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1 Atom order distortion between Exp5K and DFT8K

Certain carbon atoms exhibit DFT shifts within the 0-10 ppm range. A detailed inspection
of the exp dft outlier file reveals that the atom labels were altered, with these atoms being
hydrogen atoms in the DFT8K dataset but carbon atoms in the NMR8K dataset. This
label distortion likely occurred due to the addition of explicit hydrogen atoms in functional
groups, where they were previously implicit, using the AddHs function of rdkit during data
transformation.

Atoms in any chemical structure can be ordered uniquely, as in the SMILES canonization
process. Consequently, there is also a unique mapping of two different atom labelings of the
same chemical structure. Rdkit stores the mapping from any atom labeling to canonical
labeling in the smilesAtomQutputOrder property of the canonicalized molecule. If we
denote the mapping of the experimental structure as f and the DF'T structure as g, then the

mapping from experimental atom labels to DF'T atom labels is g o f. Using this approach,

we can correctly deduce MAE and RMSE of DFT predicted shift compared to experiments.
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Figure 1: True against scaled DFT predicted chemical shifts of Exp5K dataset. More accu-
rate DF'T geometries don’t result in better shift prediction
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2 Architectures
Models architecture are shown in Figure 2 and 3. Dropout is applied after each layer.
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Figure 2: FFN models. Dropout layers are not shown. ELU = Exponential Linear Unit
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Figure 3: GNN models. Dropout layers are not shown. ELU = Exponential Linear Unit



» 3 Modified train and test sets
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Figure 4: Molecules removed from the test set. The first molecule has the wrong graph
connectivity(not shown), and the second molecule has the erroneous geometry with two
methyl groups overlapping. The third molecule is removed only from the low-data regime
test set due to erroneous behavior in MACE models when trained in low-data regimes, likely
due to inaccurate geometry obtained from the forcefield.

H,N

N
/
\

21501 16095

Figure 5: Molecules removed from the training set before sampling for low-data regimes.
The first molecule has the wrong graph connectivity and lacks one hydrogen atom in the
structure(not shown), while the second molecule has the wrong graph connectivity (not
shown).
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4 Training and hyperparameters

The hyperparameters for all models are listed in Table 1. A custom learning rate decay
of 4% was applied every 15 epochs. The cost function was the mean absolute error. The
AdamW optimizer, with a weight decay of 0.01, was used to minimize the cost function. A
validation set comprising 10% of the training data was utilized. The train/validation split
was done on molecule level. Once the optimal hyperparameters, including the number of

epochs, were identified, the models were retrained from scratch using the entire training set.

Table 1: Hyperparameters and number of trainable parameters

Model Initial LR Batch size Dropout rate Epochs
MACE FEN 6e-4 96 0.10 1000
Uni-Mol FFN 8e-6 96 0.15 900
MACE GNN le-3 48 0.1 1000
Uni-Mol GNN Ge-4 64 0.15 900

5 Dataset summary

Table 2: Data Description of training and test data

Dataset N° spectra N° atoms N° C atoms N° labeled at. N° heavy at.
average range average range average range average range

train 21509 26.96 3-64 10.68 1-34 9.93 1-34 14.20 1-44
test 5386 26.74 5-64 10.62 1-33 9.88 1-32 14.14 2-38
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Figure 6: Distribution of chemical shifts

« 6 Performance of the models
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Figure 7: MACE FFN
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Figure 7: Uni-Mol FFN

p: 0.9986
MAE: 1.65 ppm

RMSE: 2.68 ppm

T T T T
50 100 150 200

Predicted shift [ppm]

T
250

Count

1750

1500

1250

1000

750 -

500

250

-10 0 10 20
Error [ppm]

Figure 8: Ensemble MACE & Uni-Mol FFN
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Figure 8: MACE GNN
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Figure 9: Uni-Mol GNN

10



True shift [ppm]

250

200 -

150 -

100

50 -

p: 0.9989 e
MAE: 1.28 ppm y
RMSE: 2.37 ppm

T T T
50 100 150 200

Predicted shift [ppm]

T
250

Count

2000

1750

1500

1250

1000 -

750

500

250

-10

0
Error [ppm]

Figure 9: Ensemble MACE & Uni-Mol GNN
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« 7 Molecules where models break down

s For simplicity, we only show molecules where Ensemble MACE & Uni-Mol GNN and MACE
s  GNN models fail. However, the code to produce similar plots for other models is available
sz in the repository of this paper. The magnitude of errors is denoted by color: atoms with
s errors smaller than 1.5 ppm are green, while atoms with errors larger than 4.5 ppm are red.

Errors in between are colored using linear interpolation.
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Figure 10: Molecules where Ensemble MACE & Uni-Mol GNN predicts at least one shift
with absolute error larger than 30 ppm.
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Figure 11: Molecules where Ensemble MACE & Uni-Mol GNN predicts all shifts with the

absolute error larger than 5 ppm.
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Figure 12: Molecules where MACE GNN predicts at least one shift with absolute error larger
than 30 ppm.
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Figure 13: Molecules where MACE GNN predicts all shifts with the absolute error larger
than 5 ppm.
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