Supplementary Information for:

MLstructureMining: A machine learning tool for structure identification from X-ray pair distribution function data

Emil T. S. Kjær¹, Andy S. Anker¹, Andrea Kirsch¹, Joakim Lajer¹, Olivia Aalling-Frederiksen¹, Simon J. L. Billinge^{*2}, Kirsten M. Ø. Jensen^{*1}

*Correspondence to sb2896@columbia.edu (SJLB), kirsten@chem.ku.dk (KMØJ)

1: Department of Chemistry and Nano-Science Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark

2: Department of Applied Physics and Applied Mathematics Science, Columbia University, New York, NY 10027, USA

Table of Contents

A: The Pair Distribution Function (PDF)	4
B: Training and evaluating the MLstructureMining model	4
B.1.: Pair Distribution Function (PDF) simulation parameters	4
B.2.: XGBoost hyperparameters	5
B.3.: Testing robustness of the model using Adversarial Robustness Toolbox (ART)	6
C: The Pearson Correlation Coefficient (PCC)	6
D: Synthesis and data collection:	7
D.1. Example 1: CoFe ₂ O ₄	7
D.2. Example 2: CeO ₂	7
D.3. Example 3: W5O14	7
D.4. Example 4: Bi ₂ Fe ₄ O ₉	8
E: Baseline refinements of experimental PDF's	8
E.1. Size estimation of CoFe ₂ O ₄ and Bi ₂ Fe ₄ O ₉	9
F: Real-space Rietveld refinements of predicted structures	9
F.1.: CoFe ₂ O ₄ fit parameters	9
F.2.: CeO ₂ fit parameters	
F.3.: W5O14 fit parameters	
F.4.: Bi₂Fe₄O9 fit parameters	
F.5.: Bi ₂ Fe ₄ O ₉ fit parameters for NMF component 1	
G: PDF in the cloud (PDFitc) benchmark tests	11
G.1.: CoFe ₂ O ₄	
G.2.: CeO ₂	12
G.3.: W5O14	12
G.4.: Bi ₂ Fe ₄ O ₉	13
G.5.: Bi ₂ Fe₄O ₉ NMF component	
H: Structure predictions for CeO ₂ , W_5O_{14} , Bi ₂ Fe ₄ O ₉ and NMF component 1	16
I: Comparing the PDF of CeO ₂ with La _{1.2} U _{0.8} O ₄	17
J: Real-space Rietveld refinement of Ce constrained structure search for CeO ₂	17
K: Top-3 structure prediction for every frame in the Bi ₂ Fe ₄ O ₉ in situ experiment	18
L: Structure analysis of the BiFeO ₃ intermediate and NMF component 2	
L.1.: Baseline refinement of BiFeO3 and NMF component 2	

Is Bringing component analysis and non-parative matrix factorization on in sity Di-Es. O. with	
L.4.: PDFitc benchmark tests for BiFeO $_3$ and NMF component of BiFeO $_3$	1
L.3.: Real-space Rietveld refinements of predicted structures for BiFeO3 and NMF component 2 1	9
L.2.: Structure predictions for BiFeO3 and NMF component 21	9

M: Principal component analysis and non-negative matrix factorization on *in situ* Bi₂Fe₄O₉ with precursor 23

eferences

A: The Pair Distribution Function (PDF)

A PDF can be interpreted as a weighted histogram of atom – atom distances, and is the Fourier transform of X-ray, neutron or electron total scattering data. To obtain the PDF, the measured scattering intensity, I(Q), undergoes corrections for fluorescence, incoherent scattering and normalization.^{11,17,18} The PDF or G(r) is then obtained by calculating the Fourier transformation over a truncated Q-interval, Q_{min} to Q_{max} as $G(r) = \frac{2}{\pi} \int_{Q_{min}}^{Q_{max}} Q[S(Q) - 1]\sin(Q \cdot r)dQ$. Here, the scattering vector Q is dependent on the wavelength of the incoming beam, λ , and the scattering angle, θ , and is defined as $Q = \frac{4 \cdot \pi \cdot \sin(\theta)}{\lambda}$.

B: Training and evaluating the MLstructureMining model

For the training, validation, and testing process of MLstructureMining, 100 Pair Distribution Functions (PDFs) of each of the entries in the structure catalogue were simulated. The simulations were done using Latin hypercube sampling¹ with the parameters shown in Table S1. The objective function of MLstructureMining was a multiclass log loss function.²

Figure S1 | Training and validation loss curve of MLstructureMining. The training (blue) and validation (orange) loss curves shown as a function of epochs. MLstructureMining obtains an accuracy of 91%, a top-3 accuracy of 99% and a top-5 accuracy of 100% on the test seen which were not seen during training. Additional, MLstructureMining's robustness was tested using Zeroth-Order Optimization (ZOO), which gave an accuracy of 89%, a top-3 accuracy of 97% and a top-5 accuracy of 99%.

B.1.: Pair Distribution Function (PDF) simulation parameters

The PDF simulation parameters are shown in Table S1. All PDFs were simulated using the DiffPy-CMI³ Python library and Latin hypercube sampling¹ was used to sample the PDF simulation parameter space.

Table S1 | PDF simulation parameter range used for training, validation and testing set. All parameters only containing one value was not changes for any of the simulations. The unit cell parameter is only varying the dimensions of the unit cell (a, b and c sides) and only if they are allowed to change without breaking the symmetry.

Parameter	Value
R _{min} [Å]	0.00
R _{max} [Å]	30.00
R _{step} [Å]	0.10
Q _{min} [Å ⁻¹]	0.70
Q _{max} [Å ⁻¹]	20.00
Q _{damp} [Å ⁻¹]	0.04
δ_2 [Å ²]	2.00
P _{size} [Å]	No size dampening applied
U _{iso} [Ų]	0.005 – 0.025
Unit cell* [%]	± 4.00
Number of simulated PDF	100

B.2.: XGBoost hyperparameters

To determine the hyperparameters of MLstructureMining, Bayesian optimization was performed using the bayesian-optimization Python library.⁴ The Bayesian optimization was run using 10 'init_points' and 20 'n_iter' training a total of 30 models. The allowed range during Bayesian optimization for all hyperparameters are shown in Table S2.

Parameter	Range
learning_rate	(0.05, 1.0)
min_child_weight	(0.1, 10)
max_depth	(3, 6)
max_delta_step	(0, 20)
subsample	(0.01, 1.0)
colsample_bytree	(0.01, 1.0)
colsample_bylevel	(0.01, 1.0)
reg_lambda	(0, 10.0)
reg_alpha	(0, 10.0)
gamma	(0, 10.0)

The hyperparameters used for the best XGBoost⁵ classifier model are listed below. Parameters not listed in Table S3 are using default values.

Table S3 | XGBoost hyperparameter values.

Parameter	Value
random_state	0
num_class	6062
tree_method	hist

objective	multi:softprob
early_stopping_rounds	25
eval_metric	mlogloss
learning_rate	0.3
min_child_weight	1
max_depth	6
max_delta_step	0
subsample	1
colsample_bytree	1
colsample_bylevel	1
reg_lambda	1
reg_alpha	0
gamma	0

B.3.: Testing robustness of the model using Adversarial Robustness Toolbox (ART)

To further evaluate MLstructureMining the Adversarial Robustness Toolbox (ART)⁶ was utilized to test its robustness. Here, Zeroth-Order Optimization (ZOO) was deployed to perform adversarial attacks on the model. The ZOO attack was performed using the test data.

ZOO is an adversarial attack technique that can find weaknesses in a model without having direct access to the model's intricate details. Instead of requiring direct access to the model's internal components, ZOO approximates the model's behavior using only its outputs. By probing the model with various inputs and observing the outputs, ZOO can craft adversarial examples that deceive the model, all without ever peeking inside it. In essence, ZOO is making small changes to the data to test the model's robustness. The parameters used for ZOO are shown in Table S4.

In our study, we utilized the ART library to deploy the ZOO attack on our model, emphasizing the importance of robust machine learning practices.

Parameter	Value
confidence	0.0
targeted	False
learning_rate	1e-1
max_iter	10
binary_search_steps	3
initial_const	0.001
abort_early	True
use_resize	False
use_importance	False
nb_parallel	1
batch_size	1
variable_h	0.2

Table S4 | Input values for ZOO attack.

C: The Pearson Correlation Coefficient (PCC)

We use the PCC to obtain a discrete measure of comparison between two continuous functions, PDFs. By providing two equally r-sampled PDFs the PCC will return a value between -1 and 1. A value of 1

corresponds to a perfect linear correlation between the two PDF's. -1 indicates the exact opposite relationship between the two functions. The PCC is defined as shown below:⁷

$$r = \frac{1}{1-n} \sum_{i=0}^{n} \left(\frac{X_i - \bar{X}}{\sigma_x} \right) \left(\frac{Y_i - \bar{Y}}{\sigma_y} \right)$$

The two compared datasets are denoted X and Y. We sum over all points in the two datasets. \bar{X} and \bar{Y} are the mean values of the functions while σ_x and σ_y are their standard deviation. The PCC is scale invariant which makes it ideal for comparing the peak positions of various functions. This results in the PCC being highly sensitive to shifts in peak positions (lattice parameters) and not sensitive to peak intensities (different atomic species). Using the PCC as a measure of similarity between PDF data has been done in multiple occasions.⁸⁻¹⁰

D: Synthesis and data collection:

D.1. Example 1: CoFe₂O₄

Cobalt iron oxide was synthesized using a hydrothermal synthesis approach. 0.5 mmol CoCl₂ \cdot 6H₂O (ACS reagent, 98%) and 1.0 mmol Fe(NO₃)₃ \cdot 9H₂O (ACS reagent, \geq 98%) were added to water. 1.0 mmol KOH (ACS reagent, \geq 85%) was added and the solution was sonicated for 30 min, transferred to a Teflon lined autoclave and heated for 2 hours at 60 °C followed by 1 hour at 160 °C. The autoclave was cooled down and the formed powder washed first in pure hexane followed by a mixture of hexane and ethanol (1:3) and dried overnight in ethanol.

X-ray total scattering data were collected using a Panalytical Empyrean Series 2 diffractometer equipped with an Ag-source with X-ray wavelength 0.56 Å and a GaliPIX detector. The PDF was generated using PDFgetX3¹¹ with $Q_{min} = 1.6$ Å⁻¹ and $Q_{max} = 17.5$ Å⁻¹, $Q_{damp} = 0.04$ Å⁻¹ and $r_{poly} = 0.9$ Å.

D.2. Example 2: CeO₂

 $[Ce_6(\mu_3-O)_4(\mu_3-OH)_4(NH_3CH_2COO)_8-(NO_3)_4(H_2O)_6]Cl_8\cdot 8H_2O$ crystals were dissolved in DMSO at 80 °C until fully dissolved. 0.05 M NaOH were added while stirring vigorously for 3 minutes. The powder was lastly annealed at 60 °C for 3 hours. The powder was transferred to a Kapton tube with an inner diameter of 1.05 mm and X-ray total scattering data were collected using the RA-PDF geometry with x-ray wavelength 0.2072 Å at beamline P02.1 at PETRAIII, DESY, Hamburg. The data were integrated using Fit2D,¹² and PDFs were obtained using PDFgetx3 using Q_{min} = 0.7 Å⁻¹ and Q_{max} = 24 Å⁻¹, Q_{damp} = 0.04 Å⁻¹ and r_{poly} = 0.9 Å.¹¹

D.3. Example 3: W₅O₁₄

The data presented in the article is the last frame of an *in situ* PDF series on the formation of W_5O_{14} . To synthesize the tungsten oxide nanoparticles the precursor consisted of WCl₆ (\geq 99.99 %, Sigma–Aldrich) was dissolved in 15 mL of isopropanol to reach a 0.3 M tungsten concentration. The precursor solution was continuously mixed until all of the WCl₆ powder was dissolved, and the solution turned dark blue.

The synthesis was done in a custom-made reaction cell specifically design for performing *in situ* X-ray total scattering experiments. The setup is similar to the one described by Becker et al.^{12,13} The precursor suspension was injected into a fused silica tube with 0.7 mm inner diameter and 0.09 mm wall thickness. Throughout the synthesis the pressure was kept constant at 100 bar using an HPLC pump. To apply heat during the reaction a heat gone was placed centered underneath the silica tube. Heat was applied after approximately 30 seconds and kept stable once the reaction reached 310 °C.

The scattering experiment was performed at the P02.1, PETRA III beamline at DESY in Germany, using a wavelength of 0.2072 Å and a sample to detector distance of 210 mm. The detector used is A Perkin Elmer XRD1621 area detector with a pixel size of 0.2×0.2 mm. The sample and detector setup used was the Rapid Acquisition Pair Distribution Function (RA-PDF) setup.¹⁴

The calibration was done in Fit2D¹⁵ while the azimuthal integration was done with PyFAI¹⁶ and the PDF was calculated using PDFgetX3 with $Q_{min} = 0.7 \text{ Å}^{-1}$ and $Q_{max} = 15 \text{ Å}^{-1}$, $Q_{damp} = 0.04 \text{ Å}^{-1}$ and $r_{poly} = 0.9 \text{ Å}^{.11}$

D.4. Example 4: Bi₂Fe₄O₉

The precursor sample used for the *in situ* heating experiments was synthesized using the sol-gel method. First, 5 mmol Bi(NO₃)₃ · 5 H₂O (reagent grade, 98% Sigma-Aldrich) and 10 mmol Fe(NO₃)₃ · 9 H₂O (reagent grade, 98% Sigma-Aldrich), 11.25 mmol complexing agent (meso-Erythritol, ≥99% Sigma-Aldrich) are dissolved in 27.5 mL deionized water. Heating the solution under stirring to 100 °C leads to a gel, which is subsequently heated at 250 °C for 18 h in an oven to remove residual organics. The resulting solid powdered precursor is then ground and used for the *in situ* total scattering experiments. These were carried out at beamline P21.1 at PETRA III/DESY in Hamburg, Germany using a wavelength of 0.12203 Å, a Perkin-Elmer XRD1621 area detector with a sample detector distance of ca. 500 mm. The powder sample was filled into a quartz capillary with a diameter of 2 mm. The capillary was positioned horizontally, left open at one end, and only half filled to allow for gas exchange. The powder was hold in place using quartz wool and heated with a hot air blower from room temperature to 700 °C with a heating rate of 20 K/min and kept for ca. 2 h. Data were integrated using pyFAI¹⁶ and the PDFs obtained using xPDFsuite¹² with a Q_{min} = 0.1 Å⁻¹, Q_{max} = 21.5 Å⁻¹, Q_{damp} = 0.04 Å⁻¹ and r_{poly} = 0.9. The scattering pattern of an empty quartz capillary was used for background subtraction.

E: Baseline refinements of experimental PDF's

The baseline fits for the four different experimental PDFs are shown in Fig. S2 and each fits refined parameters are shown in Table S5. The real-space Rietveld refinement of $CoFe_2O_4$, CeO_2 , W_5O_{14} Bi₂Fe₄O₉ are shown in Fig. S2.

Figure S2 | Plot of the baseline PDF refinements for the four experimental PDFs. a) baseline fit of experimental PDF 1: spinel CoFe₂O₄ with a R_{wp} of 15.4%, b) baseline fit of experimental PDF 2: fluorite CeO₂ with a R_{wp} of 17.2%, c) baseline fit of experimental PDF 3: W_5O_{14} with a R_{wp} of 47.0% and d) baseline fit of experimental PDF 4: mullite Bi₂Fe₄O₉ with a R_{wp} of 15.4%.

 Table S5 | Fitted baseline parameters of the PDF refinements for the four experimental PDF. Realspace Rietveld refinements are shown in Fig. S2.

Structure	R _{wp} [%]	Space group	Scale	а [Å]	b [Å]	с [Å]	p _{size} [Å]	δ₂ [Ų]	U _{іso M} [Ų]	U _{iso O} [Ų]
CoFe ₂ O ₄	15.4	Fd3m	0.59	8.4	-	-	93	2.9	0.012	0.027
CeO ₂	17.2	Fd3m	0.64	5.4	-	-	23	3.4	0.008	0.046
W5O14	48.2	P421m	0.72	23.4	-	3.8	19	2.7	0.005	0.005
Bi ₂ Fe ₄ O ₉	17.7	Pbam	0.19	8.0	8.5	6.0	319	3.5	0.022	0.066

E.1. Size estimation of CoFe₂O₄ and Bi₂Fe₄O₉

To estimate size of the experimental syntheses of $CeFe_2O_4$ and $Bi_2Fe_4O_9$ real-space Rietveld refinement from 0 – 60 Å was performed. The fits are shown in Fig. S3 and the fitted parameters in Table S6.

Figure S3 | Long range real-space Rietveld refinement of Fe_2Bi_4O_9 and CoFe_2O_4. a) baseline fit of example 1: spinel $CoFe_2O_4$ with a R_{wp} of 22.6% and b) baseline fit of example 4: mullite $Bi_2Fe_4O_9$ with a R_{wp} of 17.8%.

Table S6	Fitted baseline	parameters	of the PD	F refinements	for the	four	examples.	Real-space
Rietveld re	finements are sh	own in Fig. S2						

Structure	R _{wp} [%]	Scale	a [Å]	b [Å]	с [Å]	p _{size} [Å]	δ2 [Ų]	U _{іso M} [Ų]	U _{iso O} [Ų]
CoFe ₂ O ₄	22.6	0.55	8.4	-	-	174	3.3	0.013	0.029
Bi ₂ Fe ₄ O ₉	17.8	0.20	8.0	8.5	6.0	230	3.2	0.022	0.062

F: Real-space Rietveld refinements of predicted structures

Real-space Rietveld refinement of MLstructureMining's top-5 predictions for each of the four examples.

F.1.: CoFe₂O₄ fit parameters

 R_{wp} values and fitted parameters for CoFe₂O₄ are shown in the Table S7 below.

Structure [COD ID]	R _{wp} [%]	Scale	а [Å]	с [Å]	p _{size} [Å]	δ₂ [Ų]	U _{іso M} [Ų]	U _{iso O} [Ų]
1536758	16.9	0.58	5.9	8.4	98	2.0	0.011	0.019
1537073	17.7	0.59	8.4	-	87	1.8	0.012	0.017
1541403	17.3	0.57	8.4	-	89	1.9	0.012	0.015
5910031	49.7	0.28	8.4	-	250	5.0	0.009	0.069
1539596	27.5	0.49	8.4	-	106	2.1	0.013	0.010

Table S7 | Fitted structure parameters of top-5 structure predictions on CoFe₂O₄.

F.2.: CeO₂ fit parameters

 R_{wp} values and fitted parameters for CeO_2 are shown in the Table S8 below.

Table S8	Fitted structure	parameters of to	p-5 structure	predictions on CeO ₂ .
				p. c a. c c c . <u>c</u> .

Structure	R _{wp}	Scale	а	С	p _{size}	δ2		
[COD ID]	[%]		[A]	[A]	[A]	[A²]	[A ²]	[A²]
1006067	16.5	0.63	3.8	19.0	24	3.5	0.007	0.044
1527617	17.3	0.76	5.5	10.7	24	3.5	0.007	0.029
1527729	96.2	0.34	9.3	-	21	2.2	0.007	3.590
2102840	17.9	0.66	3.8	5.5	24	3.8	0.007	0.055
1537009	16.1	0.61	5.4	-	24	3.8	0.008	0.015

F.3.: W_5O_{14} fit parameters

 R_{wp} values and fitted parameters for W_5O_{14} are shown in the Table S9 below.

Structure	Rwp	Sealo	а	b	С	p size	δ2	U _{iso M}	Uiso O
[COD ID]	[%]	Scale	[Å]	[Å]	[Å]	[Å]	[Ų]	[Ų]	[Ų]
9014025	66.9	0.73	5.4	-	10.6	8	3.0	0.005	16.470
7230340	67.2	0.56	24.1	5.3	5.3	12	3.0	0.002	0.000
1536855	61.6	1.23	5.4	10.4	13.5	11	4.6	0.005	17.999
2311027	75.1	0.45	8.7	-	-	7	4.7	0.000	0.028
9007595	56.2	0.57	5.55	11.7	5.2	12	3.3	0.000	0.005

Table S9 | Fitted structure parameters of top-5 structure predictions on W_5O_{14} .

F.4.: Bi₂Fe₄O₉ fit parameters

 R_{wp} value and fitted parameters for $Bi_2Fe_4O_9$ are shown in the Table S10 below.

Structure [COD ID]	R _{wp} [%]	Scale	а [Å]	b [Å]	с [Å]	p _{size} [Å]	δ₂ [Ų]	U _{iso M} [Ų]	U _{iso O} [Ų]
4342599	23.6	0.19	8.0	8.5	6.0	187	3.6	0.020	0.076
2104768	30.4	0.20	8.0	8.5	6.0	172	3.3	0.020	0.052
2002314	22.8	0.22	8.0	8.5	6.0	186	2.4	0.021	0.084
2002219	64.9	0.25	8.3	-	6.0	53	3.6	0.048	0.283
2106245	78.2	0.24	8.5	5.3	10.7	64	1.0	0.021	0.031

F.5.: Bi₂Fe₄O₉ fit parameters for NMF component 1

 R_{wp} value and fitted parameters for $Bi_2Fe_4O_9$ are shown in the Table S11 below.

Structure [COD ID]	R _{wp} [%]	Scale	а [Å]	<i>ь</i> [Å]	с [Å]	p _{size} [Å]	δ₂ [Ų]	U _{іso M} [Ų]	U _{iso O} [Ų]
4342599	26.6	0.16	8.0	8.5	6.0	187	3.7	0.019	0.117
2002219	64.2	0.20	8.3	-	6.0	54	3.6	0.044	0.345
2104768	34.6	0.16	8.0	8.5	6.0	161	2.8	0.019	0.058
9000738	55.8	0.22	8.3	-	18.2	65	1.0	0.026	0.086
9008148	22.8	0.17	8.0	8.5	6.0	172	2.7	0.020	0.095

Table S11 | Fitted structure parameters of top-5 structure predictions on NMF component 1.

G: PDF in the cloud (PDFitc) benchmark tests

This section shows the benchmark results produced by PDF in the cloud (PDFitc). Each of the four experimental PDF have been tested and fitted.

G.1.: CoFe₂O₄

Table S12 | PDFitc's settings for the benchmark test on the experimental PDF of CoFe₂O₄. This query resulted in a total of 151 structures and 70 structures had a R_{wp} below 50%.

Scattering type	Composition	Optional parameter	Type of PDF
		rmin=0	
		rmax=30	
X-ray	Fe-O	qmin=1.6	Experimental
		qmax=17.5	
		spd=93	

Table S13 | PDFitc's top-5 structure predictions for CoFe₂O₄.

Rank	Composition	Space group	R _{wp}	COD ID
1.	Fe ₃ O ₄	P2/c	17.1%	1532800
2.	Fe ₃ O ₄	Fd3m	17.4%	1513301
3.	Fe ₃ O ₄	R3m	17.4%	1526955
4.	Fe ₃ O ₄	Fd3m	17.7%	9006199
5.	Fe ₃ O ₄	Fd3m	17.8%	9016805

Table S14 | Fitted parameters of top-5 structures obtained from the benchmark test for the experimental PDF of $CoFe_2O_4$.

Structure	а	b	С	β	Psize	U _{iso M}	U _{iso O}
[COD ID]	[Å]	[Å]	[Å]	[°]	[Å]	[Ų]	[Ų]
1532800	5.9	6.0	16.7	90.5	108	0.009	0.021
1513301	8.4	-	-	-	80	0.011	0.020
1526955	5.9	-	14.6	-	93	0.010	0.022
9006199	8.4	-	-	-	80	0.011	0.022
9016805	8.4	8.3	5.9	-	80	0.011	0.023

G.2.: CeO₂

Table S15 | PDFitc's settings for the benchmark test on the experimental PDF of CeO₂. This query resulted in a total of 10 structures and 6 structures had a R_{wp} below 50%.

Scattering type	Composition	Optional parameter	Type of PDF
		rmin=0	
		rmax=30	
X-ray	Ce-O	qmin=0.7	Experimental
		qmax=24	
		spd=23	

Table S16 | PDFitc's top-5 structure predictions for CeO₂.

Rank	Composition	Space group	Rwp	COD ID
1.	Ce ₄ O _{6.64}	Fd3m	18.1%	1521459
2.	CeO ₂	Fd3m	19.0%	4343161
3.	CeO ₂	Fd3m	19.0%	9009008
4.	CeO ₂	Fd3m	19.0%	1562989
5.	Ce11O20	ΡĪ	32.8%	1521460

Table S17 | Fitted parameters of top-5 structures obtained from the benchmark test for the experimental PDF of CeO_2 .

Structure [COD ID]	а [Å]	<i>ь</i> [Å]	с [Å]	α [°]	β [°]	γ [°]	p _{size} [Å]	U _{iso M} [Ų]	U _{iso O} [Å ²]
1521459	5.4	-	-	-	-	-	23	0.007	0. 032
4343161	5.4	-	-	-	-	-	22	0.007	0.032
9009008	5.4	-	-	-	-	-	22	0.007	0.032
1562989	5.4	-	-	-	-	-	22	0.007	0.032
1521460	6.7	10.3	6.6	90.6	98.7	97.7	26	0.002	0.048

G.3.: W₅O₁₄

Table S18 | PDFitc's settings for the benchmark test on the experimental PDF of W_5O_{14} . This query resulted in a total of 25 structures and 5 structures had a R_{wp} below 50%.

Scattering type	Composition	Optional parameter	Type of PDF
		rmin=0	
		rmax=30	
X-ray	W-O	qmin=0.7	Experimental
		qmax=15	
		spd=19	

Table S19 | PDFitc's top-5 structure predictions for W₅O₁₄.

Rank	Composition	Space group	Rwp	COD ID
1.	W5O14	P421m	44.9%	1527783
2.	W18O49	P2/m	45.4%	1001678
3.	W ₁₈ O ₄₉	P2/m	45.4%	1528166
4.	W18O49	P2/m	46.2%	1538315
5.	W10O29	P2/m	48.3%	1538317

Structure	а	b	C	β	Psize	Uiso M	
[COD ID]	[Å]	[Å]	[Å]	[°]	[Å]	[Ų]	[Ų]
1527783	23.5	-	3.8	-	17	0.006	0. 000
1001678	18.4	3.8	14.3	118.1	20	0.004	0.030
1528166	18.4	3.8	14.3	118.1	20	0.004	0.026
1538315	18.4	3.8	14.3	118.3	19	0.004	0.026
1538317	12.2	3.8	22.6	94.2	16	0.003	0.036

Table S20 | Fitted parameters of top-5 structures obtained from the benchmark test for the experimental PDF of W_5O_{14} .

G.4.: Bi₂Fe₄O₉

For the experimental PDF of $Bi_2Fe_4O_9$ three benchmarks test cases we performed to screen a suitable chemical space.

Case #	Scattering type	Composition	Optional parameter	Type of PDF	Total # structures	R _{wp} below 50%
1	X-ray	Fe-*-O9	rmin=0 rmax=30	Experimental	9	2
2	X-ray	Fe4-*-O	qmin=0.7	Experimental	22	2
3	X-ray	*-Bi2-O	spd=19	Experimental	115	2

Table S22 | Case 1: PDFitc's top-5 structure predictions for Bi₂Fe₄O₉.

Rank	Composition	Space group	Rwp	COD ID
1.	Fe ₄ Bi ₂ O ₉	Pbam	21.6%	1530918
2.	Fe ₄ Bi ₂ O ₉	Pbam	21.9%	9008148
3.	Fe ₄ P ₂ O ₉	P21/c	98.2%	1534301
4.	Fe ₂ (SeO ₃) ₃	P63/m	98.7%	1542288
5.	Fe(PO ₃) ₃	Сс	98.9%	1520966

Table S23 | Case 1: Fitted parameters of top-5 structures obtained from the benchmark test for the experimental PDF of $Bi_2Fe_4O_9$.

Structure [COD ID]	a [Å]	b [Å]	с [Å]	β [°]	p _{size} [Å]	U _{iso Fe} [Å ²]	U _{iso Bi} [Å ²]	U _{iso O} [Å ²]
1530918	8.0	8.5	6.0	-	163	0.018	0.021	0.042
9008148	8.0	8.5	6.0	-	153	0.019	0.020	0.053
1534301	6.7	11.2	9.5	105.6	-	-	-	-
1542288	7.3	-	7.4	-	-	-	-	-
1520966	13.4	19.0	9.6	19.0	-	-	-	-

Table S24 | Case 2: PDFitc's top-5 structure predictions for Bi₂Fe₄O₉.

Rank Composition Space group Rwp COD ID

1.	Fe ₄ Bi ₂ O ₉	Pbam	21.6%	1530918
2.	Fe ₄ Bi ₂ O ₉	Pbam	21.9%	9008148
3.	Fe ₄ As ₂ O ₁₁	ΡĪ	90.4%	9009251
4.	Fe ₈ C _{I1.35} O ₁₆	C2/m	95.5%	9001319
5.	Fe ₄ As ₅ O ₁₃	ΡĪ	95.6%	9004184

Table S25 Case 2: Fitted parameters of top-5 structures obtained from the benchmark test for the
experimental PDF of Bi ₂ Fe ₄ O ₉ .

Structure	a	b	С	α	β	Ŷ	p _{size}	U _{iso Fe}	U _{iso Bi}	
[COD ID]	[A]	[A]	[A]	[°]	[°]	[°]	[A]	[A ²]	[A ²]	[A ²]
1530918	8.0	8.5	6.0	-	-	-	163	0.018	0.021	0.042
9008148	8.0	8.5	6.0	-	-	-	153	0.019	0.020	0.053
9009251	6.5	6.6	5.0	105.7	98.5	110.2	-	-	-	-
9001319	10.6	3.0	10.4	-	91.0	-	-	-	-	-
9004184	9.0	10.2	9.1	60.5	111.6	80-5	-	-	-	-

Table S26 | Case 3: PDFitc's top-5 structure predictions for Bi₂Fe₄O₉.

Rank	Composition	Space group	R _{wp}	COD ID
1.	Fe ₄ Bi ₂ O ₉	Pbam	21.6%	1530918
2.	Fe ₄ Bi ₂ O ₉	Pbam	21.9%	9008148
3.	Ga ₄ Bi ₂ O ₉	Pbam	81.1%	1530919
4.	Ga ₄ Bi ₂ O ₉	Pbam	84.3%	2002314
5.	Ga4Bi2O9	Pbam	84.5%	4342602

Table S27 | Case 3: Fitted parameters of top-5 structures obtained from the benchmark test for the experimental PDF of $Bi_2Fe_4O_9$.

Structure	а	b	С	Psize	Uiso Fe	Uiso Bi	
[COD ID]	[Å]	[Å]	[Å]	[Å]	[Ų]	[Ų]	[Ų]
1530918	8.0	8.5	6.0	163	0.018	0.021	0.042
9008148	8.0	8.5	6.0	153	0.019	0.020	0.053
1530919	8.0	8.3	6.0	-	-	-	-
2002314	8.0	8.3	5.9	-	-	-	-
4342602	8.0	8.3	5.9	-	-	-	-

G.5.: Bi₂Fe₄O₉ NMF component

For the experimental PDF of $Bi_2Fe_4O_9$ three benchmarks test cases we performed to screen a suitable chemical space.

Table S28 PDFitc's setting	s for the three b	benchmark tests o	on the PDF NMF	component	of Bi ₂ Fe ₄ O ₉ .

Case #	Scattering type	Composition	Optional parameter	Type of PDF	Total # structures	R _{wp} below 50%
1	X-ray	Fe-*-O9	rmin=0 rmax=30	Experimental	9	2
2	X-ray	Fe4-*-O	qmin=0.7	Experimental	22	2

3	X-ray	*-Bi2-O	qmax=15 spd=19	Experimental	115	2
---	-------	---------	-------------------	--------------	-----	---

Rank	Composition	Space group	R _{wp}	COD ID
1.	Fe4Bi2O9	Pbam	22.5%	1530918
2.	Fe ₄ Bi ₂ O ₉	Pbam	23.6%	9008148
3.	Fe ₂ (CO) ₉	P63/m	98.7%	1010480
4.	Fe ₂ (SeO ₃) ₃	P63/m	98.9%	1542288
5.	Fe ₄ P ₂ O ₉	P21/c	99.2%	1534301

Table S30 Case 1: Fitted parameters of top-5 structures obtained from the benchmark test for the
PDF NMF component of Bi ₂ Fe ₄ O ₉ .

Structure [COD ID]	а [Å]	b [Å]	с [Å]	β [°]	p _{size} [Å]	U _{iso Fe} [Å ²]	U _{iso Bi} [Ų]	U _{iso O} [Ų]
1530918	8.0	8.5	6.0	-	163	0.019	0.020	0.044
9008148	8.0	8.5	6.0	-	153	0.020	0.019	0.062
1010480	6.5	-	16.03	-	-	-	-	-
1542288	7.5	-	7.6	-	-	-	-	-
1534301	6.8	11.1	9.6	106.7	-	-	-	-

Rank	Composition	Space group	Rwp	COD ID
1.	Fe ₄ Bi ₂ O ₉	Pbam	22.5%	1530918
2.	Fe ₄ Bi ₂ O ₉	Pbam	23.6%	9008148
3.	Fe ₄ As ₂ O ₁₁	ΡĪ	89.9%	9009251
4.	Fe8C11.35O16	C2/m	96.0%	9001319
5.	Fe ₄ As ₅ O ₁₃	ΡĪ	97.2%	9004184

Table S32 | Case 2: Fitted parameters of top-5 structures obtained from the benchmark test for the PDF NMF component of $Bi_2Fe_4O_9$.

Structure	а	b	С	α	β	Ŷ	p size	U _{iso Fe}	U _{iso Bi}	U _{iso O}
[COD ID]	[Å]	[Å]	[Å]	[°]	[°]	[°]	[Å]	[Ų]	[Ų]	[Ų]
1530918	8.0	8.5	6.0	-	-	-	163	0.019	0.020	0.044
9008148	8.0	8.5	6.0	-	-	-	153	0.020	0.019	0.062
9009251	6.5	6.6	5.0	105.8	98.4	110.2	-	-	-	-
9001319	10.6	3.0	10.4	-	91.0	-	-	-	-	-
9004184	9.1	10.2	9.1	60.4	111.4	80.3	-	-	-	-

Rank	Composition	Space group	R _{wp}	COD ID
1.	Fe ₄ Bi ₂ O ₉	Pbam	22.5%	1530918
2.	Fe ₄ Bi ₂ O ₉	Pbam	23.6%	9008148
3.	Ga ₄ Bi ₂ O ₉	Pbam	81.7%	1530919
4.	Ga ₄ Bi ₂ O ₉	Pbam	85.0%	2002314
5.	Ga ₄ Bi ₂ O ₉	Pbam	85.6%	4342602

Structure [COD ID]	а [Å]	<i>ь</i> [Å]	с [Å]	p _{size} [Å]	U _{iso Fe} [Å ²]	U _{iso Bi} [Å ²]	U _{iso O} [Ų]
1530918	8.0	8.5	6.0	163	0.019	0.020	0.044
9008148	8.0	8.5	6.0	153	0.020	0.019	0.062
1530919	8.0	8.3	6.0	-	-	-	-
2002314	8.0	8.3	5.9	-	-	-	-
4342602	8.0	8.3	5.9	-	-	-	-

Table S34 | Case 3: Fitted parameters of top-5 structures obtained from the benchmark test for the PDF NMF component of Bi₂Fe₄O₉.

H: Structure predictions for CeO₂, W_5O_{14} , $Bi_2Fe_4O_9$ and NMF component 1

Top-5 of MLstructureMining's structure predictions for the experimental PDFs of CeO₂, W_5O_{14} , $Bi_2Fe_4O_9$ and NMF component 1.

Table S35 | Top-5 structure predictions for CeO₂.

Rank	Composition	Space group	Probability	R _{wp}	COD ID	
1.	La _{1.2} U _{0.8} O ₄	R3m	41.7	16.5%	1006067	
2.	Cu _{3.75} Hg _{1.75} S ₈ Sn ₂	I42m	7.2	17.3%	1527617	
3.	CdH ₆ O ₆ Pb	$Pn\overline{3}$	3.0	96.2%	1527729	
4.	$Ce_{0.5}O_2Zr_{0.5}$	P42/nmc	0.9	17.9%	2102840	
5.	Bi ₂ O ₃	Pn3m	0.7	16.1%	1537009	

Table S36 | Top-5 structure predictions for W_5O_{14} .

Rank	Composition	Space group	Probability	Rwp	COD ID
1.	O4PbW	I41/a	1.2	66.9%	9014025
2.	Bi ₂ O ₉ W ₂	Pbcn	1.1	67.2%	7230340
3.	Fe ₃ S ₄ Tl ₂	Ibam	1.1	61.6%	1536855
4.	H ₁₅ Th ₄	I 4 3d	1.1	75.1%	2311027
5.	O ₄ SnW	Pnna	0.8	56.2%	9007595

Table S37 | Top-5 structure predictions for Bi₂Fe₄O₉.

Rank	Composition	Space group	Probability	Rwp	COD ID
1.	AlBi ₂ Ga ₃ O ₉	Pbam	32.9	23.6%	4342599
2.	Bi ₂ Ga ₄ O ₉	Pbam	12.2	30.4%	2104768
3.	Bi ₂ Ga ₄ O ₉	Pbam	5.9	22.8%	2002314
4.	Bi ₂ O ₄ Pd	I4cm	2.6	64.9%	2002219
5.	O ₈ S ₂ Zr	Pbam	2.3	78.2%	2106245

Table S38 | Top-5 structure predictions for NMF component 1.

Rank	Composition	Space group	Probability	Rwp	COD ID
1.	AlBi ₂ Ga ₃ O ₉	Pbam	16.0	26.6%	4342599
2.	Bi ₂ O ₄ Pd	I4cm	15.3	64.2%	2002219
3.	Bi ₂ Ga ₄ O ₉	Pbam	9.3	34.6%	2104768
4.	$As_{0.4}Fe_{4.56}O_{12}S_{0.84}Sb_{3.84}Zn_{0.2}$	P42/mbc	7.2	55.8%	9000738
5.	Bi ₂ Fe ₄ O ₉	Pbam	5.2	22.8%	9008148

I: Comparing the PDF of CeO₂ with La_{1.2}U_{0.8}O₄

Figure S4 | Simulated PDFs of CeO₂ and La_{1.2}U_{0.8}O₄. The PDF of CeO₂ (blue) and La_{1.2}U_{0.8}O₄ (orange) show similar structural peaks. However, the similarity decreases as a function of r. Due to the difference in electron density, that ration between the metal – metal peaks and the oxygen – oxygen peaks vary.

J: Real-space Rietveld refinement of Ce constrained structure search for CeO₂

Structure [COD ID]	Composition	Space group	R _{wp} [%]	Scale	а [Å]	с [Å]	p _{size} [Å]	δ₂ [Ų]	U _{іso M} [Ų]	U _{iso 0} [Å ²]
2102840	Ce _{0.5} Zr _{0.5} O ₂	P42 /nmc	17.9	0.66	3.8	5.5	24	3.8	0.007	0.055
2102840	CeO ₂	P42 /nmc	16.1	0.61	3.9	5.4	24	3.8	0.007	0.034

Table S39 | Fitted structure parameters of top-5 structure predictions on CoFe₂O₄.

Figure S5 | *In situ* experiment of example 4, Bi₂Fe₄O₉, with frame wise top-3 prediction from MLstructureMining. a) *in situ* experiment from the formation of Bi₂Fe₄O₉. The three distinct phases (precursor, intermediate and product) are highlighted in white. b) The time plotted as function of the probability output for the top-3 predictions. c) all legends for plot b) with the COD identification codes.

L: Structure analysis of the BiFeO₃ intermediate and NMF component 2

This section shows the results of the structure analysis of the intermediate phase (BiFeO₃) and the reconstructed NMF component obtained from the *in situ* series of Bi₂Fe₄O₉.

L.1.: Baseline refinement of BiFeO3 and NMF component 2

Figure S6 | Plots of the baseline PDF refinements for the BiFeO3 and NMF component 2. a) baseline fit of intermediate phase if the *in situ* series of $Bi_2Fe_4O_9$: $BiFeO_3$ with a R_{wp} of 23.1%, and b) baseline fit NMF components 2: $BiFeO_3$ with a R_{wp} of 22.6%. The structures used for both fits are shown above a).

L.2.: Structure predictions for BiFeO₃ and NMF component 2

Rank	Composition	Space group	Probability	R _{wp}	COD ID
1.	BiFeO₃	R3c	7.9	18.3%	4336778
2.	BiMnO₃	C12/c1	3.4	34.5%	4340611
3.	Ca _{2.667} Nb _{1.333} O ₆	P121/c1	3.2	38.8%	1521500
4.	O₃PbTi	P4mm	3.2	28.0%	2107521
5.	O ₃ PbTi _{0.1} Zr _{0.9}	R3c	1.6	30.0%	2106319

Table S40 | Top-5 structure predictions for BiFeO₃.

Table S41 | Top-5 structure predictions for NMF component 2.

Rank	Composition	Space group	Probability	R _{wp}	COD ID
1.	Co _{0.5} NdO ₃ Pt _{0.5}	P121/n1	8.9	41.3%	9015792
2.	BiMnO₃	C12/c1	3.9	34.2%	4340611
3.	BiFeO₃	R3c	3.2	21.1%	4336778
4.	Ca2.667Nb1.333O6	P121/c1	2.6	41.5%	1521500
5.	O₃PbTi	P4mm	2.3	29.9%	2107521

L.3.: Real-space Rietveld refinements of predicted structures for BiFeO3 and NMF component 2

Structure [COD ID]	R _{wp} [%]	Scale	а [Å]	b [Å]	с [Å]	β [°]	p _{size} [Å]	δ₂ [Ų]	U _{іso M} [Ų]	U _{iso O} [Ų]
4336778	18.3	0.15	5.6	-	14.0	-	144	3.5	0.026	0.032
4340611	34.5	0.14	9.8	5.6	9.9	108.9	300	4.0	0.023	0.024
1521500	38.8	0.20	5.6	5.7	9.7	126.1	300	1.0	0.022	0.022
2107521	28.0	0.15	4.0	-	4.0	-	167	3.9	0.31	0.428

 Table S42 | Fitted structure parameters of top-5 structure predictions on BiFeO3.

Figure S7 | Top-3 real-space Rietveld refinement of the intermediate, BiFeO3, phase of the *in situ* series of Bi₂Fe₄O₉. a) BiFeO₃ with an R_{wp} of 18.3%, b) BiMnO₃ with an R_{wp} of 34.5% and c) Ca_{2.667}Nb_{1.336}O₆ with an R_{wp} of 38.8%, fit parameters can be seen in Table S41. The structure used for each fit is shown above the fit.

Structure [COD ID]	R _{wp} [%]	Scale	a [Å]	b [Å]	с [Å]	β [°]	γ [°]	p _{size} [Å]	δ₂ [Ų]	U _{іso M} [Ų]	U _{iso 0} [Å ²]
9015792	41.3	0.10	5.6	5.7	8.0	-	91.7	120	3.1	0.021	0.059
4340611	34.2	0.09	9.8	5.6	9.8	108.9	-	135	4.6	0.025	0.391
4336778	21.1	0.09	5.6	-	14.0	-	-	107	3.5	0.026	0.052
1521500	41.5	0.12	5.6	5.7	9.7	126.1	-	300	1.0	0.021	0.021
2107521	29.9	0.09	4.0	-	4.0	-	-	115	3.9	0.31	0.598

Table S43 | Fitted structure parameters of top-5 structure predictions on NMF component 2.

Figure S8 | Top-3 real-space Rietveld refinement of NMF component 2 of the *in situ* series of $Bi_2Fe_4O_9$. a) $Co_{0.5}NdO_3Pt_{0.5}$ with an R_{wp} of 41.3%, b) BiMnO₃ with an R_{wp} of 34.2% and c) BiFeO₃ with an R_{wp} of 21.1%, fit parameters can be seen in Table S42. The structure used for each fit is shown above the fit.

L.4.: PDFitc benchmark tests for BiFeO3 and NMF component of BiFeO3

For the experimental PDF of $Bi_2Fe_4O_9$ two benchmarks test cases we performed to screen a suitable chemical space.

Case #	Scattering type	Composition	Optional parameter	Type of PDF	Total # structures	R _{wp} below 50%
1	X-ray	Fe-*-O3	rmin=0 rmax=30	Experimental	202	6
2	X-ray	Bi-*-O3	qmin=0.1 qmax=21.5 spd=300	Experimental	62	6

Table S44 | PDFitc's settings for the three benchmark tests on the experimental PDF of Bi₂Fe₄O₉.

Table S45 | Case 1: PDFitc's top-5 structure predictions for BiFeO₃.

Rank	Composition	Space group	R _{wp}	COD ID
1.	FeBiO ₃	P1	17.7%	4333972
2.	FeBiO ₃	R3c	18.0%	4336776
3.	FeBiO ₃	R3c	18.1%	4336775
4.	FeBiO ₃	R3c	18.1%	7233675
5.	FeBiO ₃	R3c	18.3%	4501315

Table S46 | Case 1: Fitted parameters of top-5 structures obtained from the benchmark test for the experimental PDF of BiFeO₃.

Structure [COD ID]	a [Å]	b [Å]	с [Å]	α [°]	β [°]	γ [°]	p _{size} [Å]	U _{iso} ^{Fe} [Å ²]	U _{iso Bi} [Ų]	Uiso 0 [Ų]
4333972	5.7	5.7	5.6	60.1	59.5	59.6	154	0.011	0.026	0.032
4336776	5.6	-	13.9	-	-	-	118	0.013	0.027	0.030
4336775	5.6	-	13.9	-	-	-	118	0.027	0.013	0.031
7233675	5.6	-	13.9	-	-	-	115	0.014	0.027	0.031
4501315	5.6	-	13.9	-	-	-	115	0.012	0.027	0.034

Table S47 | Case 2: PDFitc's top-5 structure predictions for BiFeO₃.

Rank	Composition	Space group	Rwp	COD ID
1.	FeBiO ₃	P1	17.7%	4333972
2.	FeBiO ₃	R3c	18.0%	4336776
3.	FeBiO₃	R3c	18.1%	4336775
4.	FeBiO ₃	R3c	18.1%	7233675
5.	FeBiO₃	R3c	18.3%	4501315

Table S48 | Case 2: Fitted parameters of top-5 structures obtained from the benchmark test for the experimental PDF of BiFeO₃.

Structure [COD ID]	а [Å]	b [Å]	с [Å]	α [°]	β [°]	<i>ү</i> [°]	p _{size} [Å]	U _{iso Fe} [Å ²]	U _{iso Bi} [Ų]	U _{iso 0} [Ų]
4333972	5.7	5.7	5.6	60.1	59.5	59.6	154	0.011	0.026	0.032
4336776	5.6	-	13.9	-	-	-	118	0.013	0.027	0.030

4336775	5.6	-	13.9	-	-	-	118	0.027	0.013	0.031
7233675	5.6	-	13.9	-	-	-	115	0.014	0.027	0.031
4501315	5.6	-	13.9	-	-	-	115	0.012	0.027	0.034

Table S49 | PDFitc's settings for the three benchmark tests on NMF component 2.

Case #	Scattering type	Composition	Optional parameter	Type of PDF	Total # structures	R _{wp} below 50%
1	X-ray	Fe-*-O3	rmin=0 rmax=30	Experimental	202	6
2	X-ray	Bi-*-O3	qmin=0.1 qmax=21.5 spd=104	Experimental	62	6

Table S50 | Case 1: PDFitc's top-5 structure predictions for NMF component 2.

Rank	Composition	Space group	R _{wp}	COD ID
1.	FeBiO ₃	P1	20.1%	4333972
2.	FeBiO ₃	R3c	21.2%	4336776
3.	FeBiO ₃	R3c	21.2%	4336775
4.	FeBiO ₃	R3c	21.2%	7233675
5.	FeBiO ₃	R3c	21.4%	4501315

Table S51 | Case 1: Fitted parameters of top-5 structures obtained from the benchmark test for the experimental PDF of NMF component 2.

Structure [COD ID]	a [Å]	b [Å]	с [Å]	α [°]	β [°]	γ [°]	p _{size} [Å]	U _{iso} ^{Fe} [Å ²]	U _{iso Bi} [Ų]	U _{iso O} [Ų]
4333972	5.7	5.7	5.6	60.0	60.0	59.8	105	0.012	0.026	0.040
4336776	5.6	-	13.9	-	-	-	93	0.013	0.026	0.043
4336775	5.6	-	13.9	-	-	-	104	0.014	0.026	0.044
7233675	5.6	-	13.9	-	-	-	94	0.015	0.026	0.045
4501315	5.6	-	13.9	-	-	-	104	0.013	0.026	0.054

Table S52	Case 2: PDFitc's to	p-5 structure p	predictions for	NMF component 2.
-----------	---------------------	-----------------	-----------------	------------------

Rank	Composition	Space group	Rwp	COD ID
1.	FeBiO ₃	P1	20.1%	4333972
2.	FeBiO ₃	R3c	21.2%	4336776
3.	FeBiO ₃	R3c	21.2%	4336775
4.	FeBiO ₃	R3c	21.2%	7233675
5.	FeBiO ₃	R3c	21.4%	4501315

Table S53 | Case 2: Fitted parameters of top-5 structures obtained from the benchmark test for the experimental PDF of NMF component 2.

Structure [COD ID]	а [Å]	b [Å]	с [Å]	α [°]	β [°]	<i>ү</i> [°]	p _{size} [Å]	U _{iso Fe} [Å ²]	U _{iso Bi} [Ų]	U _{iso O} [Ų]
4333972	5.7	5.7	5.6	60.0	60.0	59.8	105	0.012	0.026	0.040
4336776	5.6	-	13.9	-	-	-	93	0.013	0.026	0.043

4336775	5.6	-	13.9	-	-	-	104	0.014	0.026	0.044
7233675	5.6	-	13.9	-	-	-	94	0.015	0.026	0.045
4501315	5.6	-	13.9	-	-	-	104	0.013	0.026	0.054

M: Principal component analysis and non-negative matrix factorization on in situ Bi ₂ Fe ₄ O ₉ with	h
precursor	

Figure S9 | Three component PCA and NMF structure characterization the *in situ* series of $Bi_2Fe_4O_9$. a) The cumulative variance explained by the PCA components and b) show the reconstructed NMF components. The real-space Rietveld refinements of top-3 predictions are shown in c), d) and e), fit parameters can be seen in Table S54. The fits are performed on NMF component 1.

Rank	Composition	Space group	Probability	R _{wp}	COD ID			
1.	Bi ₂ O ₄ Pd	I4cm	23.7%	65.5%	2002219			
2.	AlBi ₂ Ga ₃ O ₉	Pbam	11.7%	29.9%	4342599			
3.	Bi ₂ CuO ₄	P4/ncc	6.9%	66.4%	1004051			
4.	$As_{0.4}Fe_{4.56}O_{12}S_{0.84}Sb_{3.84}Zn_{0.2}$	P42/mbc	4.6%	57.6%	9000738			
5.	Bi ₂ Fe ₄ O ₉	Pbam	3.6%	24.2%	1530918			

Table S54	Top-5 structure	predictions for NMF	component 1 with	precursor.

Structure [COD ID]	R _{wp} [%]	Scale	а [Å]	<i>b</i> [Å]	с [Å]	p _{size} [Å]	δ2 [Ų]	U _{iso M} [Ų]	U _{iso O} [Ų]
2002219	65.5	0.18	8.3	-	6.0	58	3.6	0.040	0.512
4342599	29.9	0.15	8.0	8.5	6.0	288	3.7	0.019	0.164
1004051	66.4	0.15	8.3	-	6.1	66	4.2	0.036	4.882
9000738	57.6	0.20	8.3	-	18.2	71	1.0	0.024	0.092
1530918	24.2	0.16	8.0	8.5	6.0	243	2.6	0.020	0.062

Table S55 | Fitted structure parameters of top-5 structure predictions on NMF component 1 with precursor.

References

- 1 Bouhlel, M. A., Hwang, J., Bartoli, N., Lafage, R., Morlier, J. & Martins, J. A Python surrogate modeling framework with derivatives. *Adv. Eng. Softw.* (2019). <u>https://doi.org:10.1016/j.advengsoft.2019.03.005</u>
- 2 Bishop, C. M. & Nasrabadi, N. M. *Pattern recognition and machine learning*. Vol. 4 (Springer, 2006).
- Juhás, P., Farrow, Christopher L., Yang, X., Knox, Kevin R. & Billinge, Simon J. L. Complex modeling: a strategy and software program for combining multiple information sources to solve ill posed structure and nanostructure inverse problems. *Acta Cryst. A* **71**, 562-568 (2015). https://doi.org:10.1107/S2053273315014473
- 4 Nogueira, F. Bayesian Optimization: Open source constrained global optimization tool for Python. *GitHub*, <u>https://github.com/fmfn/BayesianOptimization</u> (2014).
- 5 Chen, T. & Guestrin, C. in *Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining.* 785-794.
- 6 Nicolae, M.-I. *et al.* Adversarial Robustness Toolbox v1. 0.0. *arXiv preprint arXiv:1807.01069* (2018).
- 7 Myers, J., Well, A. & Lorch Jr, R. *Research design and statistical analysis Routledge*. Vol. 3 (Routledge, 2010).
- 8 Sapnik, A. F. *et al.* Multivariate analysis of disorder in metal–organic frameworks. *Nat. Commun.* 13, 2173 (2022). <u>https://doi.org:10.1038/s41467-022-29849-6</u>
- 9 Mukaddem, K. T., Chater, P. A., Devereux, L. R., Al Bahri, O. K., Jain, A. & Cole, J. M. Dye-Anchoring Modes at the Dye…TiO2 Interface of N3- and N749-Sensitized Solar Cells Revealed by Glancing-Angle Pair Distribution Function Analysis. *J. Phys. Chem. C* **124**, 11935-11945 (2020). https://doi.org:10.1021/acs.jpcc.0c02314
- 10 Kjær, E. T. S. *et al.* In Situ Studies of the Formation of Tungsten and Niobium Oxide Nanoparticles: Towards Automated Analysis of Reaction Pathways from PDF Analysis using the Pearson Correlation Coefficient. *Chem. Methods* **2**, e202200034 (2022). https://doi.org:10.1002/cmtd.202200034
- 11 Juhas, P., Davis, T., Farrow, C. L. & Billinge, S. J. L. PDFgetX3: a rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions. *J. Appl. Cryst.* **46**, 560-566 (2013). <u>https://doi.org:10.1107/S0021889813005190</u>
- 12 Yang, X., Juhas, P., Farrow, C. L. & Billinge, S. J. xPDFsuite: an end-to-end software solution for high throughput pair distribution function transformation, visualization and analysis. *arXiv preprint arXiv:1402.3163* (2014).
- 13 Becker, J. *et al.* Experimental setup for in situ X-ray SAXS/WAXS/PDF studies of the formation and growth of nanoparticles in near-and supercritical fluids. *J. Appl. Cryst.* **43**, 729-736 (2010). https://doi.org:10.1107/S0021889810014688
- 14 Chupas, P. J., Qiu, X., Hanson, J. C., Lee, P. L., Grey, C. P. & Billinge, S. J. Rapid-acquisition pair distribution function (RA-PDF) analysis. *J. Appl. Cryst.* 36, 1342-1347 (2003). <u>https://doi.org:10.1107/S0021889803017564</u>
- 15 Hammersley, A. FIT2D: an introduction and overview. *European synchrotron radiation facility internal report ESRF97HA02T* **68**, 58 (1997).
- 16 Ashiotis, G. *et al.* The fast azimuthal integration Python library: pyFAI. *J. Appl. Cryst.* **48**, 510-519 (2015). <u>https://doi.org:10.1107/S1600576715004306</u>
- 17 Qiu, X., Thompson, J. W. & Billinge, S. J. L. PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data. *J. Appl. Cryst.* **37**, 678-678 (2004). https://doi.org:10.1107/S0021889804011744

18 Dykhne, T., Taylor, R., Florence, A. & Billinge, S. J. L. Data Requirements for the Reliable Use of Atomic Pair Distribution Functions in Amorphous Pharmaceutical Fingerprinting. *Pharm. Res.* **28**, 1041-1048 (2011). <u>https://doi.org:10.1007/s11095-010-0350-0</u>