Supporting Information

A Computational Study of K Promotion of CO Dissociation on Hägg carbide

Xianxuan Ren,^a Rozemarijn D.E. Krösschell,^a Zhuowu Men,^b Peng Wang,^{a b} Ivo A. W. Filot ^a* and Emiel J. M. Hensen ^a*

^a Laboratory of Inorganic Materials and Catalysis, Department of Chemistry and Chemical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands

^b National Institute of Clean-and-Low-Carbon Energy, Future Science and Technology City, Changping District, Beijing 102211, People's Republic of China

Figure S1. The configurations of optimized bulk of Fe₅C₂.

Figure S2. Reaction energy diagrams of the formation of K₂O, KOH, and K₂CO₃ on the (a) (510), (b) (111), (c) (010) and (d) (010*) surfaces of χ -Fe₅C₂.

Figure S3. Phase diagrams illustrating the stability of K, KO, K₂O and K₂CO₃ as a function of CO and H₂ partial pressures and temperature on the (a) (510), (b) (111), (c) (010) and (d) (010*) surfaces of χ -Fe₅C₂.

Figure S4. The adsorption structures and energy values of K_2O promoter in the possible sites on the (510) surface of χ -Fe₅C₂.

Figure S5. The adsorption structures and energy values of K_2O promoter in the possible sites on the (111) surface of χ -Fe₅C₂.

Figure S6. The adsorption structures and energy values of K_2O promoter in the possible sites on the (010) surface of χ -Fe₅C₂.

Figure S7. The adsorption structures and energy values of K_2O promoter in the possible sites on the (010*) surface of χ -Fe₅C₂.

Figure S8. Configurations of IS, TS and FS for the direct or H-assisted dissociation of CO on the (510) surface of χ -Fe₅C₂.

Figure S9. Configurations of IS, TS and FS for the direct or H-assisted dissociation of CO on the K_2O -promoted (510) surface of χ -Fe₅C₂.

Figure S10. Configurations of IS, TS and FS for the direct or H-assisted dissociation of CO on the (111) surface of χ -Fe₅C₂.

Figure S11. Configurations of IS, TS and FS for the direct or H-assisted dissociation of CO on the K_2O -promoted (111) surface of χ -Fe₅C₂.

Figure S12. Configurations of IS, TS and FS for the direct or H-assisted dissociation of CO on the (010) surface of χ -Fe₅C₂.

Figure S13. Configurations of IS, TS and FS for the direct or H-assisted dissociation of CO on the K₂O-(010) surface of χ -Fe₅C₂.

Figure S14. Configurations of IS, TS and FS for the direct or H-assisted dissociation of CO on the (010*) surface of χ -Fe₅C₂.

Figure S15. Configurations of IS, TS and FS for the direct or H-assisted dissociation of CO on the K₂Opromoted (010*) surface of χ -Fe₅C₂.

Figure S16. Energy profiles for the direct or H-assisted dissociation of CO from co-adsorbed H and CO on the (a) (510) and (b) K₂O-promoted (510) surfaces of χ -Fe₅C₂. The value upon the TS corresponds to the activation barrier of each elementary step.

Figure S17. Energy profiles for the direct or H-assisted dissociation of CO from co-adsorbed H and CO on the (a) (111) and (b) K₂O-promoted (111) surfaces of χ -Fe₅C₂.

Figure S18. Energy profiles for the direct or H-assisted dissociation of CO from co-adsorbed H and CO on the (a) (010) and (b) K₂O-promoted (010) surfaces of χ -Fe₅C₂.

Figure S19. Energy profiles for the direct or H-assisted dissociation of CO from co-adsorbed H and CO on the (a) (010^{*}) and (b) K₂O-promoted (010^{*}) surfaces of χ -Fe₅C₂.

Figure S20. Configurations of IS, TS and FS for the direct dissociation of CO with the presence of a pre-adsorbed CO on the (510) and K₂O-promoted (510) surfaces of χ -Fe₅C₂.

Figure S21. Configurations of IS, TS and FS for the direct dissociation of CO with the presence of a pre-adsorbed CO on the (111) and K₂O-promoted (111) surfaces of χ -Fe₅C₂.

Figure S22. Configurations of IS, TS and FS for the direct dissociation of CO with the presence of a pre-adsorbed CO on the (010) and K₂O-promoted (010) surfaces of χ -Fe₅C₂.

Figure S23. Configurations of IS, TS and FS for the direct dissociation of CO with the presence of a pre-adsorbed CO on the (010*) and K₂O-promoted (010*) surfaces of χ -Fe₅C₂.

Figure S24. The canonical molecular orbital solutions of CO in the gas phase. This figure is generated by Quantumsculpt suite.

Figure S25. DOS and COHP of C-O bond of CO in gas phase, CO absorbate on (111) surface; and K₂O-promoted (111) surfaces of χ -Fe₅C₂.

Figure S26. DOS and COHP of C-O bond of CO in gas phase, CO absorbate on (010) surface; and K_2O -promoted (010) surfaces of χ -Fe₅C₂.

Figure S27. DOS and COHP of C-O bond of CO in gas phase, CO absorbate on (010*) surface; and K₂O-promoted (010*) surfaces of χ -Fe₅C₂.

Figure S28. (a) K₂O promoted (010) surface of χ -Fe₅C₂. (b) Charge difference of surface Fe atoms on the (010) surface upon K₂O adsorption (Negative values indicate increased electron density upon adsorption). (c) Charge of surface Fe atoms on the pristine (010) and (d) K₂O-promoted (010) surfaces of χ -Fe₅C₂.

Figure S29. Charge density difference upon CO adsorption on the (010) and K₂O-promoted (010) surfaces.

Figure S30. DOS and COHP of C-O bond of HCO⁻ in gas phase, HCO absorbate on the (510) and K₂Opromoted (510) surfaces of χ -Fe₅C₂.

Figure S31. DOS and COHP of C-O bond of HCO⁻ in gas phase, HCO absorbate on the (111) and K₂Opromoted (111) surfaces of χ -Fe₅C₂.

Figure S32. DOS and COHP of C-O bond of HCO⁻ in gas phase, HCO absorbate on the (010) and K₂Opromoted (010) surfaces of χ -Fe₅C₂.

Figure S33. DOS and COHP of C-O bond of HCO⁻ in gas phase, HCO absorbate on the (010*) and K₂Opromoted (010*) surfaces of χ -Fe₅C₂.

Figure S34. DOS and COHP of C-O bond of COH⁻ in gas phase, COH absorbate on the (510) and K₂Opromoted (510) surfaces of χ -Fe₅C₂.

Figure S35. DOS and COHP of C-O bond of COH⁻ in gas phase, COH absorbate on the (111) and K₂Opromoted (111) surfaces of χ -Fe₅C₂.

Figure S36. DOS and COHP of C-O bond of COH⁻ in gas phase, COH absorbate on the (010) and K₂Opromoted (010) surfaces of χ -Fe₅C₂.

Figure S37. DOS and COHP of C-O bond of COH⁻ in gas phase, COH absorbate on the (010*) and K₂Opromoted (010*) surfaces of χ -Fe₅C₂.

Figure S38. DOS and COHP of C-O bond of CH_2O in gas phase, CH_2O absorbate on the (010) and K_2O -promoted (010) surfaces of χ -Fe₅C₂.

Figure S1. The configurations of optimized bulk of Fe₅C₂.

Figure S2. Reaction energy diagrams of the formation of K_2O , KOH, and K_2CO_3 on the (a) (510), (b) (111), (c) (010) and (d) (010*) surfaces of χ -Fe₅C₂. In practice, the high oxygen content makes K_2O the most stable form of the K promoter, with the lowest overall barrier on these surfaces, while the significantly difficult CO₂ formation results in the formation of K_2CO_3 unfavored on all surfaces.

Figure S3. Phase diagrams illustrating the stability of K, KO, K₂O and K₂CO₃ as a function of CO and H₂ partial pressures and temperature on the (a) (510), (b) (111), (c) (010) and (d) (010*) surfaces of χ -Fe₅C₂. (*P*_{CO/H₂} is the partial pressure of CO and H₂).

Figure S4. The adsorption structures and energy values of K_2O promoter in the possible sites on the (510) surface of χ -Fe₅C₂.

Fe-top site E_{ads}= -517 kJ/mol

3-fold site E_{ads}= -452 kJ/mol

Fe-3-fold site E_{ads}= -447 kJ/mol

Figure S5. The adsorption structures and energy values of K_2O promoter in the possible sites on the (111) surface of χ -Fe₅C₂.

Figure S6. The adsorption structures and energy values of K_2O promoter in the possible sites on the (010) surface of χ -Fe₅C₂.

3-fold site E_{ads}= - 586 kJ/mol

4-fold site E_{ads}= - 583 kJ/mol

C-top site E_{ads}= - 532 kJ/mol

Bridge site E_{ads}= - 570 kJ/mol

3-fold site E_{ads}= - 567 kJ/mol

3-fold site E_{ads}= - 555 kJ/mol

Figure S7. The adsorption structures and energy values of K_2O promoter in the possible sites on the (010*) surface of χ -Fe₅C₂.

Figure S8. Configurations of IS, TS and FS for the direct and H-assisted dissociation of CO on the (510) surface of χ -Fe₅C₂.

Figure S9. Configurations of IS, TS and FS for the direct and H-assisted dissociation of CO on the K_2O -promoted (510) surface of χ -Fe₅C₂.

Figure S10. Configurations of IS, TS and FS for the direct and H-assisted dissociation of CO on the (111) surface of χ -Fe₅C₂.

Figure S11. Configurations of IS, TS and FS for the direct and H-assisted dissociation of CO on the K_2O -promoted (111) surface of χ -Fe₅C₂.

Figure S12. Configurations of IS, TS and FS for the direct and H-assisted dissociation of CO on the (010) surface of χ -Fe₅C₂.

Figure S13. Configurations of IS, TS and FS for the direct and H-assisted dissociation of CO on the K_2O -promoted (010) surface of χ -Fe₅C₂.

Figure S14. Configurations of IS, TS and FS for the direct and H-assisted dissociation of CO on the (010^*) surface of χ -Fe₅C₂.

Figure S15. Configurations of IS, TS and FS for the direct and H-assisted dissociation of CO on the K_2O -promoted (010*) surface of χ -Fe₅C₂.

Figure S16. Energy profiles for the direct or H-assisted dissociation of CO from co-adsorbed H and CO on the (a) (510) and (b) K₂O-promoted (510) surfaces of χ -Fe₅C₂. The value upon the TS corresponds to the activation barrier of each elementary step.

Figure S17. Energy profiles for the direct or H-assisted dissociation of CO from co-adsorbed H and CO on the (a) (111) and (b) K₂O-promoted (111) surfaces of χ -Fe₅C₂.

Figure S18. Energy profiles for the direct or H-assisted dissociation of CO from co-adsorbed H and CO on the (a) (010) and (b) K₂O-promoted (010) surfaces of χ -Fe₅C₂.

Figure S19. Energy profiles for the direct or H-assisted dissociation of CO from co-adsorbed H and CO on the (a) (010^{*}) and (b) K₂O-promoted (010^{*}) surfaces of χ -Fe₅C₂.

Figure S20. Configurations of IS, TS and FS for the direct dissociation of CO with the presence of a pre-adsorbed CO on the (510) and K₂O-promoted (510) surfaces of χ -Fe₅C₂.

Figure S21. Configurations of IS, TS and FS for the direct dissociation of CO with the presence of a pre-adsorbed CO on the (111) and K₂O-promoted (111) surfaces of χ -Fe₅C₂.

Figure S22. Configurations of IS, TS and FS for the direct dissociation of CO with the presence of a pre-adsorbed CO on the (010) and K₂O-promoted (010) surfaces of χ -Fe₅C₂.

Figure S23. Configurations of IS, TS and FS for the direct dissociation of CO with the presence of a pre-adsorbed CO on the (010^{*}) and K₂O-promoted (010^{*}) surfaces of χ -Fe₅C₂.

Figure S24. The canonical molecular orbital solutions of CO in the gas phase. This figure is generated by Quantumsculpt suite.

Figure S25. DOS and COHP of C-O bond of CO in the gas phase, CO absorbate on the (111) and K₂O-promoted (111) surfaces of χ -Fe₅C₂.

Figure S26. DOS and COHP of C-O bond of CO in the gas phase, CO absorbate on the (010) and K₂O-promoted (010) surfaces of χ -Fe₅C₂.

Figure S27. DOS and COHP of C-O bond of CO in the gas phase, CO absorbate on the (010*) and K₂O-promoted (010*) surfaces of χ -Fe₅C₂.

Figure S28. (a) K_2O promoted (010) surface of χ -Fe₅C₂. (b) Charge difference of surface Fe atoms on the (010) surface upon K_2O adsorption (Negative values indicate increased electron density upon adsorption). (c) Charge of surface Fe atoms on the pristine (010) and (d) K_2O -promoted (010) surfaces of χ -Fe₅C₂.

Figure S29. Charge density difference upon CO adsorption on the (010) and K₂O-promoted (010) surfaces of χ -Fe₅C₂.

Figure S30. DOS and COHP of C-O bond of HCO⁻ in the gas phase, HCO absorbate on the (510) and K₂O-promoted (510) surfaces of χ -Fe₅C₂.

Figure S31. DOS and COHP of C-O bond of HCO⁻ in the gas phase, HCO absorbate on the (111) and K₂O-promoted (111) surfaces of χ -Fe₅C₂.

Figure S32. DOS and COHP of C-O bond of HCO⁻ in the gas phase, HCO absorbate on the (010) and K₂O-promoted (010) surfaces of χ -Fe₅C₂.

Figure S33. DOS and COHP of C-O bond of HCO⁻ in the gas phase, HCO absorbate on the (010*) and K₂O-promoted (010*) surfaces of χ -Fe₅C₂.

Figure S34. DOS and COHP of C-O bond of COH⁻ in the gas phase, COH absorbate on the (510) and K₂O-promoted (510) surfaces of χ -Fe₅C₂.

Figure S35. DOS and COHP of C-O bond of COH⁻ in the gas phase, COH absorbate on the (111) and K₂O-promoted (111) surfaces of χ -Fe₅C₂.

Figure S36. DOS and COHP of C-O bond of COH⁻ in the gas phase, COH absorbate on the (010) and K₂O-promoted (010) surfaces of χ -Fe₅C₂.

Figure S37. DOS and COHP of C-O bond of COH⁻ in the gas phase, COH absorbate on the (010*) and K₂O-promoted (010*) surfaces of χ -Fe₅C₂.

Figure S38. DOS and COHP of C-O bond of CH₂O in the gas phase, CH₂O absorbate on the (010) and K₂O-promoted (010) surfaces of χ -Fe₅C₂.