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A Gaussian Process Regression
We here provide a more complete description of Gaussian Process Regression (GPR)1 and the notation used
in the main text.
A Gaussian Process (GP), {Y (x), x ∈ Rp}, indexed with p−dimensional covariates x ∈ Rp, characterizes the
set of normal random variables Y (·), such that for any finite n ≥ 1, the random vector YYY = (Y (x1) , . . . ,Y (xn))

⊤

follows a multivariate normal distribution (MVN). Notationally, we write Y (·)∼ GP(µ (·) ,K (·, ·)), where µ(·) :
Rp →R, represents the mean function: E(Y (x)) = µ(x), and K(·, ·) : Rp ×Rp →R, represent the non-negative
definite covariance function: Cov(Y (x),Y (x′)) = K(x,x′). As a consequence, YYY ∼ MVN(µµµ,ΣΣΣ), where µµµ is a
n× 1 vector derived from the mean function as µµµ i = µ(xi), i = 1, . . . ,n, and ΣΣΣ is an n× n covariance matrix
given by ΣΣΣi j = K(xi,x j), i, j = 1, . . . ,n.
In the context of GP modelling, the covariance function is generally specified with some valid parametric
functional form for K(xi,x j) as:

Kθθθ (x,x
′) = σ

2 (Cθθθ c(x,x
′)+g2

δx,x′
)
, (1)

where Cθθθ c(·, ·) : Rp ×Rp → R is any valid class of correlation functions which can be characterized by the set
of parameters θθθ c, g ≥ 0 is the nugget term that models the potential white noise of the data, σ > 0 models the
process standard deviation, and θθθ = (θθθ c,σ ,g) embodies the complete set of parameters found in the defined
covariance function.
Consider YYY o = (Y (x1) , . . . ,Y (xn))

⊤ to be a collection of n ≥ 1 observed values, which constitute the training
data. Also, let YYY u = (Y (xn+1) , . . . ,Y (xn+m))

⊤ represent a set of m ≥ 1 unobserved data points which will serve
as the test data. The main objective in GPR is to discover the predictive distribution of YYY u. This is essentially
equivalent to finding the conditional MVN distribution of YYY u given YYY o. Specifically, under the GP specification
Y (·) ∼ GP(µ (·) ,Kθθθ (·, ·)), the corresponding conditional MVN distribution for YYY u | YYY o is determined by the
following mean and covariance specification:

µµµu|o = µµµu +ΣΣΣuoΣΣΣ
−1
oo (YYY o −µµµo) (2)

ΣΣΣu|o = ΣΣΣuu −ΣΣΣuoΣΣΣ
−1
oo ΣΣΣ

⊤
uo, (3)

where µµµo = (µ (x1) , . . . ,µ(xn))
⊤, µµµu = (µ (xn+1) , . . . ,µ(xn+m))

⊤ , ΣΣΣuo is a m× n cross-covariance matrix such
that its (i, j)th element is given by Kθθθ (xn+i,x j), i = 1, . . . ,m, j = 1, . . . ,n, ΣΣΣuu is a m×m covariance matrix
corresponding to YYY u with its (i, j)th element given by Kθθθ (xn+i,xn+ j), i, j = 1, . . . ,m, and ΣΣΣoo is a n×n covariance
matrix corresponding to YYY o with its (i, j)th element given by Kθθθ (xi,x j), i, j = 1, . . . ,n. Generally, the conditional
mean µµµu|o can be considered as the point prediction for YYY u, and the diagonal entries of ΣΣΣu|o provide the
corresponding prediction variances.
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B Root-Mean-Square Error
For completeness, we also include in table 1 the root-mean-square error (RMSE) of the used models for the
trajectory test set.

Table 1 Test Root-Mean-Square Error in kcal/mol for all trajectory data (top row) or only up to a certain maximum
transition distance d (bottom two rows).

Test set SOAPFull SOAPTraj MGK PaiNNInd PaiNNEns
All (no cut-off) 4.92 4.82 4.86 5.43 5.00
Cut-off d ≤ 3Å 4.49 4.44 4.51 4.90 4.49
Cut-off d ≤ 2Å 3.87 3.91 3.89 3.88 3.51

C Effect of node feature ξ

In table 2 we show the effects of excluding the node feature ξ of the marginalized graph kernel based model
on the test MAE for the trajectory data. It can be seen that including this information noticeably decreases
the MAE.

Table 2 Test MAE in kcal/mol for the marginalized graph kernel with and without node feature ξ .

All (no cut-off) Cut-off d ≤ 3Å Cut-off d ≤ 2Å
With ξ 3.37 3.19 2.85
Without ξ 3.76 3.60 3.22

D Additional DFT details
The DFT data and its generation was described in ref.2. The barriers were taken as the difference between
the single point energy calculations, with no further temperature corrections. The trajectory dataset was
constructed using structures obtained from MD simulations solvated in water. The systems used for the DFT
calculations, however, included only the reactants in vacuum. We expect solvent effects to be negligible, since
the reactions would happen on short distances, in a crowded environment, and with no charge relocation
during the process. Furthermore, no catalysis was involved in the reactions.

E Data efficiency fit
In table 3 we show the fitting metrics for the power-law (18) of table 2 in the main text. To avoid any
confusion, the scores shown here refer to the fitted model MAE values for a given number of training points.
For example, an MAE score in the table below of 0 would mean that the power law fits perfectly to the means
of model test MAE scores for all training set sizes.
The fits were performed on a model’s mean test MAE, for a given number of training points, using the curve_fit
function of SciPy3. The standard deviation of a model’s MAE across multiple runs, given a certain number of
training points, was also included in the optimization for the weight calculation.

Table 3 Power law fit metrics for table 2 in the main text.

Method Fit MAE Fit RMSE Fit R2

SOAPFull 0.08 0.14 0.99
SOAPTraj 0.03 0.05 1.00
PaiNNInd 0.21 0.33 0.99
PaiNNEns 0.21 0.36 0.99

F Supplementary Figures
Figure S1 shows additional figures, such as the absolute error vs ensemble spread and GPR predicted standard
deviation (a), the empirical distribution of the absolute error (b), the parity plot of the optimized trajectory
barriers (c), and the mean absolute error of the optimized barriers as a function of cut-off distance (d).



(a) Absolute error of the different models used vs. their derived
standard deviation. In the case of GPR, this is the square root of
the predicted variance and for the PaiNN ensemble model this is
the standard deviation of the student’s t-distribution.

(b) Empirical cumulative distribution of the absolute errors on the
unoptimized trajectory energy test barriers.

(c) Predictions of the optimized barriers using combination of
PaiNN and GPR as described in the main text.

(d) MAE of the optimized trajectory barriers using different dis-
tance cut-offs.

Figure S1
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