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Supplemental Note S1. Solution handling hardware assembly 

The solution handling robot was assembled from the hardware in Table S1.  
 

Name Price Quantity 
OPENBUILDS 24V Meanwell Power Supply Bundle $78.74 1 

Runze SV07-X-T16-K1.0-S $1,160.00 1 
Runze SY08- LS-0.9-1-5-1-Q $585.00 1 

Runze USB-30 $39.00 2 
Fluorostore 1/8” OD PTFE tubing $1.47/ft 30 
Fluorostore 1/16” OD PTFE tubing $0.45/ft 2 

Idex Flangeless Fitting, Standard Knurl, Natural PEEK, 
1/8" OD Tubing, 1/4-28 Flat-Bottom $5.77 2 

Idex Flangeless Fitting, Standard Knurl, Natural PEEK, 
1/16" OD Tubing, 1/4-28 Flat-Bottom $5.67 15 

Pyrex media bottles (100 mL -1 L) $9 - $15 14 
Table 1. Bill of materials for the solution handling hardware. 

 
The hardware components for the solution handling robot are depicted in Figure S1a, and 
assembled as shown in Figure S1b, as follows. First, plug in the power supply (24V) and then 
position the pump and valve accordingly. Connect the power wires to the pump and valve using 

 
Figure S1. (a) Electronically connected components of the solution handling hardware and (b) a 
schematic of the electronic connections. (c) Fluidic connections between components of the 
solution handling hardware and various solutions. Critical solutions (cell, waste, flush, and air) 
are shown, but other desired solutions can be connected as desired. 
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the red and black cables, making sure the polarity of the power terminals is correct. Next, plug in 
the USB/RS232 cables to both the pump and valve and connect the USB end of the USB/RS232 
cable to the computer. Open the device manager to identify the COM ports to which the devices 
are connected as you plug them in. Turn on the power supply, and you should observe an 
illuminated LED on the pump and valve and hear a slight movement as the pump and valve 
initialize. 

Fluidic connections are made as shown in Figure S1c, with additional media bottles of stock 
solutions hooked up as needed. Prepare each tube by attaching a flange and ferrule, ensuring the 
tubing extends slightly past the ferrule to minimize dead volume. Connect these tubes to the valve, 
threading them in until they are finger tight. NOTE: The tubing for solution lines can be 1/8” OD, 
but it is recommended that the fluidic connection between the pump and valve, as well as the 
solution line to the cell, are 1/16” OD tubing. 

For non-volatile and non-hazardous solutions, inlets can be drilled into the lid of Pyrex media 
bottles so that fluidic tubing can be ran inside of the media bottle. Otherwise, it is suggested that 
well-sealed solvent reservoir caps be used, i.e VapLock Solvent Delivery Caps. Place the lines into 
their respective solutions, ensuring the following critical connections must be made: 

• Pump to valve: Use 1/16” OD tubing instead of 1/8” OD and connect the pump to the 
center port of the selection valve. Use as short a connection as possible between these lines  

• Waste: Connect to a container designated for waste disposal. 
• Cell: Use 1/16” OD tubing instead of 1/8” OD and connect it to the electrochemical cell. 
• Flush: Connect to the solvent intended for washing the cell. 
• Air: Connect a line that leads to nothing, used to pull air into the lines and flush out the 

solution. Ensure this line is long enough to divert output solution away from the switching 
valve in case of a critical error. 
 

Finally, assemble the electrochemical cell, as shown in Figure 2. Place the cell line into the 
electrochemical cell, ensuring it reaches the very bottom of the container. This completes the 
hardware assembly process. 
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Supplemental Note S2. Installing and using the elab API 

The elab API is installed as follows: 

1. Download and install the latest version of Python, ensuring that Python is added to PATH. 
2. Download and install the latest version of Git. 
3. Create a folder for installing the elab API. 
4. Open terminal and change directory to the elab API location. 
5. Type command “git clone https://github.com/jrlLAB/elabAPI.git” into terminal. 
6. In the terminal, change the directory to the newly formed elabAPI folder where the setup.py 

file is located. Type command “pip install .” 
7. In the terminal type command “pip install hardpotato” to install the Hard Potato library 

The python libraries are now installed and can be used in a Python script by first importing the 
eLab library, as well as the Hard Potato library. 

import elab 
import hardpotato as hp 

Next we will need to initialize the instruments to be used. For example, if we wanted to initialize 
the solution handling platform we would run commands to initialize the SV07 valve and SY08 
pump at their respective COM ports. 

valve = elab.SV07('COM1') 
pump = elab.SY08('COM2') 

We then use the elab.bundle() command to bundle multiple instruments into one object so that 
multi-instrument operations can be executed. 

lab = elab.bundle([valve,pump]) 

We must establish pseudonyms for the switching valve so we can easily call commands to dispense 
desired solutions. NOTE: Many of the operations built into the API that use the switching valve 
rely on ports with specified pseudonyms of ‘cell', 'waste', 'air', and 'flush'. Pseudonyms are typically 
loaded from a .csv file that contains pseudonyms for the port #, formatted as below: 

port, title 
1, cell 
2, waste 
3, flush 
4, air 
5, tempo 
6, buffer 
… 

The pseudonym file can be loaded in with either load_ports() method 

lab.load_ports('ports.csv') 

Or by passing a dictionary 

https://github.com/jrlLAB/elabAPI.git
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lab.load_ports({'cell' : 1, 'waste' : 2, 'flush' : 3, 'air' : 4, 'tempo' : 
5, 'buffer' : 6 }) 

We can run solution handling operations after the instruments are initialized, bundled, and setup 
with the port pseudonyms. If we are hooking up solution bottles to the instrument for the first time, 
we must initialize the lines, as there is dead volume that must be filled. Initializing lines will pass 
the solution through the selection valve directly into the waste port. The ports corresponding to the 
cell, waste, and air lines do not need to be initialized. For example, the solution lines defined in 
the above ports.csv file (or corresponding dictionary) are initialized as follows: 

lab.init_line(‘flush’) 
lab.init_line(‘tempo’) 
lab.init_line(‘buffer’) 

To clean the cell by removing cell contents and flushing with solvent, we can run the following: 

lab.clean_cell(10) 

lab.clean_cell() takes a volume (in mL) as an input, and then cleans the experimental cell by 
removing that volume, and flushing with that volume in water. It requires a pump and switching 
valve to be connected to operate. It requires 'cell','waste','air', and 'flush' port pseudonyms. 

If we wanted to dispense a solution of our choosing we would hook it up to the switching valve 
and give it an appropriate pseudonym. The following code would dispense 3 mL of a redox active 
species, TEMPO, as described in the above ports.csv file (or corresponding dictionary). 

lab.dispense('tempo',3) 

One could imagine that dispensing more complex mixtures could make the code pretty messy, so 
instead we can use the mix_dispense() instead. Here we are mixing 1 mL of TEMPO with 4 mL 
of a buffer solution. First lets define our components as a list of lab.mix_component() functions: 

mix = [lab.mix_component('tempo',1),lab.mix_component('buffer',4)] 

We now dispense our mixture 

lab.mix_dispense(mix) 
 

After we dispense our mixture, we can use the Hard Potato library to setup up our potentiostat and 
run a CV experiment, as shown below. Further Hard Potato documentation can be found at 
https://github.com/jrlLAB/hardpotato.  
 
hp.potentiostat.Setup(model='chi760e',path='chi760e.exe', folder='.')  
hp.potentiostat.CV(Eini=0,Ev1=1,Ev2=0,Efin=0,sr=0.1,sens=1e-5).run() 
 

The attached Data.zip file contains all experimental scripts and data, organized by the 
corresponding figures in the main text. The experimental scripts are annotated so that users can 
see the experimental workflow and use the script as templates for experiments of their own design. 
Additionally, a full reference for the API can be found at https://github.com/jrlLAB/elabAPI .

https://github.com/jrlLAB/hardpotato
https://github.com/jrlLAB/elabAPI
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Supplemental Note S3. pH meter hardware assembly and usage 

The pH meter was assembled from components in Table S2.  

Name Price Quantity 
Arduino UNO Rev3 SMD $26.30 1 

Gravity: Analog pH Sensor - Meter Kit $29.50 1 
Mettler Toledo Micro pH Electrode; S7 $467.00 1 

InLab Cable S7-BNC 1.2m $86.94 1 
USB-A to USB-B 2.0 Cable $2.00 1 

Table S2. Bill of materials for assembling the Arduino pH meter 
The pH meter was assembled as shown in Figure S2a. The pH probe is connected to the breakout 
board circuit which sends an analog signal to the ADC pins on the Arduino. The analog signal 
from the breakout board is sent to the A1 analog input on the Arduino, and the 5V and ground pins 
on the breakout board are connected to the respective pins on Arduino. 

 
Figure S2. (a) Schematic of the Arduino based pH meter and its assembly. The ground and 5V 
pins on the analog pH sensor are connected to the corresponding pin on the Arduino, and the 
analog data pin on the sensor board is connected to A1 on the Arduino. (b) Selecting the 
appropriate COM port in Arduino IDE. (c) Uploading the pH meter code from the Arduino IDE 
to the Arduino board. 

To communicate with the elab library the Arduino must first have the appropriate code uploaded: 

1. Download and install the latest version of the Arduino IDE 
2. Paste the code for the pH meter into the Arduino IDE. The code can be found at the 

following GitHub repository: https://github.com/jrlLAB/Arduino/blob/main/pH/pH.ino 
3. Connect the Arduino UNO to the computer and select the appropriate COM port, as 

shown in Figure S2b. 
4. Upload the Arduino code from the IDE to the Arduino board by hitting the upload button 

as shown in Figure S2c. 

https://github.com/jrlLAB/Arduino/blob/main/pH/pH.ino


7 
 

When the code has been uploaded to the Arduino board, the pH meter can be called using the 
eLab library. The general workflow for initializing the pH meter is like that in Supplemental 
Note S2. First, the eLab library must be imported 

import elab 

Then the valve, pump, and pH meter are initialized and bundled 

valve = elab.SV07('COM1') 
pump = elab.SY08('COM2') 
pH = elab.pH_arduino('COM3') 
lab = elab.bundle([valve,pump,pH]) 
 

Pseudonyms are established using the same method as described above, but if automated pH meter 
calibration requires ports be connected to pH standards. Note: The pH standards’ port names must 
be in format of “pHX”, where X is the pH value of the standard. Upon loading the port pseudonyms 
and initializing requisite lines, automated calibration can be performed as shown for pH 4, 7, and 
10 buffer. 

lab.calibrate_pH([4,7,10]) 

This call will automatically dispense the pH standards, measure corresponding voltage values for 
each pH value, and automatically perform linear regression to generate a calibration curve. pH 
values can be measured on that calibration curve by using the following command: 

lab.pH.measure() 
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Supplemental Note S4. Adding new instruments to the elab API 

Adding an instrument to the elab API requires modification of the underlying python library. Here 
we will show the process of modifying the library with a new instrument. The first step is to clone 
the library into a new folder, and then navigate to the elabAPI\src\elab folder, which will contain 
all of the .py files for the library. We are going to write a class for our API to control the IKA C-
Mag HS7 hotplate, so we create a new file called HS7.py. 

In this python file we first will import the instrument class from main.py, which will allow us to 
inherit the default initialization method, which initializes serial communication with the instrument 
over a specified COM port and with a set baud rate (default is 9600). We also add some identifiers 
and variable, such as the max temperature (self.max_temp) that we would like the hotplate to go 
up to. 

from .main import instrument 
 
class HS7(instrument): 
 
    def __init__(self, com_port, **kwargs): 
        super().__init__(com_port, **kwargs) 
 
        self.model = 'C-MAG HS7' 
        self.type = 'hotplate' 
        self.max_temp = 50 

After setting up these initial parameters, we will add functions to the HS7 class that will translate 
high level python commands into ASCII commands that will be sent over serial to the instrument. 
First lets look at some of the commands that can be found in the IKA C-Mag HS7 datasheet. Note 
this list is not comprehensive, and we are adding just commands we are interested in.  

Command ASCII Notes 
Read actual external sensor value IN_PV_1  
Read actual hotplate sensor value IN_PV_2  
Adjust set temperature value OUT_SP_1 x X can be value from 0-500 *C 
Adjust set stirring value OUT_SP_4 x X can be value from 0-1500 rpm 
Start heating START_1  
Stop heating STOP_1  
Start stirring START_4  
Stop stirring STOP_4  
Table S3. Example of ASCII commands for the IKA C-Mag HS7 datasheet. 

We can then write a function that will send the desired ASCII command over serial, encoded as 
UTF-8. We will show an example of a simpler command first, setting the speed of the stirring 
motor. The code will take an input variable that will define the speed of the motor in RPM, spin, 
and combine it into a string with the appropriate command from the data sheet, OUT_SP_4. For 
this instrument we must have a carriage return, so we add \r\n to the end of our command strings. 
We have an if/else statement to ensure that the speed is within the bounds specified in the data 
sheet. We then use the self.ser.write() method to encode the compiled ASCII command as UTF-8 
and send it over serial to our instrument. 
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def set_spin(self, spin): 
        if (1500 >= spin  > 0) == True: 
            packet = f'OUT_SP_4 {spin}\r\n' 
        else: 
            packet = f'OUT_SP_1 {1500}\r\n' 
            print(f'Value out of range! Set to {1500}') 
        self.ser.write(packet.encode('utf-8')) 

Some commands are used to query values, for example, IN_PV_1 will query the measured 
temperature response of an external thermocouple probe. Our function for this command must also 
include a way to read the resulting serial communication that is sent from the instrument back to 
the computer. The formatting of the received message can be quite different for every instrument, 
and this can take some time to understand the best way to receive message. If we send IN_PV_1 
command to the hotplate, we receive the following as a response: ‘21.4 1\r\n’. The returned string 
gives us our value, and then has a space as a space before the carriage return. We can split the string at the 
space, as a delimiter, and extract and return the temperature value as a float. 

def query_temp(self): 
        packet = 'IN_PV_1\r\n' 
        self.ser.write(packet.encode('utf-8')) 
        return float(self.ser.readline().decode().split(' ')[0]) 

We can continue to write the remainder of the commands as needed. Different instruments will 
require different levels of involvement in reading and writing commands, and will require an effort 
from the user to find and interpret the commands in the data sheet. It is assumed that any instrument 
to be incorporated has a USB port for serial communication and a datasheet that provides a guide 
to communicating with the instrument over serial. 

After we have setup all of the commands, we can add our new class to the library. We go to 
__init__.py file in elabAPI\src\elab folder, and edit that to include our new class using the 
following line. 

from .HS7 import * 

We also must adjust the __all__ list to include the HS7.py content in the library. 

__all__ = ['main', 'HS7', 'pH_arduino', 'SV07', 'SY08', 
           'E0RR80', 'AlicatMFC', 'Legato100', 'gen_serial', 'MUX8'] 

Now that our new class had been added, we navigate to the elabAPI folder, which contains the file 
setup.py. We open the terminal in this folder, and run the command ‘pip install .’ This will remove 
any previously installed versions of the elab API and install the new modified version. 
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Figure S4. Temperature changes over the course of titration of 0.1 M H3PO4 with 1 M NaOH. 
Temperature remains relatively constant through the majority of the experiment, with an 
average temperature of 22 ºC ± 0.2 ºC. 

 

Supplemental Note S5. Testing of different cleaning procedures 

One important aspect of solution handling for automated experiments is implementing cleaning 
protocols that minimize sample carryover. We used cyclic voltammetry to test different cleaning 
protocols, measuring the voltammetric current response of TEMPO oxidation. The experimental 
script involved ten dispensing steps, alternating between 6 mM and 120 µM of TEMPO, with the 
cell being cleaned before each step. We tested three cleaning protocols: the first involved simply 
removing cell contents without any rinsing, the second included a water rinse following removal 
of cell contents, and the third consisted of the removal of cell contents, a water rinse, and priming 
of the cell with the solution to be dispensed. Table S4 shows the mean and standard deviation of 
the measured currents for each protocol. From the results at low concentrations, we can see that 
water flushing reduces sample carryover, while priming ensures that residual water does not dilute 
the redox species and lead to a lower current than expected. The lowest standard deviation for the 
measured current at both concentrations was seen when using the water flush and priming. 

 
  

Cleaning protocol 6 mM TEMPO current 120 µM current 
Cell removal 84 ± 3 µA 4.6 ± 0.2 µA 
Water flush 82 ± 1 µA 1.09 ± 0.03 µA 

Water flush and priming 86.5 ± 0.6 µA 1.17 ± 0.02 µA 
 

Table S4. Comparison of the average (N=5) peak currents obtained using three different cleaning 
protocols.  
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Figure S5. All 400 voltammograms collected during measurement of TEMPO diffusion 
coefficient, with current normalized to the peak current. The potential was measured against an 
Ag/AgCl reference and is reported here against SHE. The mean E1/2 value was found to be 0.78 
V ± 0.01 V vs. SHE. 
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Supplemental Note S6. Baseline subtraction 

Baseline subtraction was performed by fitting the linear portion of the CV, and subtracting the 
peak current, from the corresponding current of the linear fit at the peak potential. The script for 
performing baseline analysis first smooths the current data, identifies points that likely belong to 
the baseline by analyzing the gradient, fits a linear regression to those points, and calculates an 
adjusted peak value based on this baseline. The three best and three worst fits of the diffusion 
coefficient data are shown in Figure S6. The baseline fitting was applied to all CVs used for 
obtaining TEMPO diffusion coefficient, and the resulting change in calculated diffusion 
coefficient distribution is shown in Figure S7. 

 
Figure S6. Selected examples of the baseline fitting. The top row represents the three best fits, 
and the bottom row represents the three worst fits, determined by the R2 value of the fit. The 
solid line is the experimental data and the dotted line is the linear fit. 

 

 
Figure S7. Distributions of the diffusion coefficients calculated from the raw peak heights, 
compared to the distribution from diffusion coefficients calculated from peak heights adjusted 
by background subtractions. 
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Figure S8. (a) Plot of peak separation versus scan rate for all concentration of TEMPO. (b) 
Plot of peak separation versus the maximum peak current for all TEMPO values, as well as the 
resulting linear fit. 

 
 

 
Figure S9. Calculated diffusion coefficients of TEMPO plotted against the target concentration.   
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Figure S10. Results of pH dependent voltammetric screening of TEMPO catalyzed alcohol 
oxidation, without a surface pretreatment. Each column represents a different substrate 
molecule, and each row is a different scan rate. Dashed lines are voltammograms in the 
absence of substrate. 

 

 
Figure S11. Example of curve crossover seen in CVs of 2 mM TEMPO and 100 mM glycol in 
0.1 M bicarbonate-carbonate buffer. Voltammograms were performed at 50 mV/s. 
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Figure S12. Relationship between observed reaction kinetics and OH- concentration for 
different substrates. The observed rate constant is plotted against the OH- concentration on a 
log-log scale, along with the linear fit of the data. Each column represents a different substrate 
molecule, and each row is a different scan rate. 

 
 
 
 


