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1 Atom order distortion between Exp5K and DFT8K17

Certain carbon atoms exhibit DFT shifts within the 0-10 ppm range. A detailed inspection18

of the exp_dft_outlier file reveals that the atom labels were altered, with these atoms being19

hydrogen atoms in the DFT8K dataset but carbon atoms in the NMR8K dataset. This20

label distortion likely occurred due to the addition of explicit hydrogen atoms in functional21

groups, where they were previously implicit, using the AddHs function of rdkit during data22

transformation.23

Atoms in any chemical structure can be ordered uniquely, as in the SMILES canonization24

process. Consequently, there is also a unique mapping of two different atom labelings of the25

same chemical structure. Rdkit stores the mapping from any atom labeling to canonical26

labeling in the _smilesAtomOutputOrder property of the canonicalized molecule. If we27

denote the mapping of the experimental structure as f and the DFT structure as g, then the28

mapping from experimental atom labels to DFT atom labels is g ◦ f . Using this approach,29

we can correctly deduce MAE and RMSE of DFT predicted shift compared to experiments.30
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(a) Forcefield geometries
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(b) DFT geometries

Figure 1: True against scaled DFT predicted chemical shifts of Exp5K dataset. More accu-
rate DFT geometries don’t result in better shift prediction
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2 Architectures31

Models architecture are shown in Figure 2 and 3. Dropout is applied after each layer.

MACE encodings

Dense (224,512), ELU

Dense (512,768), ELU

Dense (768,768), ELU

Dense (768,256), ELU

Dense (256,1)

Chemical 
shift δ

a) MACE FFN

Uni-Mol encodings

Dense (512,768), ELU

Dense (768,768), ELU

Dense (768,512), ELU

Dense (512,768), ELU

Dense (768,1)

Chemical 
shift δ

a) Uni-Mol FFN

Figure 2: FFN models. Dropout layers are not shown. ELU = Exponential Linear Unit
32
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Figure 3: GNN models. Dropout layers are not shown. ELU = Exponential Linear Unit
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3 Modified train and test sets33

Figure 4: Molecules removed from the test set. The first molecule has the wrong graph
connectivity(not shown), and the second molecule has the erroneous geometry with two
methyl groups overlapping. The third molecule is removed only from the low-data regime
test set due to erroneous behavior in MACE models when trained in low-data regimes, likely
due to inaccurate geometry obtained from the forcefield.

Figure 5: Molecules removed from the training set before sampling for low-data regimes.
The first molecule has the wrong graph connectivity and lacks one hydrogen atom in the
structure(not shown), while the second molecule has the wrong graph connectivity (not
shown).
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4 Training and hyperparameters34

The hyperparameters for all models are listed in Table 1. A custom learning rate decay35

of 4% was applied every 15 epochs. The cost function was the mean absolute error. The36

AdamW optimizer, with a weight decay of 0.01, was used to minimize the cost function. A37

validation set comprising 10% of the training data was utilized. The train/validation split38

was done on molecule level. Once the optimal hyperparameters, including the number of39

epochs, were identified, the models were retrained from scratch using the entire training set.40

Table 1: Hyperparameters and number of trainable parameters

Model Initial LR Batch size Dropout rate Epochs

MACE FFN 6e-4 96 0.10 1000
Uni-Mol FFN 8e-6 96 0.15 900
MACE GNN 1e-3 48 0.1 1000
Uni-Mol GNN 6e-4 64 0.15 900

41

5 Dataset summary42

Table 2: Data Description of training and test data

Dataset N◦ spectra N◦ atoms N◦ C atoms N◦ labeled at. N◦ heavy at.
average range average range average range average range

train 21509 26.96 3-64 10.68 1-34 9.93 1-34 14.20 1-44
test 5386 26.74 5-64 10.62 1-33 9.88 1-32 14.14 2-38
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Figure 6: Distribution of chemical shifts

6 Performance of the models43
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Figure 7: MACE FFN
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Figure 7: Uni-Mol FFN
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Figure 8: Ensemble MACE & Uni-Mol FFN
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Figure 8: MACE GNN
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Figure 9: Uni-Mol GNN
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Figure 9: Ensemble MACE & Uni-Mol GNN
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7 Molecules where models break down44

For simplicity, we only show molecules where Ensemble MACE & Uni-Mol GNN and MACE45

GNN models fail. However, the code to produce similar plots for other models is available46

in the repository of this paper. The magnitude of errors is denoted by color: atoms with47

errors smaller than 1.5 ppm are green, while atoms with errors larger than 4.5 ppm are red.48

Errors in between are colored using linear interpolation.

Figure 10: Molecules where Ensemble MACE & Uni-Mol GNN predicts at least one shift
with absolute error larger than 30 ppm.

49
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Figure 11: Molecules where Ensemble MACE & Uni-Mol GNN predicts all shifts with the
absolute error larger than 5 ppm.
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Figure 12: Molecules where MACE GNN predicts at least one shift with absolute error larger
than 30 ppm.
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Figure 13: Molecules where MACE GNN predicts all shifts with the absolute error larger
than 5 ppm.
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