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Figure S1: Warren-Cowley short-range order (SRO) parameter distributions of 300 K and 1500 K alloy
training datasets (no SRO filtering). The SRO distributions are shown for the (a) 1st and (b) 2nd nearest
neighbor interactions.

Figure S2: Warren-Cowley SRO parameter distributions of 300 K and 1500 K alloy training datasets (with
SRO filtering). The SRO distributions are shown for the (a) 1st and (b) 2nd nearest neighbor interactions.
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Figure S3: Coordination motif distribution of amorphous silicon, showing the comparison between the
original 100,000-atom structure and the sliced 256-atom structures.

Figure S4: Normalized interface energy distribution of randomly generated interface structures. All struc-
tures were relaxed using M3GNet.
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Figure S5: Phase diagram of the alloy structures generated by CDVAE (with atomic species denoising).
The correct composition, Fe60Ni20Cr20, is indicated by the green square. The composition of 100 CDVAE-
generated structures are indicated by the red squares.

Figure S6: Example DiffCSP-generated interface structures (a) with lattice denoising but no teacher forcing,
(b) with lattice denoising and teacher forcing, and (c) without lattice denoising.
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We trained DiffCSP models with lattice denoising (and teacher forcing) to compare with DiffCSP
models without lattice denoising. For the disordered interface and alloy datasets, teacher forcing
was applied for the first 150 epochs. For the amorphous Si dataset, teacher forcing was applied
for the first 500 epochs. The weight of the lattice cost was set to 1 for all models. All other
hyperparameters were set to be the same as the DIffCSP models without lattice denoising.

Table S1: Dismai-Bench metrics for DiffCSP with lattice denoising and teacher forcing. Each metric is
represented by the average value over 3 separately trained models. The minimum and maximum values are
shown in round brackets. The difference in the metric value between DiffCSP with lattice denoising and
without lattice denoising is shown in square brackets. DiffCSP performs worse with lattice denoising than
without lattice denoising.

Disordered interface

dLi
(min, max)

dCo

(min, max)
dSc

(min, max)
dall

(min, max)
% struc failed
(min, max)

0.215 [+0.171]
(0.0853, 0.297)

0.273 [+0.245]
(0.0905, 0.420)

0.317 [+0.222]
(0.240, 0.407)

0.192 [+0.155]
(0.0671, 0.278)

43.8 [+36.7]
(11.9, 79.3)

Amorphous Si

dmotif

(min, max)
drdf

(min, max)
dangle

(min, max)
% struc failed
(min, max)

0.863 [+0.798]
(0.405, 1.11)

9.70 [+8.31]
(8.70, 10.6)

0.0492 [+0.0390]
(0.0260, 0.0621)

8.7 [+8.7]
(6.0, 12.6)

Alloy (300 K, narrow SRO)

dcluster
(min, max)

% struc w/ vac
(min, max)

% struc failed
(min, max)

0.0824 [+0.0179]
(0.0621, 0.102)

99.5 [+5.13]
(98.4, 100)

0.00 [+0.00]
(0.00, 0.00)

Table S2: M3GNet relaxation results of disordered interfaces generated by the generative models. nsteps is
the number of M3GNet relaxation steps required to relax the generated structures. Einitial and Efinal are the
M3GNet-calculated energies of the unrelaxed and relaxed structures respectively. The mean and standard
deviation for each quantity are listed. For each architecture, 3 separate models were trained and the results
were averaged.

Model
nsteps

Einitial - Efinal

(meV/atom)

mean std mean std

CDVAE 10.3 8.71 3.30 1.46
DiffCSP 68.2 53.9 12.3 9.68
CrysTens 171 74.3 640 137
UniMat 257 116 989 70.0
CryinGAN 147 72.4 234 67.3

5



Table S3: SOAP-GAP relaxation results of amorphous Si generated by CDVAE and DiffCSP. nsteps is the
number of SOAP-GAP relaxation steps required to relax the generated structures. Einitial and Efinal are
the SOAP-GAP-calculated energies of the unrelaxed and relaxed structures respectively. The mean and
standard deviation for each quantity are listed. For each architecture, 3 separate models were trained and
the results were averaged.

Model
nsteps

Einitial - Efinal

(meV/atom)

mean std mean std

CDVAE 22.5 16.3 8.64 45.3
DiffCSP 140 39.0 275 21.6

Figure S7: (a) Radial distribution functions (RDFs) and (b) bond angle distributions of amorphous Si
structures generated by CDVAE and DiffCSP. The distributions of the training dataset are also shown for
reference.

Figure S8: Examples of CDVAE-generated alloy structures with (a) noisy lattice and (b) vacancies.
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Figure S9: Warren-Cowley SRO parameter distributions of (a) 300 K and (b) 1500 K alloy structures
(wide SRO) generated by CDVAE. The SRO distributions are shown for the 1st and 2nd nearest neighbor
interactions.
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Figure S10: Warren-Cowley SRO parameter distributions of (a) 300 K and (b) 1500 K alloy structures
(wide SRO) generated by DiffCSP. The SRO distributions are shown for the 1st and 2nd nearest neighbor
interactions.
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Figure S11: Warren-Cowley SRO parameter distributions of (a) 300 K and (b) 1500 K alloy structures
(wide SRO) generated by CryinGAN. The SRO distributions are shown for the 1st and 2nd nearest neighbor
interactions.
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Figure S12: Average number of unique pairs of atoms with bond distance ≤ 1.5 Å for interface structures
generated using CryinGAN trained with different λ values. As λ increases, fewer atoms are generated too
close to each other. For each λ value, 3 separate models were trained, 1000 structures were generated using
each model, and the counts were averaged across the models.

Figure S13: Examples of CryinGAN-generated structures before relaxation (as-generated) and after M3GNet
relaxation.
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Figure S14: Normalized interface energy distributions of structures generated using CryinGAN trained with
different λ values (0, 0.01, 0.05, and 0.1). For each λ value, 3 separate models were trained. The generated
structures were relaxed using M3GNet, and the interface energies shown are based on M3GNet-calculated
energies.

Figure S15: Euclidean distance of the coordination motif fingerprint of all cations for interface structures
generated using CryinGAN trained with different λ values.

11



Figure S16: Normalized interface energy distributions of structures generated using CryinGAN trained with
λ = 0 (200,000 epochs) and λ = 0.05 (100,000 epochs). The generated structures were relaxed using M3GNet,
and the interface energies shown are based on M3GNet-calculated energies. CryinGAN runs approximately
two times faster when the bond distance discriminator is not used (λ = 0), but the use of the bond distance
discriminator still yields a lower interface energy distribution for the same amount of training time.

Figure S17: Example generated structure of a GAN model using Crystal Graph Convolutional Neural Net-
works (CGCNN) as the discriminator. The GAN was unable to learn to generate meaningful interface
structures.
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Figure S18: Coordination motif distributions of (a) Li and (b) Sc in the interface region, where each coordi-
nation motif is further subdivided based on the number of Cl bonds. The distributions of three datasets are
shown: (1) training structures with low interface energy, (2) CryinGAN-generated structures, and (3) struc-
tures with high interface energy. All structures were relaxed using M3GNet followed by DFT calculations.
Error bars represent 95 % bootstrap confidence intervals.
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Figure S19: Histograms of the average number of O and Cl bonds for (a) Li and (b) Sc in the interface
region. Error bars represent 95 % bootstrap confidence intervals.

Figure S20: Example interface structures generated by CrysTens and UniMat when trained on structures
with randomized atom orderings.
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Figure S21: (a) Plot of cluster expansion (CE) energies against DFT energies. The root mean square error
(RMSE) of the CE fit is 16.97 meV/atom. (b) All effective cluster interactions (ECI) values of the CE fit.
(c) Plots of the Warren-Cowley SRO parameter against temperature. Plots on the left are adapted from ref.
1 and correspond to an alloy with composition Fe56Cr21Ni23 and 4000 atoms. Plots on the right correspond
to the alloy of this work, with composition Fe60Ni20Cr20 and 256 atoms. Plots on the left use the full CE
model with magnetic terms as described in ref. 1, whereas plots on the right use only terms corresponding to
the seven chemical dimers (non-magnetic). The top and bottom plots correspond to the 1st and 2nd nearest
neighbor interactions respectively. The Dismai-Bench alloy shows qualitatively similar SRO trends to the
larger magnetic alloy.
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Table S4: Configurations of the interfaces calculated. The slab orientation, number of layers, and average
lattice mismatch between any given two slabs are listed. M represents the transformation matrix used to
transform the lattice vectors of a given slab surface (u⃗, v⃗) into the superlattice vectors of the interface (u⃗s, v⃗s),
according to the relation (u⃗s, v⃗s) = M ·(u⃗, v⃗). Note that the number of layers of the Li3ScCl6(100) slab is
indicated for the randomly generated LiCoO2(110)-Li3ScCl6(100) structures, and does not include the atoms
randomly generated in the interface region.

Slab 1
number
of layers

M Slab 2
number
of layers

M
average
mismatch (%)

LiCoO2(110) 4

(
1 2

−3 3

)
Li3ScCl6(100) 9

(
1 1

−2 1

)
2.17

Li2O(100) 9

(
1 2

−4 2

)
LiCl(100) 4

(
2 0

0 4

)
0.545

Li2O(110) 4

(
1 0

0 3

)
Li(100) 6

(
1 0

0 3

)
3.00

Li2O(110) 4

(
−2 1

3 2

)
LiCl(100) 4

(
2 1

−2 3

)
2.13

Li2O(110) 4

(
−2 1

3 2

)
MgS(100) 4

(
2 1

−2 3

)
2.17

Figure S22: Normalized energy distributions of (relaxed) CDVAE-generated amorphous Si structures, com-
pared to the training structures. The structures were generated using 6, 7, or 8 steps per noise level.
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Figure S23: Normalized interface energy distributions of (relaxed) CrysTens-generated interface structures,
compared to the training structures. The structures were generated using 50, 100, or 150 time steps.

Table S5: Hyperparameters used for the UniMat 3D U-Net model. The hyperparameter names correspond
to those defined in ref. 2. Default values were used for all other hyperparameters.

Hyperparameter Value

dim 64
dim mults (1, 2, 4)
num resnet blocks 3
layer attns (False, True, True)
layer cross attns (False, True, True)
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Figure S24: Normalized interface energy distributions of (relaxed) UniMat-generated interface structures,
compared to the training structures. The structures were generated using 50, 100, or 150 time steps.

Figure S25: Euclidean distance of the cluster probability fingerprint for alloy structures (300 K, narrow
SRO) generated using CryinGAN trained with different λ values.
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Figure S26: (a) Wasserstein distance as a function of epoch for CryinGAN trained with λ = 0.05. Note
that the Wasserstein distance shown here does not include the gradient penalty term of the Wasserstein loss
function. (b) Percentage of relaxed structures with normalized interface energy ≤ 0 J/m2 as a function of
epoch. (c) Percentage of relaxed structures with normalized interface energy ≤ −0.2 J/m2 as a function
of epoch. Structures were generated using a CryinGAN model (trained for a certain number of epochs)
and relaxed using the M3GNet interatomic potential. Each data point was calculated using 1,000 relaxed
structures.

Table S6: Validation set mean absolute errors (MAEs) and losses of M3GNet models trained with different
learning rates and batch sizes. The loss, L, is as defined in the main text. For each model, the epoch with
the smallest L is shown. The model with the smallest L is highlighted in bold font. Note that we also trained
a model with a learning rate of 0.005 and a batch size of 4, but we found the training to be unstable so the
results are omitted here.

Learning rate Batch size
Energy MAE
(meV/atom)

Force MAE
(meV/Å)

Stress MAE
(GPA)

Loss, L

0.001 4 2.75 20.9 0.0151 0.0251
0.0005 4 2.82 22.2 0.0179 0.0268
0.001 2 3.45 21.9 0.0203 0.0273
0.001 6 2.88 21.3 0.0156 0.0257
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Figure S27: M3GNet training curves of the (a) training set and (b) validation set for the model trained with
a learning rate of 0.001 and a batch size of 4. The mean absolute errors (MAEs) for energy, force, and stress,
as well as the loss function are plotted against training epoch.
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Supplementary Note 1: Oxide-chloride interface disorder mechanism
To investigate the origin of the interfacial disorder observed for oxide-chloride interfaces, interfaces
of binary materials (Li2O-Li, Li2O-LiCl, and Li2O-MgS) were studied. All DFT calculations were
performed using the same procedure as described in the main text. The Li (1s2 2s1), Cl (3s2 3p5),
O (2s2 2p4), Mg (2p6 3s2), and S (3s2 3p4) electrons were treated as valence electrons in the
pseudopotentials. Structural relaxations were first performed on unit cells of Li2O (Fm3m), Li
(Im3m), LiCl (Fm3m), and MgS (Fm3m). The cell shapes, cell volumes, and atom positions
were allowed to relax, until the force on each atom was below 0.001 eV/Å. The Brillouin zone
was sampled using a (8×8×8) Monkhorst-Pack k-point grid for Li, and a (6×6×6) Monkhorst-
Pack k-point grid for Li2O, LiCl, and MgS. The interface structures were constructed using the
MPInterfaces package3, which implements the lattice matching algorithm proposed by Zur et al.4.
The configurations of interfaces constructed and their lattice mismatches are listed in Table S4. All
interfaces were constructed with vacuum spacings of at least 14 Å. We chose the (100) orientation
as a representative plane for Li, LiCl, and MgS.

To study the effect of different terminations of Li2O surfaces on the interfacial structure with LiCl,
we chose the Li2O(100) orientation which can either be Li-terminated of O-terminated. The surfaces
of the Li2O(100) slabs are polar, so half of the Li/O atoms were moved from one surface to the
other to neutralize the polarity (resulting in ‘Tasker Type 2b’ surfaces5,6). Structural relaxations
were performed on Li2O(100)-LiCl(100) interfaces for both terminations, allowing the cell shapes,
cell volumes, and atom positions to relax until the force on each atom was below 0.05 eV/Å. The
Brillouin zone was sampled using a (3×2×1) gamma-centered k-point grid. To study the effect
of mechanical stiffness on interfacial structure, we chose the Li2O(110) orientation, which exposes
both Li and O at its surface, and paired it with Li(100), LiCl(100), and MgS(100). Structural
relaxations were performed on these interfaces using the same procedure. The Brillouin zone was
sampled using a (8×2×1), (3×2×1), and (3×2×1) gamma-centered k-point grid for Li2O(110)-
Li(100), Li2O(110)-LiCl(100), and Li2O(110)-MgS(100) respectively.

While many heterointerfaces can adopt regular epitaxial registries connecting two materials with
well-defined crystalline orientations, other heterointerfaces show irregular, disordered interfacial
patterns. We found that chlorides have an innate tendency to form disordered interfaces with
oxides. As shown in Fig. S28, using binary instead of ternary materials, disordered interfacial
structures are obtained with only the combination of Li2O and LiCl. We suggest two interdependent
reasons for their occurrence. The first reason is the bond formation between O (in the oxide) and
Li (in the chloride). Fig. S28a shows the interface structure of Li2O(100)-LiCl(100) for Li2O(100)
slabs that are either Li-terminated or O-terminated. When Li2O(100) is Li-terminated, there is
minimal rearrangement at the interface with only some Li-Cl bond formation. In contrast, when
Li2O(100) is O-terminated, significant atomic rearrangement is observed with a combination of
Li-O and Li-Cl bond formation. The stronger interaction between O and Li is likely due to the
higher charge density of O compared to Cl. However, Li-O bond formation alone does not lead
to highly disordered interfaces, since such degree of disorder is not observed in other O-containing
interfaces such as oxide-oxide and oxide-sulfide interfaces7,8.

The second reason that the chlorides can form disordered interfaces is due to their intermediate
mechanical stiffness. To form bonds with the O in the oxide slab, the other slab must distort its
crystal structure to align its atoms with O, and the stiffness of the material determines the extent
of the distortion allowed. Fig. S28b shows the interface structure between Li2O and materials in
increasing order of mechanical stiffness (Li, LiCl, and MgS). MgS has the same rock salt crystal
structure as LiCl but with higher stiffness9,10. Due to its higher stiffness, it is unable to distort
significantly to bond with O. On the other hand, LiCl is soft enough that it can distort itself, whilst
maintaining some of its structure, resulting in a more distorted interface structure. For a very soft
material like Li metal11, the atoms can rearrange themselves relatively freely to bond with O, so
large voids such as those observed for LiCl are less likely to form. The intermediate stiffness of the
chlorides, combined with bond formation with O, results in the chloride solid electrolytes’ ability
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to form highly disordered interface structures with the oxide cathode. The disordered nature of the
Li3ScCl6(100)-LiCoO2(110) interfaces is therefore understood from the two considerations above.

Figure S28: (a) Interface structures of Li2O(100)-LiCl(100) for Li-terminated and O-terminated Li2O(100).
The dashed line indicates the termination layer of Li2O(100). (b) Interface structures for Li2O(110)-Li(100),
Li2O(110)-LiCl(100), and Li2O(110)-MgS(100). The mechanical stiffness of the bottom slab material in-
creases from left to right.
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Supplementary Note 2: Alternative CryinGAN architectures
We considered a different architecture that circumvents the need to tune λ in CryinGAN, where both
fractional coordinate and bond distance discriminators were combined into a single discriminator,
which we refer to as CryinGAN-comb (see Fig. S29). The outputs were combined after the pooling
layer, and the model was allowed to learn the relative importance of the coordinate and bond
distance latent features on its own through fully connected layers. For CryinGAN-comb, the bond
distances were directly obtained using fractional coordinates (instead of Cartesian coordinates),
to provide a more direct link to the atomic coordinates which are also represented in fractional
coordinates. Structures were generated using CryinGAN-comb models and relaxed using M3GNet.
Compared to CryinGAN trained with λ = 0, CryinGAN-comb generates structures with fewer
atoms too close together (around 2 times fewer pairs of atoms ≤ 1.5 Å). However, as shown in
Fig. S30, the interface energy distribution of (relaxed) structures generated from CryinGAN-comb
is significantly higher than CryinGAN. These results show that combining the discriminators in
CryinGAN-comb leads to less useful discriminator gradients to train the generator, resulting in poor
quality of structures being generated. In contrast, separating the discriminators as in CryinGAN
helps the GAN to learn more effectively.

Figure S29: Discriminator architecture of CryinGAN-comb. The output of the two discriminators of Cryin-
GAN are combined after pooling.
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Figure S30: Normalized interface energy distributions of structures generated using CryinGAN (λ = 0,
0.05) and CryinGAN-comb. For each model configuration, 3 separate models were trained. The energy
distribution are shown as shaded in (a) and unshaded in (b). All structures were relaxed using M3GNet,
and the interface energies shown are based on M3GNet-calculated energies.

Next, we considered different choices of the pooling layer for the discriminator. Wang et al.12 found
that the type of pooling operation affected the sampling sensitivity of the discriminator and the
overall performance of the GAN. The sampling sensitivity describes how sensitive the discriminator
is to changes in point density or the sampling pattern of the input point cloud. Their results suggest
that max pooling produces a discriminator with lower sampling sensitivity than average pooling.
The CryinGAN discriminators use average pooling, and we tested an architecture which uses max
pooling instead, referred to as CryinGAN-max (see Fig. S31a). We also tested an architecture
named CryinGAN-mix that uses the mix pooling operation proposed by Wang et al.12, where
both max and average pooling operations are used together (see Fig. S31b). CryinGAN-max
and CryinGAN-mix were trained using λ = 0 and 0.05. For λ = 0.05, only the pooling layer of
the bond distance discriminator was changed, and we kept the average pooling for the fractional
coordinate discriminator. This choice allows us to study the effect of the pooling choice on the two
discriminators independently.

The interface energy distributions of relaxed structures generated using CryinGAN, CryinGAN-
max, and CryinGAN-mix are shown in Fig. S32. For λ = 0 (Fig. S32a-b), we observe that
CryinGAN (average pooling) significantly outperforms CryinGAN-max and CryinGAN-mix. Al-
though the use of max pooling was beneficial for the generation of 3D objects where the object
shape is the most important aspect to capture12, it appears that a higher sampling sensitivity is
needed for atomic configurations, for which the local coordination environment is the important
aspect to capture. For λ = 0.05 (Fig. S32c-d), we observe that the distributions are more sim-
ilar across the three architectures, but CryinGAN still has the lowest energy distribution. The
pooling choice of the bond distance discriminator does not relate to the sampling sensitivity like
the fractional coordinate discriminator, and the choice appears to have a smaller effect on model
performance. Overall, we find that average pooling works best for both discriminators.
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Figure S31: Discriminator architectures of (a) CryinGAN-max and (b) CryinGAN-mix. When the bond
distance discriminator is not used, max/mix pooling is applied to the fractional coordinate discriminator.
When the bond distance discriminator is used, max/mix pooling is applied to the bond distance discriminator,
and average pooling is applied to the fractional coordinate discriminator.
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Figure S32: Normalized interface energy distributions of structures generated using CryinGAN (average
pooling), CryinGAN-max (max pooling), and CryinGAN-mix (mix pooling). (a) and (b) show models
without the bond distance discriminator (λ = 0), where pooling is varied for the fractional coordinate
discriminator. (c) and (d) show models with the bond distance discriminator (λ = 0.05), where pooling
is varied for the bond distance discriminator only (average pooling is used for the fractional coordinate
discriminator). For each model configuration, 3 separate models were trained. The energy distribution are
shown as shaded on the left, and unshaded on the right. All structures were relaxed using M3GNet, and the
interface energies shown are based on M3GNet-calculated energies.
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Supplementary Note 3: Interface Li coordination motif analysis of CryinGAN-generated
structures
Table S7 shows the Euclidean distance and cosine similarity between the average interface Li
fingerprint of the CryinGAN/high energy dataset and the training dataset. Compared to the high
energy dataset, the CryinGAN dataset has a slightly lower Euclidean distance to the low energy
dataset, and similar cosine similarity. This small difference is better understood by examining
the distribution of the most likely Li coordination motif as shown in Fig. S33. Compared to
the coordination motif distribution of the training dataset, the distribution of the high energy
dataset is shifted upwards towards motifs with lower coordination number, indicating that fewer
bonds are leading to higher energies. On the other hand, the coordination motif distribution of the
CryinGAN-generated structures shows a higher similarity to the training structures, reflecting the
smaller motif fingerprint Euclidean distance seen in Table S7.

Table S7: Euclidean distance and cosine similarity between the average interface Li site fingerprint of the
training structures and the CryinGAN/high-interface-energy structures. The 95 % bootstrap confidence
intervals are shown in brackets.

Dataset Euclidean distance
(95 % CI)

Cosine similarity
(95 % CI)

CryinGAN 0.1297
(0.1106 to 0.1455)

0.9974
(0.9968 to 0.9982)

High energy 0.1361
(0.1226 to 0.1471)

0.9973
(0.9969 to 0.9979)
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Figure S33: Coordination motif distributions of Li in the interface region for three datasets: (1) training
structures with low interface energy, (2) CryinGAN-generated structures, and (3) structures with high inter-
face energy. All structures were relaxed using M3GNet followed by DFT calculations. Error bars represent
95 % bootstrap confidence intervals. The coordination motifs are ordered in increasing coordination number
from top to bottom.
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Supplementary Note 4: RDF analysis of CryinGAN-generated interfaces
The Sc-O, Sc-Sc, and Li-Li RDFs are shown in Fig. S34. For the Sc-O RDF (Fig. S34a), the high
energy dataset exhibits peaks with lower magnitude, reflecting its reduced degree of Sc-O bonding.
On the other hand, the Sc-Sc RDF (Fig. S34b) shows a higher peak around 4 Å, indicating that the
high energy structures have a higher proportion of Sc cations closer together. The associated Sc-Sc
repulsion raises the energy of the structures. In the Li-Li RDF (Fig. S34c), a new peak appears
around 2.5 Å. This short Li-Li interatomic distance again raises the energy of the structures due
to Li-Li repulsion. In contrast, the CryinGAN dataset does not show any of these high-energy
features, and its RDFs are similar to the training dataset.

Figure S34: Radial distribution functions of atoms in the interface region for (a) Sc-O, (b) Sc-Sc, and (c)
Li-Li. The thickness of each curve represents the 95 % bootstrap confidence interval.
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