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S1 HAT dataset construction workflow

Any pair of C-H bond dissociation reactions1 can be combined into a HAT reaction as follows:

BDE reaction 1: X −H → X • + H • ∆Gr = BDFE1 (1)

BDE reaction 2: Y −H → Y • + H • ∆Gr = BDFE2 (2)

resulting HAT reaction: X−H + Y • → X • + Y −H ∆Gr = BDFE1 - BDFE2 (3)

where BDFE stands for the bond dissociation free energy.

Consequently, the BDE-db dataset by St. John et al.1 enables in principle the combi-

natorial construction of almost 40 billion HAT reactions – an intractable number, even for

regular enumeration and reaction SMILES parsing. To make the data set size manageable,

we generated two distinct samples of C-H bond dissociation reactions, one million reactions

each. These samples were then combined on an entry-by-entry basis, resulting in a random

sample of 1 million HAT reactions across the full 40B reaction space.

This final chemical reaction space has a ∆Grxn,mean = - 0.014 kcal/mol and standard

deviation of 14.50 kcal/mol (Fig 1). As the initial dataset contained only the C, H, N and

O elements and focused on organic compounds (which tend to be dominated by carbon

chains), almost 70 percent of the dataset consists of HAT reactions involving two carbon

atoms (Table 1)

From this full reaction dataset, a computationally tractable subset of 2000 data points

was extracted for explicit reaction profile computation. During reaction sampling, we aimed

to cover as much structural diversity present in the chemical space as possible, to maximize

the generalizability of the eventual machine learning model trained on the computed data
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Figure 1: Distribution of ∆G across the hypothetical chemical space.

Table 1: Statistics of the HAT reactions across the hypothetical chemical space.

Bond Broken Bond Formed Count Percent
C-H C-H 717901 71.79
C-H H-N 78873 7.87
C-H H-O 50403 5.04
H-N C-H 79235 7.92
H-N H-N 8815 0.88
H-N H-O 5548 0.55
H-O C-H 50093 5.01
H-O H-N 5508 0.55
H-O H-O 3616 0.36

across the full chemical space. To this end, each reaction was first encoded into a binary

reaction fingerprint, more specifically the differential reaction fingerprint.2 Next, an initial

sample of 2000 reactions was selected, and the distance between each reaction pair was

determined. For each pair of reactions for which the cosine distance amounted to less than

0.85, the latter reaction was discarded from the sample. Subsequently, new reactions were

added to the sample until the sample size reached 2000 again, and the same procedure was

replicated. This iterative process was repeated until all sampled reactions were sufficiently

different so that their mutual reaction fingerprint distances amounted to the threshold set,

i.e., 0.85.

To construct the dataset of reaction profiles for HAT reactions in a fully automated
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manner, the Python package autodE3 in combination with Gaussian164 was used. The first

step taken by autodE is the generation of the 3D structures for reactants and products based

on the provided reaction SMILES string.5 More specifically, conformers are generated with

the ETKDGv3 algorithm6 as implemented in RDKit,7 after which an optimization at GFN2-

xTB level of theory is performed.8 Next, the conformers are ranked based on their relative

energy. If the ade.Config.hmethod_conformers keyword is set to False, then the energy values

obtained during the xTB optimization are used for the ranking. Otherwise, a refined value

obtained through a single-point low-level DFT (M06-2X/def2-SVP) calculation is used as the

ranking criterion (we selected the latter, vide infra).9,10 For the transition state location, from

the molecular graphs of reactants and product species, the set of bond rearrangements that

leads from the reactants graph to the products graph is identified. A guess transition state

(TS) is obtained through a series of constrained optimizations of a truncated system. The

guess TS is then refined through an optimization, followed by an analysis of the imaginary

vibration mode, to ensure that the correct bonds are being broken/formed throughout the

reaction. TS conformers are generated with the help of the randomize-and-relax algorithm,

the conformer with the lowest energy is optimized and its imaginary vibration mode is

checked once again. Next, geometry optimization and frequency/thermal corrections for

reactants, products, and transition state structures are performed at the M06-2X/def2-SVP

level of theory at standard conditions (298.15 K and 1 atm). Single-point energy refinements

were finally computed at M06-2X/def2-TZVP level of theory.11 This final DFT level of theory

was selected based on a previous benchmarking study of St. John et al.12 All calculations

were performed in the gas phase.

By default, autodE generates 300 conformers and uses a root mean squared displacement

(RMSD) threshold of 0.3Å to exclude identical conformers. Several tests to ensure repro-

ducibility and accuracy were performed on a small set of 30 reactions(cf. Fig. 2). The 30

reactions were first computed twice with respectively [300, 600, 1000, 1500, 2000] conformers

generated, an RMSD threshold of 0.1Å and with both options for ranking the conformers
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Figure 2: The 30 reactions used for determining the autodE parameters.

(i.e., single-point low-level DFT or xTB level of theory). The best results were obtained

when 1000 conformers were generated, and hence we selected these settings throughout our

analyses below.

Next, we aimed to assess the effect of the different ranking criteria. In first instance,

the reaction profiles for the 30 reactions were computed twice with conformer ranking based

on single-point DFT energies. From Fig. 3a-b, it is clear that both activation and reaction

energies for our test set are reproduced well (MAE ∼ 1.0 kcal/mol and RMSE ∼ 1.4 kcal/mol
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for the activation energies and MAE ∼ 0.6 kcal/mol and RMSE ∼ 0.9 kcal/mol for the

reaction energies). Subsequently, two consecutive runs, one using conformers ranked based

on GFN2-xTB energies and a second using (single-point) DFT energies, were performed. As

can be seen from Fig. 3c-d, the change in the level of theory for the conformers ranking

diminishes significantly the reproducibility (MAE ∼ 1.9 kcal/mol and RMSE ∼ 3.7 kcal/mol

for the activation energies and MAE ∼ 0.7 kcal/mol and RMSE ∼ 1.0 kcal/mol for the

reaction energies). As a final test, we aimed to check the reproducibility of the workflow

with conformer selection consistently at the GFN2-xTB level of theory. As can be observed

from Fig 3e-f, a significant difference can be found between both activation energies (MAE

∼ 2.1 kcal/mol and RMSE ∼ 4.2 kcal/mol) and reaction energies (MAE ∼ 0.5 kcal/mol and

RMSE ∼ 1.0 kcal/mol), indicating that conformer ranking based on GFN2-xTB energies is

not accurate nor reproducible. As such, based on the results above, we decided to generate

1000 conformers for each species and select the lowest energy conformer for reactant and

product from single-point DFT computations.

We also checked whether reactant and product complexes should be considered in the

computed reaction profiles. For the same subset of 30 reactions, we computed reaction pro-

files both with and without complexes. For 19 out of the 22 successful profiles completed,

the complexes ended up higher in energy than the isolated reactants when thermal correc-

tions at room temperature were included, indicating that complexation is irrelevant in these

cases (cf. Table 2). For the three cases for which a stable complex could be located, the

stabilization energy relative to the separated reactants amounted to a mere 1-2 kcal/mol.

Considering the computational cost of systematically computing the reaction complex, in

combination with the fact that attempts to identify complexes for our radical reactions in-

herently have a particularly high risk of resulting in an unintentional change in bonding

due to a barrierless addition of the radical to unsaturated bonds, we decided not to com-

pute complexes altogether, and consistently use the isolated reactants and products as the

reference for activation and reaction energy computation.
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a                                                                             c                                              e

b                                                                           d                                                f   

Figure 3: Correlation between (a) the activation energies (∆Gact) and (a) the reaction en-
ergies (∆Grxn) for two consecutive autodE runs with conformer selection at DFT level of
theory. Correlation between (c) ∆Gact and (d) ∆Grxn for an autodE run with conformer se-
lection at DFT level of theory and a consecutive run with conformer selection at GFN2-xTB
level of theory. Correlation between (e) ∆Gact and (f) ∆Grxn for two consecutive autodE
runs with conformer selection at GFN2-xTB level of theory.

By default, autodE3 does not exchange stereochemical information between reactants

and products in a reaction SMILES; it simply searches for the conformation that has the

lowest energy globally for each species independently. The transition state (TS) on the other

hand inherits the stereochemistry from one side; by default this is the reactant side. In the

case of our dataset of HAT reactions, in the TS, the hydrogen atom will be abstracted by an

atom with sp2 hybridization. Consequently, stereochemical compatibility between products

and TSs is not inherently guaranteed.

A conflicting stereochemistry can emerge in two manners in our data. In the first case,

only the product side contains a stereocenter, i.e.,

Case 1 X −H + Y • → X • + Y ∗ −H (4)
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Table 2: Complexation energies for the subset of 30 reactions, where ∆Ecomplex stands for the
electronic energy, and ∆Gcomplex stands for the Gibbs Free energy (at standard conditions,
i.e., 298.15 K and 1 atm).

Reaction Index ∆Ecomplex (kcal/mol) ∆Gcomplex (kcal/mol)
456222 -6.43 5.36
138021 -7.94 5.35
518224 -10.02 3.46
618981 -9.20 2.75
569328 -8.48 3.79
909735 -13.51 -1.41
694905 -12.43 0.40
573275 -9.49 3.14
87255 -8.72 3.82
966587 -6.27 5.39
859423 -14.66 -2.79
936714 -9.72 2.77
1454896 -8.42 3.95
387409 -10.34 1.62
281679 -12.18 1.20
184059 -10.97 2.38
98148 -11.00 0.67

1249926 -14.68 -1.98
247298 -6.39 5.73
831637 -8.36 5.07
720962 -10.59 2.43
379829 -13.99 0.34
909565 -4.66 7.74
957024 -10.65 2.30

where stereocenters are indicated with a ∗ sign. For this simple case, we decided to simply

invert the input reaction SMILES. Since the reactant now carries the stereocenter, the TS

will inherit the correct stereochemistry.

In the second case, both sides of the reaction contain a stereocenter involved in the

reaction.

Case 2 X∗ −H + Y • → X • + Y ∗ −H (5)

Given the reactant and TS geometries, the compatible product conformer can be deter-
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mined for this case as well in principle, but this can only be done after an initial version of

the profile has already been generated.

As such, to deal with this second case, a script to correct potential stereochemical in-

compatibilities for the products was executed once the full reaction profile was obtained. In

a first step of this script, the coordinates of the subset of atoms in the TS geometry corre-

sponding to the product molecule are extracted. The extracted geometry is then optimized

with GFN2-xTB and converted to a SMILES string. If the stereochemistry is not the same

for the original product and the SMILES string obtained from the TS geometry, then the

latter geometry is fully optimized according to the regular autodE workflow, and the reaction

profile is updated. In this step, one error was found and removed.

Despite the TS quality checks present in autodE, some erroneous reaction profiles were

not recognized as such and consequently, had to be filtered out manually. In first instance,

reactions with negative activation energies were removed (2 in total). Since all of these

reactions involved low imaginary frequencies, we subsequently inspected visually the normal

modes of all the TSs with imaginary frequencies (|νimag| < 500 cm−1), resulting in the

removal of another 13 reactions.

Once autodE generates the conformers of the TS, the connectivity is not revisited and

can lead to erroneous structures. Using the same autodE functions, the graphs for both

reactants and TS were generated and the connectivity between every atom was checked. In

24 cases, erroneous structures were found and removed.

Overall, out of the 2000 reactions considered, 1511 profile reactions were computed suc-

cessfully (75.6%) according to the workflow described above. For 44 cases, no TS could be

found. The main alternative source of failures was related to errors in the optimizations in

several instances of the autodE workflow. For 46 cases, time limit was reached.

In order to take into account the tunneling effect, the semi-classical rate constant is

defined as
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kSC(T ) = κ(T )kTST (T ) (6)

where κ is the tunneling transmission coefficient and kTST is the conventional Transition

State Theory (TST) rate constant.

The kTST is computed through the Eyring-Polanyi equation as

kTST =
kBT

h
e(−∆G‡/RT ) (7)

where kB is the Boltzmann constant, T is the absolute temperature, h is the Planck

constant and R is the gas constant.

The tunneling transmission coefficient (κ) is defined as the ratio of the thermally averaged

quantum tunneling probability and the quasiclassical transmission probability. Under the

assumption that the shape of the potential energy along the reaction coordinate s can be

approximated by an Eckart potential:

V (s) =
y∆V

1 + y
+

By

(1 + y)2
(8)

where ∆V is the reaction energy, y is a parameter that depends on the force constant of the

normal mode of the transition and the value of the potential at its maximun and B is

B = [V 1/2
max + (Vmax −∆V )1/2]2 (9)

where Vmax is the barrier height, the tunneling probability P T (E) can be analytically eval-

uated as

P T (E) =
cosh(a+ b)− cosh(a− b)

cosh(a+ b) + cosh(d)
(10)

where

a = 2π(2µE)1/2/(ℏα) (11)
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b = 2π[2µ(E −∆V )]1/2/(ℏα) (12)

d = 2π[2µB − ℏ2α2/4]1/2/(ℏα) (13)

The expression of the tunneling transmission coefficient is

κ(T ) = 1 +
2

kBT

∫ V max

E0

sinh[(Vmax − E)/kBT ]P
T (E)dE (14)

For the numerical integration of κ(T ), 10-point Gauss-Legendre quadrature with a change of

integration interval was used. In those cases where the barrier height is negative, the term

B is undefined and the Wigner tunneling approximation was used. κ(T ) is expressed as

κ(T ) = 1 +
1

24
(
h|ν‡|
kBT

)2 (15)

where ν‡ is the frequency of the normal mode of the transition.

The final activation energy with tunneling correction included is calculated using the

Eyring-Polanyi equation with the semi-classical rate constant kSC .

S1.1 Data Records

All data files produced as part of this study are accessible through (https://figshare.com/

projects/Hydrogen_atom_transfer_reactions/188007). Reaction IDs and SMILES, ac-

tivation energies (∆G‡; in kcal/mol), activation energies with tunneling corrections (∆G‡
corr;

in kcal/mol), and reaction energies (∆Grxn; in kcal/mol) for each computed reaction profile

are provided in CSV format. Gaussian log-files for both the final frequency and single-

point calculation for each reactant (both the original and stereo-constrained versions), TS

and product species, XYZ-files of final geometries as well as a CSV file containing com-

puted electronic energies and thermal corrections are available in a compressed archive file,

full_dataset_profiles.tar.gz.

The files have been organized per reaction profile, identified through the reaction ID.
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Within each directory, reactant XYZ-files are of the form r_#######.xyz, product

XYZ-files are of the form p_#######.xyz, and transition state XYZ-files are of the

form TS_#######.xyz. If the product had to be corrected to enforce stereochemical

compatibility, the latter XYZ-files are included under to form of alt_p_#######.xyz.

The frequency log-files can be found in a frequency_logs directory, and the single-point log-

files can be found in a single_point_logs directory. The energies for all of these species are

summarized per directory in energies.csv.

Additionally, the benchmarking data are made available in the benchmarking_data.tar.gz

directory (vide supra).

S2 In-depth technical description of the surrogate model

for QM descriptor prediction

First, the SMILES representation of the molecule is transformed into a graph-based repre-

sentation. In this graph-based representation, each atom is represented as a node and each

bond as an edge. The neighboring atoms N (v) of atom v are those nodes connected to v by

edges. The initial featurization of each atom includes atom type, degree, explicit and implicit

valence, formal charge, information on aromaticity and number of radical electrons on the

atomic level and on the bond-level the bond type (single, double, triple or aromatic) and

information about whether the bond is conjugated or in a ring. Atom features xv and bond

features evw are fed to a D-MPNN. The D-MPNN operates in two phases: a message-passing

phase, which transmits information across the molecule to build a neural representation of

the molecule, and a readout phase, which uses the final representation of the molecule to

make predictions about the properties of interest.

The message-passing phase starts with the initialization of the edge hidden state accord-

ing to
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h0
vw = τ(Wi cat(xv, evw)) (16)

where τ is the ReLU activation function, Wi ∈ RhXhi is a learned matrix and cat(xv, evw ∈

Rhi) is the concatenation of the atom features xv for atom v and the bond features evw for

bond vw.

Next, the hidden states ht
vw and the messages mt

vw associated with each bond evw are

updated at each step t until maximal depth T is reached using a message function Mt. The

corresponding message-passing equations are

mt+1
vw =

∑
k∈{N(v)\w}

Mt(xv, xw, h
t
kv) (17)

ht+1
vw = Ut(h

t
vw,m

t+1
vw ) (18)

for t ∈ {1, ..., T}. The current model defines Mt(xv, xw, h
t
vw) = ht

vw and implements Ut

with shared parameters across layers t

Ut(h
t
vw,m

t+1
vw ) = U(ht

vw,m
t+1
vw ) = τ(h0

vw +Wmm
t+1
vw ) (19)

where Wm ∈ RhXhi is a learned matrix with hidden size h.

In the last stage of the message-passing phase, the atom representation of the molecule

is recovered by summing the incoming bond features according to

mv =
∑

w∈N(v)

hT
vw (20)

hv = τ(Wa cat(xv,mv)) (21)

and similarly for the bond representation:
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hvw = τ(Wb cat(evw, h
T
vw)) (22)

where Wa,b ∈ RhXhi is a learned matrix.

The learned atomic/bond representations are then converted into the corresponding de-

scriptors through a multi-task readout layer.

With respect to the atom-level descriptors, a value for every atom is predicted indepen-

dently by the FFNN, which means the sum of all values does not necessarily equal the global

value of the property, e.g. in a doublet radical species, the sum of the predicted spin density

of all the atoms may not be equal to 1 for a radical species. To fix this issue, an attention-

based mechanism was implemented. This mechanism determines a weight factor for each

atom, indicating how much its predicted value needs to be corrected. The final predicted

value is generated from the initial atomic value and this weight.

As such, for the atom-level descriptors, e.g. atomic charges, the uncorrected descriptors

are calculated first as:

qv = FFNN(h) (23)

where h is the corresponding atomic/bond feature vector. The final corrected descriptor

subject to the constraint can then be calculated as:

âv = FFNN(h) (24)

where âv is an atom-level vector of the same dimensions as h, followed by:

wv =
exp(uâv)∑
v exp(uâv)

(25)

where u is a learnable atom-level vector that can be seen as a high level representation of

a fixed query “which atom needs more correction?”, and get a normalized weight wi through
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a softmax function, and then:

qfinalv = qv +
wv(Q−

∑
v qv)∑

v wv

(26)

where Q is the constraint applied on the descriptor such that:

∑
v

qfinalv = Q (27)

To predict global properties, the atom-centered feature vectors are either sum-pooled to

predict extensive molecular properties such as total enthalpy, total free energy, total entropy

and formation energy or mean-pooled to use as input to predict intensive properties such as

HOMO and LUMO energy and the HOMO-LUMO gap. Since an extensive molecular prop-

erty is dependent on the number of atoms the pooling function should also be dependent on

the number of aggregated nodes requiring summation and vice versa for extensive properties

cext =
∑
v

hv (28)

cint =

∑
v hv

V
(29)

where V is the number of atoms in the molecule.

S2.1 Hyperparameter optimization

To find a reasonable set of hyperparameters for the surrogate model, a grid search was

performed in which the depth of the D-MPNN t ∈ {5, 6, 7, 8}, the number of FFNN layers

L ∈ {2, 3, 4}, the D-MPNN hidden size nh,D−MPNN ∈ {300, 600, 900, 1200}, and the FFNN

hidden size nh,FFNN ∈ {300, 600, 900} was varied. The models were trained for 100 epochs

with a batch size of 50 in a fixed, random 80/10/10-split. A SINEXP learning rate scheduler

was used. The best combination of hyper-parameters was t = 5, L = 4, nh,D−MPNN =
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1200 and nh,FFNN = 900. These were chosen based on the performance of the model on the

validation set.

Once the hyper-parameters were selected, a new data split was generated, in which all

the radical species and molecules present in the reactivity dataset (vide supra) were taken

as the test set (around 1% of the data), and the remaining data was split randomly into

80% training and 20% validation. Because of the distinct splits used during hyperparameter

optimization and actual training, overfitting of the hyperparameters to the test set is avoided.

S3 Reactivity model architectures and performances

As indicated in the main text, several architectures were tested for the downstream re-

activity model. Whenever applicable, hyper-parameters were selected through a Bayesian

Optimization-based (BO) search.13 The accuracy on the ∆G‡ prediction task was determined

in 10-fold cross-validation, on a fixed data split (cf. https://github.com/chimie-paristech-CTM/

bde_hat/tree/master/scripts/baseline_models/splits). During BO, a test set of 20%

of the data was held out, after which 4-fold cross-validation on the remaining data was per-

formed. The average root mean square error across the different folds was selected as the

metric to optimize.

S3.1 Baseline models

Three model architectures were tested using the differential reaction fingerprints (DRFP;

radius = 3; nbits = 2048) as input.2 The DRFP algorithm takes a reaction SMILES as

an input and creates a binary fingerprint based on the symmetric difference of two sets

containing the circular molecular n-grams generated from the molecules listed left and right

from the reaction arrow, respectively, without the need for distinguishing between reactants

and reagents.

The first fingerprint-based model tested was k-nearest neighbors. The number of neigh-
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bors (k) was set as a hyperparameter. Across 32 iterations of BO, the best accuracy was

obtained for k = 11.

The next model architecture tested was a random forest. The hyperparameters for this

model architecture are the maximal fraction of features (maxfeatures), the minimal number

of samples per leaf (minsamples−leaf ), and the number of estimators (nestimators). Optimal

performance during BO optimization (64 iterations) was achieved for maxfeatures = 0.1,

minsamples−leaf = 20 and nestimators = 30.

An XGBoost model was set up as well. The hyperparameters for this model architecture

are γ, learning rate (lr), maximal depth of a tree (maxdepth), the minimum sum of instance

weights needed in a child (minchild−weight) and the number of estimators (nestimators). After

128 iterations of Bayesian optimization, optimal performance was achieved for γ = 4, lr =

0.05, maxdepth = 5, minchild−weight = 4 and nestimators = 300.

Next to fingerprint-based models, a couple of graph neural network (GNN) models were

considered as well. The first model tested was a Weisfeiler Lehman GNN (WL-GNN) one,

adapted from our recent work on cycloaddition reactions.14 A 7-dimensional hyperparameter

search space was defined and 256 iterations of Bayesian optimization were performed. Since

the training process of this model is time-consuming, the same parameters were used for the

QM-augmented WL-GNN (vide infra).

We also tested a second GNN model architecture, namely Chemprop. Here, we used the

condensed graph of reaction (CGR) representation, and performed 64 iterations of Bayesian

optimization to determine the hyperparameters. The best results were obtained for depth =

6, dropout = 0.2, FFN-hidden-size = 500, FFN-num-layers = 2, hidden-size = 500.

Finally, a kernel ridge regression (KRR) model architecture were tested as well. Here, we

focused on the recently introduced Bond-Based Reaction Representation.15 For this model,

the hyperparameters are the Gaussian kernel width σ and the regularisation parameter λ.

After a grid search of 81 combinations, the best results were obtained for σ = 100000 and λ

= 10−9.
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In Table 3, the performance of the various baseline models is presented.

Table 3: Performance on ∆G‡, in terms of mean absolute error (MAE) and root mean square
error (RMSE), of the baseline model architectures tested.

model MAE (kcal/mol) RMSE (kcal/mol)
k-nearest neighbors 5.33 7.13

random forest 5.25 6.96
XGBoost 5.32 7.03

KRR 3.55 4.71
WL-GNN 3.48 4.92
Chemprop 2.98 4.14

S3.2 Models based on the predicted valence bond-inspired repre-

sentation

For the representation based on descriptors, the valence bond-inspired representation was

used. For the atom-level descriptors, the spin densities on the radical centers on the reac-

tant and product side were selected. Additionally, the partial charges on the radical and

abstraction sites, as well as on the abstracted hydrogens, on both sides of the reaction were

included. Furthermore, 4 reaction-level descriptors (relaxed BDFEforward/reverse and frozen

BDEforward/reverse) were also selected. Finally, the buried volumes, Vbur of both radicals were

included, yielding 14 input features in total.

The simplest model tested was multivariate linear regression with descriptors. Subse-

quently, a k-nearest neighbors model with fingerprints was set up. Across 32 iterations of

BO, the best value obtained for k was 5.

The next model architecture tested was a random forest. Optimal performance across 64

iterations of the BO optimization campaign was achieved for maxfeatures = 0.8, minsamples−leaf

= 1 and nestimators = 600.

An XGBoost model was set up as well. After 128 iterations of Bayesian optimization,

optimal hyperparameters for the descriptor-based featurization were determined to be γ =

2, lr = 0.2, maxdepth = 2, minchild−weight = 10 and nestimators = 700.
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For the QM-augmented WL-GNN, optimal hyperparameters were depth WLN = 6, weight

factor atom vectors = 0.4, weight factor reaction vector = 0.7, initial learning rate = 0.00219,

learning rate ratio = 0.93, depth FFNN = 1 and hidden size multiplier = 10.

Finally, a feedforward neural network (FFNN) was constructed. A 4-dimensional search

space was set up for this architecture, and 256 iterations of BO were performed (see Table

4 for a summary).

Table 4: Definition of the search space and the optimal parameter values emerging from the
Bayesian optimization for the descriptor-based feed-forward neural network.

hyperparameter min max distribution optimal
layers 0 3 quniform 0

hidden size 10 300 quniform 230
initial learning rate ln(0.01) ln(0.08) log uniform 0.0277
learning rate ratio 0.90 0.99 quniform 0.95

In Table 5, the performance of the various model architectures is presented. Comparison

between Tables 3 and 5 leads to the conclusion that descriptor-based models outperform the

fingerprint-based models by several kcal/mol.

Table 5: Performance on ∆G‡, in terms of mean absolute error (MAE) and root mean square
error (RMSE), of the descriptor-based model architectures tested.

model MAE (kcal/mol) RMSE (kcal/mol)
linear regression 2.28 3.14

k-nearest neighbors 2.60 3.67
random forest 2.10 3.01

XGBoost 2.24 3.14
WL-GNN 2.46 3.36

FFNN 1.98 2.78

S3.3 ∆-ML model

Because of the fairly good correlation between reaction and activation energies (cf. Figure

4c in the main text), a ∆-ML model to predict deviations from the thermodynamic-kinetic

trend line was designed as well.
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To this end, estimated reaction energies (∆Gest
rxn) are first determined based on the BDFE

values outputted by the surrogate model (cf. Eq. 3). Subsequently, a linear model between

∆G‡ and the ∆Gest
rxn is fitted according to:

∆G‡ = a∆Gest
rxn + b (30)

An ML model is subsequently trained to predict the deviations in the actual activation

energy relative to this trendline, i.e., the model target becomes,

∆∆G‡ = ∆G‡ −∆G‡ (31)

We considered two architectures for this model: a fingerprint representation in combina-

tion with a RF, and an FFNN based on the predicted valence bond-inspired representation.

The same hyperparameters were used for these models as in the corresponding non-delta

learning models (vide supra). The former model reaches an MAE of 2.84 and RMSE of 3.73

on our in-house dataset, the latter reaches an MAE of 1.97 and RMSE of 2.76. As such, we

unequivocally recover the benefit of using our surrogate-predicted representation, and the

∆-ML with access to the entire surrogate representation reaches an equivalent accuracy as

the regular FFNN model.

S4 Analysis of descriptor importance in our in-house dataset

of HAT reactions

In Table 6, an overview of the performance of linear regression models trained with only

subsets of the full informative representation is provided. For the other model descriptor-

based architectures, similar trends were obtained.
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Table 6: Performance on ∆G‡, in terms of mean absolute error (MAE) and root mean square
error (RMSE), for multivariate linear models based on a subset of the descriptors. Trained
on the in-house HAT dataset.

descriptor set MAE (kcal/mol) RMSE (kcal/mol)
BDFE 2.56 3.52

spin densities 4.33 5.78
charges 5.19 6.94
Vbur 5.35 7.08

frozen BDE 4.26 5.50
BDFE, charges 2.35 3.24

BDFE, spin densities 2.55 3.52
BDFE, Vbur 2.56 3.52

BDFE, frozen BDE 2.37 3.32
charge, frozen BDE 3.77 5.02

charge, Vbur 5.17 6.89
charge, spin densities 3.94 5.40
spin densities, Vbur 4.30 5.74

spin densities, frozen BDE 4.04 5.17
Vbur, frozen BDE 4.27 5.50

BDFE, charges, spin densities 2.36 3.22
frozen BDE, charges, spin densities 3.43 4.56

BDFE, charges, frozen BDE 2.27 3.16
charges, spin densities, Vbur 3.87 5.29

BDFE, charges, spin densities, Vbur 2.35 3.21
frozen BDE, charges, spin densities, Vbur 3.41 4.55

BDFE, charges, spin densities, frozen BDE 2.27 3.14

S5 Predictive models trained on the 238 alkoxy HAT

dataset

S5.1 Data split

In Figure 4, the substrates for alkoxy radicals abstracting hydrogens from hydrocarbons and

heterosubstituted compounds in an acetonitrile solution and the 44 experimental substrates

compiled by Bietti et al.16

22



HO

OH

OH

O

N
H

O

N
H

O

N

O

O

N
H

O

N

O

O

O

O
N
H

O

N

O

O

HO
OHHO OH

OH OH
OH

OH

OH

NH2

NH2H2N NH2

N
H

O

OH O

O

NH2

O

N
H

H
N

N

NH2

HN

N

NH

N

N

N
H

H
N

O

O

N
H

OH

O

O

O

N
H

OH

O

O

O

N
H

OH

O

O

O

N
H

OH

O

O

O

N
H

OH

O

HO

HO

N

O

O

N
H

O

N

N

O

O

O

O O

O

O
N N

N

O

O

O

O

O

O
O

N
H

O
H
N

O

N
H

O

H2N NH2 N

O
O

N N

O

N

O

N

O

N

O
N

O

H2N H2N
OH

O

N

O

CH4

Training Set Bietti Set

Figure 4: Training and Test set for the HAT reactions compiled by Bietti et al.16 Abstraction
sites are highlighted.

S5.2 Analysis of descriptor importance for the predictive models

trained on the synthesis dataset

In Table 7, a detailed overview of the performance of linear regression models trained with

only subsets of the full informative representation is provided.

S5.3 Re-scaling procedure

The experimental dataset collection 45 HAT reactions mediated by the cumyloxyl radical

collected by Bietti et al reported the rate constants, the activation energy is calculated

using the Eyring-Polanyi equation (7). For the calculations of the MAE and RMSE, the

experimental activation energies were re-scaled. To this end, we predicted all the activation

energies using the FFNN with 4 ensembles, trained in the alkoxy HAT dataset, and fit a
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Table 7: Performance on ∆G‡, in terms of mean absolute error (MAE) and root mean square
error (RMSE), for multivariate linear models based on a subset of the descriptors. Trained
on the alkoxy radical dataset.

descriptor set MAE (kcal/mol) RMSE (kcal/mol)
BDFE 2.25 2.57

spin densities 2.73 3.10
charges 1.83 2.28
Vbur 2.56 2.94

frozen BDE 2.28 2.62
BDFE, spin densities 1.95 2.27

BDFE, Vbur 2.13 2.39
BDFE, charges 1.44 1.80

BDFE, frozen BDE 2.06 2.40
charges, spin densities 1.74 2.19

charges, Vbur 1.75 2.15
charges, frozen BDE 1.86 2.25

spin densities, frozen BDE 2.21 2.55
spin densities, Vbur 2.23 2.52
Vbur, frozen BDE 2.19 2.49

BDFE, charges, Vbur 1.16 1.49
BDFE, charges, spin densities 1.27 1.61

frozen BDE, charges, spin densities 1.81 2.22
BDFE, charges, spin densities, Vbur 1.18 1.51

frozen BDE, charges, spin densities, Vbur 1.45 1.85
BDFE, charges, spin densities, frozen BDE 1.37 1.71

linear model between the predicted activation energies (∆G‡
pred) and the experimental ones

(∆G‡
exp) as:

∆G‡
pred = a∆G‡

exp + b (32)

for this model, b = 5.99 and a = 0.93. Once the model was fitted, we predicted the

values of the experimental activation energies, and the MAE and RMSE were calculated

with respect to this re-scaled activation energy.
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S6 Predictive models trained on the 564 photoredox HAT

dataset

In Figure 5, the chemical space contained in this dataset is defined. In the original work,17

a total of 17 radicals were selected, based on their synthetic importance in photoredox HAT

reactivity. However, most of these contain halogen, sulfur or charged atoms – which cannot

be treated by our surrogate model – and consequently, they were filtered out. A similar

filter was applied to the substrates. 630 reactions from the original work of Yang et. al.

are retained in this manner, for 35 of those, transition states were not located during the

computation of the dataset. From the remaining 595 reactions, 31 reactions could not be

atom mapped. The mapping step is necessary for the predictions of the surrogate model, so

these reactions were also discarded.

In Figure 6, the performance of several models on the final dataset is presented: ’Ad-
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Figure 6: Learning curves for the ∆G‡ for several models based in an intermediate VB
learned representation and in the 50 physical organic descriptors.

aBoost PhysOrg Desc’ corresponds to the original model with explicitly computed descriptors

by Yang et al.,17 ’FFNN 4 ensembles’ corresponds to the ensembled, pre-trained feedforward

neural network based on the predicted VB representation, and ’RF’ corresponds to a ran-

dom forest trained based on the latter. It should be clear that while the AdaBoost model

outperforms our models on the full dataset, this advantage vanishes in the low data regime

(at Ntrain = 25, our FFNN model even achieves the best accuracy, with an MAE of 1.62

kcal/mol).

S7 Feature selection for the linear model trained on the

P450 metabolism dataset

As mentioned before, our VB-inspired representation of the single reaction constitutes 14

descriptors, meaning that the number of descriptors is almost equal to the number of samples

(18 points, cf. Fig. 7). This would lead to overfitting even in the most simple architecture,
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i.e., the multivariate linear model.

In Table 8, an overview of the performance of linear regression models trained with only

subsets of the full informative representation is provided.

S8 Atmospheric reactions extracted from RMechDB

The RMechDB dataset encompass of over 5,300 elementary radical reactions and 591 are

HAT reactions.19 We filtered out all reactions involving halogens or Sulfur, because the

surrogate model was not trained on compounds with these elements. At the end, reaction

profiles were computed for 268 reactions. 76 finished successfully. The main source of failure

was the optimization of the identified transition state. 5 reactions did not finish in time and

for 20 cases a barrierless reaction was found. 2 reactions presented a negative ∆G‡ and for

one case, the displacement of the normal mode of the transition did not correspond to the

formation of the bond. As such, 73 reaction profiles were collected. In Figure 8 the distri-

bution of the computed activation and reaction energies, as well as the correlation between

both quantities, is presented. The relevant files are provided with the same description of
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Table 8: Performance on ∆G‡, in terms of mean absolute error (MAE) and root mean square
error (RMSE), for multivariate linear models based on a subset of the descriptors. Trained
on the data set by Tantillo and co-workers of 18 hydrogen atom transfer by the cytochrome
P450 enzyme.18

descriptor set MAE (kcal/mol) RMSE (kcal/mol)
BDFE 1.42 1.79

spin densities 1.28 1.18
charges 1.44 1.56
Vbur 1.94 2.21

frozen BDE 1.81 2.12
spin densities, BDFE 1.69 1.99
spin densities, Vbur 1.12 1.32

spin densities, charges 1.25 1.35
spin densities, frozen BDE 1.60 2.31

BDFE, charges 1.98 2.40
BDFE, Vbur 2.09 2.43

BDFE, frozen BDE 1.60 2.25
charges, frozen BDE 1.75 2.31

charges, Vbur 3.61 4.10
Vbur, frozen BDE 1.33 1.59

spin densities, Vbur, charges 2.63 2.93
spin densities, Vbur, BDFE 2.17 2.41

spin densities, Vbur, frozen BDE 2.12 2.32

our in-house dataset, in a compressed archive file, RMechDB_profiles.tar.gz.

In Table 9, the performance of the various model architectures is presented.

Table 9: Performance on ∆G‡, in terms of mean absolute error (MAE) and root mean square
error (RMSE), of the descriptor-based model architectures tested for the RMechDB dataset.

model MAE (kcal/mol) RMSE (kcal/mol)
linear regression 1.20 1.57
random forest 1.38 1.83

FFNN 1.76 2.06
FFNN (4 ensembles) 1.29 1.51
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