Supporting Information for High-throughput Quantum Theory of Atoms in Molecules (QTAIM) for Geometric Deep Learning of Molecular and Reaction Properties

Santiago Vargas,[†] Winston Gee,[†] and Anastassia Alexandrova^{*,†,‡,¶}

† Department of Chemistry and Biochemistry, University of California, Los Angeles, 90095-1569, USA

Department of Materials Science and Engineering, University of California, Los Angeles, 90095-1569, USA

 $\P California\ NanoSystems\ Institute$

E-mail: santiagovargas921@gmail.com,ana@chem.ucla.edu

Full set of QTAIM descriptors

Atom Descriptors	Bond Descriptors
Total Electrostatic Potential Φ_{tot}	Total Electrostatic Potential Φ_{tot}
Nuclear Electrostatic Potential Φ_{nuc}	Nuclear Electrostatic Potential Φ_{nuc}
Electronic Electrostatic Potential Φ_e	Electronic Electrostatic Potential Φ_e
Lagrangrian $(\nabla^2 \rho)$	Lagrangrian $(\nabla^2 \rho)$
Kinetic Energy Hamiltonian	Kinetic Energy Hamiltonian
Gradient Norm	Gradient Norm
Δ_g promolecular	Δ_g promolecular
Δ_g Hirshfield	Δ_g Hirshfield
Electron Density	Electron Density\$)
Laplacian Electron Density	Laplacian Electron Density
Hessian Determinant	Hessian Determinant
Electron Localization Function(ELF)	Electron Localization Function(ELF)
Laplacian Norm	Laplacian Norm
Hessian eigenvalue (1st)	Hessian eigenvalue (1st)
Electronc Ellipticity	Electronc Ellipticity
Average Location Ion E	Average Location Ion E
Eta	Eta
Localized Orbital Locator	Localized Orbital Locator
energy density	energy density
α spin	α spin
β spin	β spin
spin density	spin density

Dataset Visualizations

Uncorrected Energies - LIBE

Figure S2: LIBE energies prior to correction

Corrected Energies - LIBE

Figure S3: LIBE corrected energies

Correction Values

Atomic Number	Correction Value
1	-16.77537562
3	-206.45292515
6	-1034.69861041
7	-1488.80081496
8	-2048.19270236
9	-2717.83725543
15	-9286.36995521
16	-10831.57826394

 Table S4:
 Correction values used from raw LIBE energies

Parity Plots

Figure S6: QM8 non-QTAIM test Partity.

Figure S8: QM9 non-QTAIM test Partity.

Figure S9: LIBE QTAIM test Partity.

Figure S10: LIBE QTAIM test Partity, charge-partitioned.

 ${\bf Figure \ S11}: \ {\rm LIBE \ QTAIM \ test \ Partity, \ spin-partitioned}.$

 $\mathbf{Figure \ S12}: \ \mathrm{LIBE \ non-QTAIM \ test \ Partity}.$

Figure S13: LIBE non-QTAIM test Partity, charge-partitioned.

 $\mathbf{Figure \ S14}: \ \mathrm{LIBE \ non-QTAIM \ test \ Partity}.$

 $\mathbf{Figure \ S15}: \ \mathbf{Green \ QTAIM \ test \ Partity}.$

 ${\bf Figure \ S16}: \ {\bf Green \ non-QTAIM \ test \ Partity}.$

OOD True vs. Predicted Plots

 $\mathbf{Figure \ S17}: \ \mathbf{LIBE \ OOD \ QTAIM \ overall \ test \ Partity}.$

Figure S18: LIBE OOD QTAIM spin-stratified test Partity.

Figure S19: LIBE OOD QTAIM charge-stratified test Partity.

 ${\bf Figure \ S20}: \ {\rm LIBE \ OOD \ non-QTAIM \ stratified \ test \ Partity}.$

Figure S21: LIBE OOD non-QTAIM charge-stratified test Partity.

Figure S22: LIBE OOD non-QTAIM spin-stratified test Partity.

Figure S23: QM9 OOD non-QTAIM test Partity.

Figure S24: QM9 OOD QTAIM test Partity.

Tox21 Results

	Our Model (QTAIM)	Our Model (No QTAIM)
NR-AR	0.9722	0.9644
NR-AR-LBD	0.9797	0.9734
NR-AhR	0.8899	0.8824
NR-Aromatase	0.9584	0.9502
NR-ER	0.8988	0.8942
NR-ER-LBD	0.9613	0.9567
NR-PPAR-gamma	0.9779	0.9786
SR-ARE	0.8567	0.8413
SR-ATAD5	0.9775	0.9748
SR-HSE	0.9506	0.9467
SR-MMP	0.8552	0.8405
SR-p53	0.9477	0.9458
Average AUROC	0.9355	0.9291

Table S25:Tox21 Test Performance

Full Learning Curves

Figure S26: LIBE Learning Curve on MAE $\,$

Figure S27: LIBE Learning Curve on %EwT

Figure S28: QM8 Learning Curve on \mathbb{R}^2

Figure S30: QM9 Learning Curve on \mathbb{R}^2

Figure S31: QM9 Learning Curve on MAE

Hyperparameter Selection

For ChemProp hyperparameter optimizations we used their inbuilt hyperopt functionality.¹ Here we used the following set of parameters as sweep values:

Schnet/PaiNN - Here we used their default values 2,3 a select set of values:

Hyperparameter	Values Swept
N_atom_basis	10, 20, 50
Shared interaction	ΤF
LR	0.01, 0.001, 0.0001

Table S32: Hyperparameters Swept for SchNet and PaiNN

QTAIM-embed - for our own in-house algorithms, we leveraged Wandb's parameter selection tool.⁴ We used the same hyperparameter sweep configs for each model set. Finalized trained models for LIBE used the complete set of QTAIM descriptors above, other models removed α and β spin descriptors.

Hyperparameter	Values Swept		
weight_decay	0.0, 0.00001		
Embedding_size	16, 20, 24		
Gated_dropout	0.0, 0.1, 0.2		
Gated_hidden_size	64, 128		
Gated_batch_norm	T, f		
Gated_graph_norm	T, f		
Num_lstm_iters	9, 11, 13, 15		
Num_lstm_layers	1, 2		
Fc_dropout	0.1, 0.2		
Fc_hidden_size_1	256, 128		
Fc_hidden_shape	flat, cone		
Precision	bf16, 32		
Gradient_clip_val	10, 100		
Accumulated_grad_batches	1, 3, 5		

 ${\bf Table \ S33: \ QTAIM-embed \ (our) \ model \ hyperparameter \ sweeps}$

Dataset QTAIM distributions

QM8

Figure S34: QM8 QTAIM value distribution - NCPs

Figure S35: QM8 QTAIM value distribution - BCPs

QM9

Figure S36: QM9 QTAIM value distribution - NCPs

Figure S37: QM9 QTAIM value distribution - BCPs

LIBE

Figure S38: LIBE QTAIM value distribution - BCPs

Figure S39: LIBE QTAIM value distribution - BCPs

Tox21

Figure S40: Tox21 QTAIM value distribution - BCPs

Figure S41: Tox21 QTAIM value distribution - BCPs

Correlation of QTAIM Values to Targets

$\mathbf{QM8}$

Figure S42: Correlation of NCP values with QM8 target values

Corr. bond mean-pooled QTAIM features QM8

Figure S43: Correlation of BCP values with QM8 target values

QM9

0.13 Lagrangian_K -0.049 0.40 Hamiltonian_K -0.048 e_density -0.048 - 0.35 lap_e_density -0.048 e_loc_func -0.01 0.01 0.003 ave_loc_ion_E -0.41 0.034 - 0.30 delta_g_promolecular -0.054 0.083 0.031 delta_g_hirsh -0.06 0.12 0.001 0 0 esp_nuc -- 0.25 0.013 esp_e esp_total -0.001 0 0 - 0.20 grad_norm -0.13 0.035 lap_norm -0.048 eig_hess -0.048 - 0.15 det_hessian -0.036 0.069 0.029 ellip_e_dens -0.098 0.002 0.035 0.055 0.12 0.057 eta -- 0.10 energy_density -0.048 density_beta -0.04 0.38 - 0.05 density_alpha -0.04 spin_density -0 0 0 lol -0.045 0.11 0.054 - 0.00 HOMO LUMO gap

Corr. atom mean-pooled QTAIM features QM9

Figure S44: Correlation of NCP values with QM9 target values

Lagrangian_K -	0.089	0.5	0.32	- 0.5
Hamiltonian_K -	0.013	0.34	0.28	
e_density -	0.013	0.34	0.28	
lap_e_density -	0.14	0.085	0.012	
e_loc_func -	0.034	0.19	0.12	- 0.4
ave_loc_ion_E -	0.07	0.49	0.32	
delta_g_promolecular -	0.01	0.31	0.26	
delta_g_hirsh -	0.01	0.23	0.18	
esp_nuc -	0	0.031	0.032	- 0 3
esp_e -	0.001	0.004	0.006	0.5
esp_total -	0.016	0.32	0.25	
grad_norm -	0.053	0.04	0.008	
lap_norm -	0.14	0.085	0.012	
eig_hess -	0.14	0.085	0.012	- 0.2
det_hessian -	0.033	0.14	0.085	
ellip_e_dens -	0.011	0	0.004	
eta -	0.077	0.022	0	
energy_density -	0.013	0.34	0.28	- 0.1
density_beta -	0.008	0.34	0.28	
density_alpha -	0.008	0.34	0.28	
spin_density -	0	0	0	
lol -	0.022	0.19	0.13	- 0.0
	номо	LUMO	gap	- 0.0

Corr. bond mean-pooled QTAIM features QM9

Figure S45: Correlation of BCP values with QM9 target values

LIBE

Figure S46: Correlation of NCP values with LIBE target values

Corr. bond mean-pooled QTAIM features LIBE

Figure S47: Correlation of BCP values with LIBE target values

Scatterplots of competing models

Figure S48: Parity Plot QM9 chemprop no QTAIM

Figure S49: Parity Plot QM9 chemprop QTAIM

Figure S51: Parity Plot QM9 Schnet

Figure S52: Parity Plot QM8 chemprop no QTAIM

Figure S53: Parity Plot QM8 chemprop QTAIM

Figure S54: Parity Plot QM8 painn

Figure S55: Parity Plot QM8 Schnet

References

 Heid, E.; Greenman, K. P.; Chung, Y.; Li, S.-C.; Graff, D. E.; Vermeire, F. H.; Wu, H.; Green, W. H.; McGill, C. J. Chemprop: A Machine Learning Package for Chemical Property Prediction. *Journal of Chemical Information and Modeling* **2023**, *64*, 9–17.

- (2) Schütt, K.; Unke, O.; Gastegger, M. Equivariant message passing for the prediction of tensorial properties and molecular spectra. Proceedings of the 38th International Conference on Machine Learning. 2021; pp 9377–9388.
- (3) Schütt, K. T.; Arbabzadah, F.; Chmiela, S.; Müller, K. R.; Tkatchenko, A. Quantumchemical insights from deep tensor neural networks. *Nature Communications* **2017**, *8*.
- (4) Biewald, L. Experiment Tracking with Weights and Biases. 2020; https://www.wandb.com/, Software available from wandb.com.

TOC Graphic

