Atom	Mulliken	Hirshfeld
	C (39)	0.013	0.013	C (39)	0.013	0.013
	C (40)	0.015	0.015	C (40)	0.015	0.015
	C(41)	0.014	0.014	C (41)	0.014	0.014
	C (42)	0.014	0.015	C (42)	0.014	0.015
	C (43)	0.016	0.015	C (43)	0.017	0.015
	C (44)	0.019	0.017	C (44)	0.019	0.017
	C (45)	0.019	0.014	C (45)	0.018	0.014
	C (39)	0.013	0.013	C (39)	0.013	0.013
	C (40)	0.015	0.015	C (40)	0.015	0.015
	C(41)	0.014	0.014	C (41)	0.014	0.014
	C (42)	0.014	0.015	C (42)	0.014	0.015
	C (43)	0.016	0.015	C (43)	0.017	0.015
	C (44)	0.019	0.017	C (44)	0.019	0.017
	C (45)	0.019	0.014	C (45)	0.018	0.014
	C (46)	0.015	0.013	C (46)	0.014	0.013
	C (47)	0.022	0.022	C (47)	0.023	0.022
Ni-pyridine N.C. C	C (48)	0.013	0.012	C (48)	0.013	0.011
N_1 -pyridine N_2C_1 -C	Ni(49)	0.026	0.042	Ni(49)	0.02	0.039
	C (50)	0.012	0.011	C (50)	0.011	0.011
	N (51)	0.012	0.019	N (51)	0.012	0.019
	C (52)	0.012	0.01	C (52)	0.012	0.01
	C (53)	0.014	0.014	C (53)	0.014	0.013
	C (54)	0.014	0.014	C (54)	0.014	0.014
	C (55)	0.016	0.02	C (55)	0.017	0.02
	C (56)	0.018	0.017	C (56)	0.019	0.017
	C (57)	0.014	0.013	C (57)	0.014	0.013
	C (58)	0.012	0.013	C (58)	0.012	0.013
	C (59)	0.017	0.015	C (59)	0.017	0.015
	C (60)	0.021	0.023	C (60)	0.023	0.023
	C (61)	0.023	0.022	C (61)	0.022	0.021
	O (62)	0.041	0.037	O (62)	0.041	0.039
	O (63)	0.047	0.043	O (63)	0.047	0.045
	C (50)	0.012	0.011	C (50)	0.011	0.011
	N (51)	0.012	0.019	N (51)	0.012	0.019

Figure S4 Fukui of Ni-pyridine N₂C₁-C Catalyst Ni-C N-O

Catalyst		E_{ads} / eV		
Ni annidira N.C. C	А	-0.0171		
N1-pyridine N_2C_1 -C	В	-0.0088		
Ni andia N.V. C	А	-0.0084		
Ni-pyridine $N_1 v_3$ -C	В	-0.0008		
Ni-pyrrole N ₂ V ₂ -C		-0.0096		
Ni-pyridine N ₂ C ₁	А	-0.0204		
Ni-C N-O	В	-0.0089		
Ni-pyridine N ₂ C ₁	А	-0.0198		
Ni-O N-C	В	-0.0085		
Ni-pyridine N ₁ V ₃ Ni-C N-O	А	-0.0093		

Table S2 Adsorption energies