Supplementary Information (SI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2025

Supplementary Information

Reductive CO₂ Fixation by *N*-Formylation Reaction over Supported Pt Nanoparticle Catalyst Modified with Basic Polyoxometalates

Soichi KIKKAWA, a* Yutaro MATSUNAGA, a Shoji FUKUDA, a and Seiji YAMAZOE a*

Chemicals

γ-Al₂O₃ (JRC-ALO-7), ZrO₂ (JRC-ZRO-6), Nb₂O₅ (JRC-NBO-2), and TiO₂ (JRC-TIO-17) were supplied from the Catalyst Society of Japan. Aqueous solution of Pt[(NH₃)₂(NO₂)₂] was purchased from Furuya Metal Co. Ltd. K₈Nb₆O₁₉·14H₂O and K₈Ta₆O₁₉·16H₂O were purchased from Mitsuwa Chemical Co. Ltd. Methanol (MeOH), dodecane, piperidine, piperazine, methylpiperazine, morpholine, 1,2,3,4-tetrahydroisoquinoline, nitrophenol, 1-formylpiperidine, dimetylamine, and toluene were purchased from Tokyo Chemical Industry Co. Ltd. Potassium carbonate, nitric acid, and hydrogen fluoride were purchased from Kanto Chemical Co. Inc. All reagents were used as received.

Synthesis of POM-modified supported Pt NP catalyst

Supported Pt catalysts (Pt/Al₂O₃) were prepared by a typical impregnation method, in accordance with a previous report. Al₂O₃ was dispersed in an aqueous solution of Pt[(NH₃)₂(NO₂)₂] (equivalent to 5.0wt_{Pt}%) and then evaporated at 80°C. The resulting sample was calcined in air at 673 K for 5 h and then reduced in 5% H₂ (100 mL/min) at 673 K for 2 h to obtain Al₂O₃-loaded Pt NPs (Pt/Al₂O₃). [M₆O₁₉]⁸-modified Pt/Al₂O₃ (M = Nb, Ta, M6-Pt/Al₂O₃) was prepared by an adsorption method. Pt/Al₂O₃ (600 mg) was dispersed in 100 mL of 61.5 mM K₈Nb₆O₁₉ and K₈Ta₆O₁₉ aqueous solutions (POM/Pt atomic ratio = 4:1) under a N₂ atmosphere, followed by suction filtration and drying. The amount of modifying [Nb₆O₁₉]⁸- was controlled by the concentration of K₈Nb₆O₁₉ aq. for the absorption treatment ([Nb₆O₁₉]⁸-/Pt atom = 0.006-4). The samples were referred to using the POM/Pt atomic ratio during the absorption process as *X*M6-Pt/Al₂O₃ (M = Nb, Ta). ZrO₂, Nb₂O₅, and TiO₂ were also used as support in the same manner.

Catalytic reaction

The *N*-formylation of amines using CO₂ as a carbon source was carried out in an autoclave. Typical reaction conditions for the *N*-formylation of piperidine are as follows: piperidine, 0.1 mmol; methanol, 2 mL; catalyst, 19.5 mg (Pt; equivalent to 5.0 μ mol); internal standard, dodecane; CO₂, 1.0 MPa; H₂, 2.0 MPa; reaction temperature, 130°C; and reaction time, 72 h. For the blank tests, Nb₂O₅ (1.8 mg), NH₄Cl (6.2 μ mol), Cs₂CO₃ (0.31 μ mol), and 0.1 mL of 3.1 mM K₈Nb₆O₁₉ aq. (0.31 μ mol) were added as additives to **Pt/Al₂O₃**. As for P_{CO2} and P_{H2} dependence, P_{CO2} and P_{H2} were varied in the ranges of 0.1–1.0 and 0.1–2.0, respectively. To confirm the applicability of *N*-formylation reactions, piperazine, methylpiperazine, morpholine, and 1,2,3,4-tetrahydroisoquinoline were used as amines. As for the *N*-formylation of morpholine, 2 mL of DMF was used as a solvent.

The products were quantified using a gas chromatograph equipped with a flame ionization detector (GC-2014; Shimadzu Co. Ltd.). The conversion and yield were calculated as follows:

$$\begin{aligned} & \textit{Conversion} \ (\%) = \left(1 - \frac{\textit{Area}_{\textit{Sub.}}}{\textit{Area}_{\textit{IS}}} \times \frac{\textit{Area}_{\textit{IS,0}}}{\textit{Area}_{\textit{Sub.,0}}}\right) \times 100 \\ & \textit{Yield} \ (\%) = \frac{\textit{Area}_{\textit{Pro.}}}{\textit{Area}_{\textit{IS}}} \times \frac{\textit{ECN}_{\textit{Sub.}}}{\textit{ECN}_{\textit{Pro.}}} \times \frac{\textit{Area}_{\textit{IS,0}}}{\textit{Area}_{\textit{Sub.,0}}} \times 100 \end{aligned}$$

where Sub. stands for amine substrate; IS, internal standard (dodecane); Pro., product; and ECN, effective carbon number. Subscript 0 indicates the peak area reaction solution without catalyst.

Characterization

The loading amounts of Pt NPs, and $[Nb_6O_{19}]^{8-}$ and $[Ta_6O_{19}]^{8-}$ clusters were determined by inductively coupled plasma atomic emission spectroscopy (ICP-OES, iCAP 6200; Thermo Fisher Scientific). The catalysts were dissolved in a mixed solution of HNO₃ and HF at a volume ratio of 4:1 by heating at 363 K.

The size distribution of Pt NPs was observed using a high-angle annular dark field scanning transmission electron microscope (HAADF-STEM, ARM-200F NEOARM; JEOL) operated at 200 kV. The fluorescent X-rays of Nb K- and Pt L-edges for Nb6-Pt/Al₂O₃ and Ta M- and Pt L- and M-edges for Ta6-Pt/Al₂O₃ were used for line analysis of STEM images using an energy-dispersive X-ray (EDX) analyzer.

X-ray absorption spectroscopy was carried out on the BL01B1 beamline at SPring-8 (Japan Synchrotron Radiation Research Institute). Nb K-, and Pt and Ta L₃-edges X-ray absorption fine structure (XAFS) spectra were collected using a double-crystal Si(311) or Si(111) monochromator, respectively, while rejecting the higher harmonic X-rays using a Rh-coated mirror. The incident and transmitted X-ray fluxes were measured using ionization chambers. Data reduction was performed using xTunes software.^[14]

The base property of $[Nb_6O_{19}]^{8-}$ -modified Pt NPs was confirmed by the coloration of p-nitrophenol. The catalyst powders were dispersed in a MeOH solution of p-nitrophenol and the filtrate was measured using a UV-vis spectrometer (V-700; JASCO). In the presence of base, the solution turned to yellow by the formation of phenoxide ions.

CO pulse titration was carried out to determine the Pt dispersion (BELCAT-II; Microtrac MRB Co. Ltd.). As a pretreatment, the catalyst was oxidized at 623 K under 100% O_2 and then reduced at 623 K under 2% H_2 /Ar. The amount of Pt atoms exposed at the surface per gram of catalyst was determined using CO pulse titration at 323 K, assuming a chemisorption stoichiometry of CO:Pt = 1.

The surface electronic state of Pt NPs was evaluated by diffuse reflectance Fourier-transform infrared spectroscopy (IR-DRIFTS) using CO as a probe. The measurement was performed using an infrared spectrometer (FT/IR-4700; JASCO) equipped with a mercury cadmium tungsten detector. The spectra were collected with the integration of 128 scans with a resolution of 4 cm⁻¹. As a pretreatment, the catalyst was oxidized at 623 K under 100% O₂ and then reduced at 623 K under 2% H₂/Ar. The difference spectrum was obtained by a subtraction of sample spectra w/o CO adsorption from that under 5% CO/He.

Table S1. Comparison of the catalytic activity in this work with the reported catalytic systems

		-	-					
Catalyst	Metal (Loading (µmol))	Additive	Substrate (mmol)	Reaction temperat ure (K)	Reaction time (h)	Yield (%)	TOF (h ⁻¹)	Ref.
Nb6- 4.0Pt/Al ₂ O ₃	Pt (5)	None	Piperidine (0.1)	403	72	84	0.24	This work
-	-	None	Morpholine (0.1)	403	72	71	0.20	This work
K- Pt(Nb ₆ O ₁₉) ₂] ¹²⁻	Pt (20)	None	Piperidine (1.0)	403	36	71	0.99	Ref. [7]
-	-	None	Morpholine (0.5)	403	48	83	0.43	Ref. [7]
Cu(OCOCH ₃) ₂	Cu (100)	4-Dimethyl aminopyridine	Morpholine (1.0)	363	12	>99	0.83	Ref. [10]
(Methyltrioctyla mmonium) ₆ - SiW ₁₁ O ₃₉ Ru	Ru (5.0)	1-Butyl-3- methyl- imidazolium acetate	Morpholine (1.0)	393	12	97	16	Ref. [14]
Co ₃ O ₄	Co (85)	$ZnCl_2$	Isoquinoline (0.5)	443	16	97	0.36	Ref. [9]
Cu ₀ /CuAlOx (Cu 7.5wt%)	Cu (118)	None	Morpholine (1.0)	423	24	>99	0.35	Ref. [16]
Pd/C (Pd: 1wt%)	Pd (4.7)	КОН	Piperidine (1.0)	378	5	51	22	Ref. [17]
Au/TiO ₂ (Au: 2.2wt%)	Au (10)	Dimethylamine	Morpholine (0.5)	398	5	>99	4.4	Ref. [18]
Au/Nb ₂ O ₅ (Au: 1wt%)	Au (10)	N,N-Dimethyl acetamide	Morpholine (0.5)	398	5	69	6.9	Ref. [19]
Ir/nanodiamond @graphite _(Ir: 0.03wt%)	Ir (0.049)	None	Morpholine (735)	423	23	46	3.1 ×10 ⁵	Ref. [13]

Table S2. Solvent effect on *N*-formylation reaction of piperidine using CO₂ over **4.0Nb6-Pt/Al₂O₃**^a.

Entry	Solvent	Yield (%)	CO production ^b (mmol)		
1	MeOH	43	91.4		
2	Dimetylamine	75	29.6		
3	Toluene	84	13.7		

^aAmines, 0.1 mmol; solvent, 2 mL; catalyst, 19.5 mg; internal standard, dodecane; CO₂, 1.0 MPa; H₂, 2.0 MPa; reaction temperature, 130°C; reaction time, 72 h.

^aProduced amount of CO was calculated from the concentration of CO after the reaction, initial total pressure (3.0 MPa), and volume of reaction vessel (40 mL).

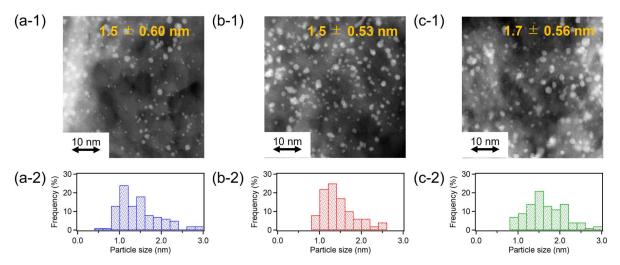
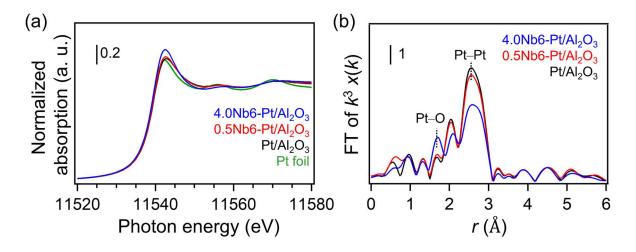
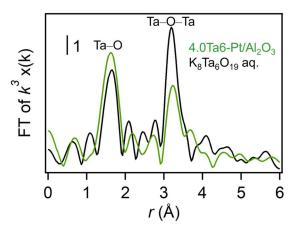
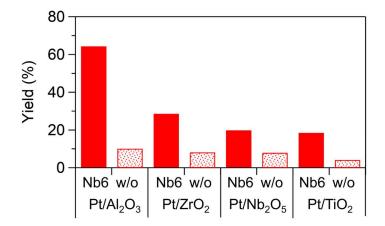
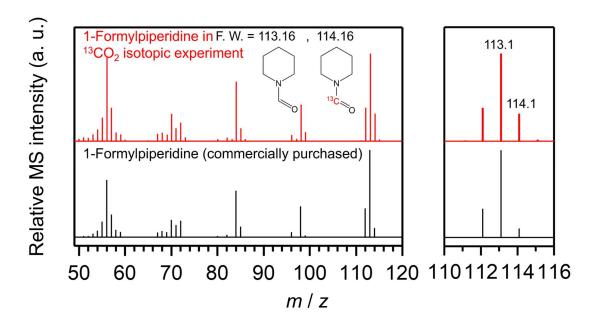


Figure S1. HAADF-STEM images of (a-1) Pt/Al₂O₃, (b-1) 4.0Nb6- Pt/Al₂O₃, (c-1) 4.0Ta6-Pt/Al₂O₃, and the corresponding particle size distributions (a-2), (b-2), and (c-2), respectively.


Figure S2. (a) Pt L₃-edge XANES spectra of 4.0Nb6-Pt/Al₂O₃ (blue), 0.5Nb6-Pt/Al₂O₃ (red), Pt/Al₂O₃ (black), and Pt foil (green). (b) FT of Pt L₃-edge EXAFS spectra of 4.0Nb6-Pt/Al₂O₃ (blue), 0.5Nb6-Pt/Al₂O₃ (red), and Pt/Al₂O₃ (black).

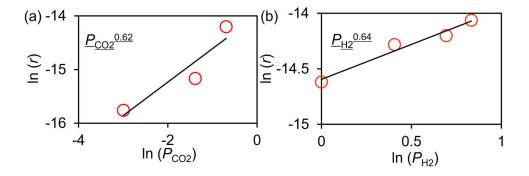

Figure S3. FT of Ta L₃-edge EXAFS spectra of **4.0Ta6-Pt/Al₂O₃** (green) and K₈Ta₆O₁₉ aqueous solution (black).

Figure S4. Product yield in *N*-formylation reaction of piperidine over supported Pt NP catalysts with various supports. The loading weight of Pt was 5wt%. The dispersions of Pt NPs measured by CO pulse titration were 58% for **Pt/Al₂O₃**, 35% for **Pt/ZrO₂**, 2.5% for **Pt/Nb₂O₅**, and 12% for **Pt/TiO₂**. It should be noted that the SMSI effect resulted in inaccurate estimation of the dispersion of Pt NPs on TiO₂. ICP measurements revealed that the amounts of modified [Nb₆O₁₉]⁸⁻ were 0.89wt% for **4.0Nb₆-Pt/Al₂O₃**, 1.63% for **4.0Nb₆-Pt/ZrO₂**, and 1.08wt% for **4.0Nb₆-Pt/TiO₂**. Considering the dispersion of Pt NPs, [Nb₆O₁₉]⁸⁻ were modified on the surface of ZrO₂ and TiO₂ supports.

Figure S5. MS profile of peak derived from piperidine in the isotopic experiment using 0.1 MPa of ¹³CO₂ with 1.9 MPa of ¹²CO₂ and 1.0 MPa of H₂.

Figure S6. Partial pressure dependence on (a) P_{CO2} and (b) P_{H2} for *N*-formylation reaction of piperidine using CO₂ with **4.0Nb6-Pt/Al₂O₃**. Reaction conditions: piperidine, 0.1 mmol; methanol, 2 mL; catalyst, 19.5 mg; internal standard, dodecane; CO₂, 0.1–1.0 MPa; H₂, 0.1–2.0 MPa; reaction temperature, 130°C; reaction time, 72 h.