## Supplementary Information: Site blocking effects on P-modified Pd/Al<sub>2</sub>O<sub>3</sub> catalysts for LOHC hydrogenation: an *in situ* DRIFTS study

Yaoci Sheng<sup>1</sup>, Adrian Seitz<sup>2</sup>, Thobani Gambu<sup>3</sup>, Kailun Zhang<sup>1</sup>, Patrick Schühle<sup>2</sup>, Tanja Retzer<sup>1\*</sup>

<sup>1</sup>Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany

<sup>2</sup>Institute of Chemical Reaction Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany

<sup>3</sup>Catalysis Institute, Department of Chemical Engineering, University of Cape Town, Rondebosch, 7700, Cape Town, South Africa

\*corresponding author: Tanja Retzer, <u>tanja.retzer@fau.de</u>



**Figure S1:** Relative increase of the  $CO_{br+h}$  peak area for P0-RT, P0-500, and P1.5-600 under increasing CO pressure from 50 mbar to 1000 mbar.



**Figure S2:** CO-DRIFTS spectra recorded under increasing CO pressure from 50 mbar to 1800 mbar with P1.5-500.



**Figure S3**: Adsorption geometries of CO and  $PO_xH_y$  (viz. PH, P, PO and POH) on Pd(111) and Pd(100) p(3x3) surfaces. Spheres represent: Oxygen (red), carbon (brown), phosphorous (pink), hydrogen (white) and palladium (grey)

**Table S1:** Adsorption energy of CO on different Pd(111) and Pd(100) high symmetry adsorption sites. Energies reported without zero-point energy calculations and relative to CO in the gas phase.

|         | Site      | E <sub>ads</sub> / kJ mol <sup>-1</sup> | Vibrational modes / cm <sup>-1</sup> |     |     |     |     |     |
|---------|-----------|-----------------------------------------|--------------------------------------|-----|-----|-----|-----|-----|
| Pd(111) | fcc       | -214.20                                 | 1771                                 | 339 | 338 | 323 | 154 | 153 |
|         | hcp       | -212.27                                 | 1771                                 | 342 | 342 | 326 | 155 | 154 |
|         | atop      | -161.13                                 | 2035                                 | 411 | 304 | 304 | 48  | 43  |
|         | bridge    | -199.72                                 | 1848                                 | 406 | 346 | 281 | 178 | 50i |
| Pd(100) | bridge    | -216.13                                 | 1861                                 | 410 | 350 | 335 | 173 | 38  |
|         | 4f-hollow | -211.30                                 | 1671                                 | 254 | 254 | 249 | 147 | 144 |
|         | atop      | -172.71                                 | 2021                                 | 416 | 286 | 286 | 13  | 25  |



**Figure S4:** Effect of adsorption on Bader charge of the top three surface layers relative to a clean slab for the (a) Pd(100) and (b) Pd(111) surface terminations. All negative shifts indicate an accumulation of electrons upon adsorption relative to a clean slab. Note that  $\rho_{\text{clean slab}}$  ( $\rho_{\text{slab+adsorbate}}$ ) is the total Bader charge associated with a given slab layer for a clean slab (slab with an adsorbate).

**Table S2**: Adsorption energy and C-O bond length for CO adsorption on  $Pd(111)-p(3\times3)$  precovered with CO, POH, and P.

| Cov. | Cov. CO       |                | РОН           |                | Р             |                |  |
|------|---------------|----------------|---------------|----------------|---------------|----------------|--|
| [ML] | Eads [kJ/mol] | <b>d</b> (C-O) | Eads [kJ/mol] | <i>d</i> (C-O) | Eads [kJ/mol] | <b>d</b> (C-O) |  |
| 0,00 | -214          | 1,193          | -214          | 1,193          | -214          | 1,193          |  |
| 0,11 | -207          | 1,191          | -218          | 1,195          | -210          | 1,193          |  |
| 0,22 | -208          | 1,189          | -226          | 1,197          | -210          | 1,193          |  |



**Figure S5:** Differential adsorption energy of CO on  $Pd(111)-p(3\times3)$  surfaces pre-covered with CO, POH, and P.



Figure S6: Hydrogen dosing DRIFTS results recorded under 1 bar pressure with P1.5-RT.



Figure S7: Hydrogen dosing DRIFTS results recorded under 1 bar pressure with P1.5-500.



**Figure S8:** Hydrogen dosing DRIFTS results recorded under 1 bar pressure with P0-500 and P0-600.

 Table S3: ICP-OES before and after DRIFTS measurements.

| mass loading of Pd / wt%                                            | mass loading of P / wt% |  |  |  |  |
|---------------------------------------------------------------------|-------------------------|--|--|--|--|
| ICP-OES on P1.5-500 prior to H <sub>2</sub> /CO treatment in DRIFTS |                         |  |  |  |  |
| 4,12                                                                | 1,72                    |  |  |  |  |
| ICP-OES on P1.5-500 after H2/CO treatment in DRIFTS                 |                         |  |  |  |  |
| 4,09                                                                | 1,69                    |  |  |  |  |