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1 Model and Data Differences between Finetuning and Reprogramming
Figure S1 illustrates the differences between the data domains that conventional finetuning and R2DL rely on for training.
In-domain training schemes, in the context of protein knowledge tasks, rely on massive databases of biological sequences
such as UniProt40 and Uniref-5044. In contrast, out-of-domain training schemes (R2DL) rely on widely available language
data, such as45, and only a limited number of in-domain data samples (in the context of protein knowledge tasks,
biological sequences). This makes R2DL an efficient cross-domain approach to train models in low-resource data settings.

Fig. S1: In-domain pretraining vs R2DL. A typical pretrained model follows an in-domain training scheme: first the
model undergoes pretraining with an objective like masked language modeling18, and is finetuned with task-specific
data. R2DL, unlike traditional pretraining schemes, operates on a small set of in-domain data, having been pretrained on
out-of-domain data. In the process of R2DL, we still map between the same modalities, of sequence to sequence, as in
other pretraining methods18,20,31.

2 R2DL Performance vs. In-domain Pretraining Performance in Low Data Settings
Motivated by the data efficiency of R2DL as a framework, we tested the task-specific predictive performance of R2DL in
reduced-data training settings using the pretrained English BERT model. We compared these results to the performance of
task-specific baseline methods, when trained and tested in the same restricted data setting. In Figure 4, we show the
performance of the R2DL model and the baselines when trained on 100%, 80%, 60%, and 40% of a specific task dataset.
We show results for the Antimicrobial, Toxicity, Secondary Structure, Stability, Homology, and Solubility prediction tasks in
Figure S2 and compare the performance of R2DL and in-domain pretrained models against the performance of a random
guess. We observe, that for downstream tasks of Toxicity, Secondary Structure, Homology, and Solubility, R2DL always
performs better than a pretrained protein language model across the size range of the limited datasets. Furthermore,
we observe that, except in the stability task, the rate of failure to perform better than a random guess is higher for the
in-domain pretrained models than for R2DL. In both cases, R2DL outperforms in-domain pretraining until the cutoff point
which is the intersection of the random guess curve with the accuracy curves (the point at which the model is not learning
any meaningful representation).

3 Baseline Model Reported Performance
For each downstream task that we train R2DL, we follow the train/test splits established by the task-specific benchmark
methods. The R2DL perfomance and the task-specific benchmark model performance are reported in this section (Table
S1 to Table S6).
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(a) Secondary structure prediction (b) Mutational stability prediction (c) Remote homology prediction

(d) Membrane solubility prediction (e) Antimicrobial-nature prediction (f) Toxicity prediction

Fig. S2: Results of the R2DL (based on the pretrained English BERT model) and baseline methods for each downstream
task in reduced training data settings. R2DL offers an extremely competitive alternative to finetuning existing pretrained
approaches on each downstream protein task, achieving comparable or superior performance despite the absence of
domain-specific pretraining. These results highlight R2DL’s potential as a practical and resource-efficient strategy in
low-data regimes where finetuning large, protein-specific models may be infeasible.

Protein Task
Source
Model

Baseline
Method

R2DL (out-of domain pretraining) Pretraining (in-domain pretraining) Train from Scratch (in-domain supervised training)

In-Domain
Training Samples

Accuracy
Data

Efficiency
In-Domain

Training Samples
Accuracy

Data
Efficiency

In-Domain
Training Samples

Accuracy
Data

Efficiency

Secondary Structure BERT ESM-1b 8678 0.841 9.69E-05 3.10E+07 0.800 2.58E-08 8678 62.34 7.18E-05
Stability BERT TAPE* 21146 0.849 4.01E-05 3.10E+07 0.738 2.38E-08 21146 65.98 3.08E-05

Homology BERT TAPE* 12312 0.241 1.96E-05 3.10E+07 0.265 8.55E-09 12312 24.50 1.99E-05
Solubility BERT TAPE* 16253 0.943 5.80E-05 1.70E+06 0.872 5.13E-07 16253 85.64 5.27E-05

Antimicrobial BERT PepWAE 6489 0.900 1.39E-04 1.70E+06 0.883 5.19E-07 6489 87.40 1.35E-04
Toxicity BERT PepWAE 8153 0.961 1.18E-04 1.70E+06 0.937 5.51E-07 8153 68.90 8.45E-05

Antibody Affinity T5 EmiPareto 4000 0.9456 2.36E-04 1.70E+06 0.958 5.64E-07 4000 0.928 2.32E-04
Protein-Protein Interaction T5 EDLMPPI 1368 0.852 6.23E-04 1.70E+06 0.852 5.01E-07 1368 0.433 3.2E-04

Table S1: We report the choice of source model that gives the best R2DL performance. We also report the baseline method
which is the state-of-the-art performance for the given downstream protein task. *The TAPE benchmark refers to the
pretrained transformer model by downstream task as reported in11.

Attribute
Data-Split Accuracy

Train Test Valid Majority Class Test

Toxicity 8153 1019 1020 0.82 0.93
Antimicrobial 6489 811 812 0.82 0.88

Table S2: Toxicity and Antimicrobial-nature baselines as reported in9.
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Task Model Accuracy Metric Test Accuracy
Secondary Structure Prediction One Hot + Alignment Accuracy (3-class) 0.80
Remote Homology Detection LSTM Top 1 Accuracy 0.26

Stability Transformer Spearman’s Rho 0.73

Table S3: Structure prediction, Remote Homology, Stability baselines as reported in11.

Task Model Test Accuracy
Solubility ProtT5-XL-UniRef50 0.91

Table S4: Solubility baselines as reported in42

Task Model Test Accuracy
Antibody Affinity Linear Discriminant Analysis 0.92

Table S5: Antibody Affinity Binding as reported in12.

Task Model Test Accuracy
Protein-Protein Interaction Ensemble Deep Learning Model 0.858

Table S6: Protein-Protein Interaction binding site identification as reported in13.

4 R2DL Performance with k-SVD
We study the effect of k-SVD iterations in the following tables (Table S7 to Table S12).

Source Model Antimicrobial Sequence Samples k-SVD Iterations Training Accuracy Test Accuracy
BERT 6489 100 87.12 85.64
BERT 6489 250 85.67 82.33

Table S7: R2DL: Antimicrobial Classification

Source Model Antimicrobial Sequence Samples k-SVD Iterations Test Accuracy

BERT 8153 100 87.23
BERT 8153 250 86.93

Table S8: R2DL: Antimicrobial Prediction

Source Model Training Samples k-SVD Iterations Training Accuracy Test Accuracy

BERT 8,678 10000 71.47 63.65
BERT 8,678 15000 74.34 69.91
BERT 8,678 20000 76.32 74.92

Table S9: R2DL: Secondary Structure Prediction

5 R2DL Performance in Low Resource Settings
To further investigate the efficacy of the R2DL cross-domain learning approach, we compare the performance of R2DL
versus models trained from scratch on task-specific protein sequences, with a restricted training data set. The test accuracy
across tasks indicates that R2DL performs better when fewer labeled training data samples are available. Below 25%
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Source Model Training Samples k-SVD Iterations Training Accuracy Test Accuracy

BERT 12,312 10000 11.34 10.76
BERT 12,312 15000 16.45 15.67
BERT 12,312 20000 26.23 24.50

Table S10: R2DL: Remote Homolgy Detection (Top-1 Accuracy)

Source Model Training Samples k-SVD Iterations Training Accuracy Test Accuracy

BERT 53,679 10000 60.23 61.89
BERT 53,679 15000 68.62 67.20
BERT 53,679 20000 70.78 69.73

Table S11: R2DL: Stability (Spearman’s Rho)

Source Model Training Samples k-SVD Iterations Training Accuracy Test Accuracy

TinyBERT 6623 10000 68.93 69.82
TinyBERT 6623 15000 87.22 89.3
TinyBERT 6623 20000 92.85 93.21

Table S12: R2DL: Solubility

of training data samples, both methods approximately do worse than the random prediction, so we do not reduce the
training data to evaluate performance after this threshold.

Task Training Samples R2DL Test Accuracy Bi-LSTM Test Accuracy
Toxicity Prediction 5000 42.12 37.34
Toxicity Prediction 6000 62.98 49.62
Toxicity Prediction 7000 86.23 82.78
Toxicity Prediction 8153 89.34 93.7

Table S13: Restricted Data Setting: Toxicity Prediction

Task Training Samples R2DL Test Accuracy Bi-LSTM Test Accuracy
Antimicrobial 3500 59.82 64.52
Antimicrobial 4500 72.76 68.41
Antimicrobial 5500 84.17 74.34
Antimicrobial 6489 90.01 88.0

Table S14: Restricted Data Setting: Antimicrobial

Task Training Samples R2DL Test Accuracy Bi-LSTM Test Accuracy
Structure Prediction 3378 12.09 06.23
Structure Prediction 4478 34.26 37.93
Structure Prediction 6678 69.28 66.34
Structure Prediction 8678 84.14 78.0

Table S15: Restricted Data Setting: Secondary Structure Prediction (SSP)

For every downstream protein task, we perform additional analysis on the robustness of R2DL in a low-resource
setting. To do this, we iteratively reduce the number of in-domain labeled samples used in training R2DL for each protein
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Task Training Samples R2DL Test Accuracy Bi-LSTM Test Accuracy
Homology 4312 09.35 03.69
Homology 8312 17.26 15.93
Homology 10312 23.23 22.34
Homology 12312 24.14 26.0

Table S16: Restricted Data Setting: Remote Homology Detection

Task Training Samples R2DL Test Accuracy Bi-LSTM Test Accuracy
Fluorescence 10769 12.09 06.23
Fluorescence 25769 34.26 37.93
Fluorescence 45769 69.28 66.34
Fluorescence 53769 66.34 68.0

Table S17: Restricted Data Setting: Fluorescence

Task Training Samples R2DL Test Accuracy Bi-LSTM Test Accuracy
Solubility 2500 011.0 07.23
Solubility 4000 47.26 39.93
Solubility 5200 85.23 87.34
Solubility 6623 94.0 93.1

Table S18: Restricted Data Setting: Solubility Prediction

prediction task. We find that in comparison to models trained from scratch on in-domain data, R2DL maintains a higher
prediction accuracy for each protein task at each low resource setting. For each prediction task, we report the number of
training samples in each low resource setting, the test accuracy of R2DL, and a trained-from-scratch model.

6 Classification Analysis
In Figure S3, we show a comparison between the performance of a linear discriminant analysis (LDA) model in12 and
R2DL on the antigen affinity prediction task for antibody variant sequences. The LDA model is a binary classifier that finds
the optimal classification boundary by projecting the data onto a one-dimensional feature space and finding a threshold.
The antibody affinity dataset consists of 4,000 labeled protein sequences, with labels {1 (on-target binding), 0 (off-target
binding)}. R2DL achieves a predictive accuracy of 95.5% compared to the LDA model performance of 92.8%. R2DL
achieves a higher predictive accuracy than the baseline LDA model by 3% and with a higher classification accuracy with
imbalanced datasets. The antibody affinity task dataset has the following distribution on target: 1516, off-target: 2484.
For 37% to 62% class-imbalance ratio of labels, we show that the R2DL model has a better classification accuracy than the
LDA model. The learned representations can therefore be inferred to be more accurate in our model than in the baseline
model. This is important, as in many real-world prediction tasks, the dataset is found to be class-imbalanced.

7 Additional Results of R2DL
Table S19 shows the number of training samples, the accuracy metric (mean and standard deviation with 5 independent
runs), and the data efficiency of R2DL, pretrained, and supervised models. It shows the sensitivity analysis of R2DL in
terms of the error bars on all 8 downstream tasks. We find that tasks with fewer in-domain training samples are more
sensitive as compared to protein tasks with an order of magnitude more in-domain training samples (see Table S19).

Table S20 compares the performance of R2DL with different pretrained English models, including BERT18, roBERTa31,
T520, and PubMedBERT46. In general, we find that using a larger-sized general-purpose large language model (e.g. T5 vs
BERT) trained on web-scale text data can further improve three out of the eight considered protein sequence learning
tasks, while a language model trained on domain-relevant corpora (e.g. PubMedBERT) has less benefit. We hypothesize
that better source English language models enable the learned dictionary to capture more fine-grained representations of
amino acid sequence distributions in the downstream protein task dataset. This hypothesis is also consistent with the
theoretical justification in28 that a more advanced source model can lead to a smaller error upper bound in the considered
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(a) Confusion matrix of the baseline model trained in 12 for the
antibody affinity prediction task.

(b) Confusion matrix of the R2DL model for the antibody affinity
prediction task.

Fig. S3: R2DL performance on the antigen affinity prediction task for antibody variant sequences and its comparison with
the baseline Linear Discriminant Analysis model reported in12.

model reprogramming loss.
Table S21 summarizes the performance of the considered protein sequence learning tasks reported in the literature.

Table S22 compares R2DL to conventional finetuning methods on the same pretrained English language model. The
significant and consistent performance improvement in all tasks observed in R2DL over these methods demonstrates the
effectiveness of R2DL as an efficient cross-domain finetuning method.

Protein Task
R2DL (out-of-domain pretraining) Pretraining (in-domain pretraining) Train from Scratch (in-domain supervised training)

In-Domain
Training Samples

Accuracy
Data

Efficiency
In-Domain

Training Samples
Accuracy

Data
Efficiency

In-Domain
Training Samples

Accuracy
Data

Efficiency

Secondary Structure 8678 0.841 ± 0.218 9.69E-05 3.10E+07 0.801 ± 0.035 2.58E-08 8678 0.623 ± 0.139 7.18E-05
Stability 21146 0.849 ± 0.141 4.01E-05 3.10E+07 0.738 ± 0.028 2.38E-08 21146 0.659 ± 0.0842 3.08E-05

Homology 12312 0.241 ± 0.129 1.96E-05 3.10E+07 0.265 ± 0.019 8.55E-09 12312 0.245 ± 0.285 1.99E-05
Solubility 16253 0.943 ± 0.087 5.80E-05 1.70E+06 0.872 ± 0.046 5.13E-07 16253 0.856 ± 0.303 5.27E-05

Antimicrobial 6489 0.902 ± 0.042 1.39E-04 1.70E+06 0.883 ± 0.112 5.19E-07 6489 0.874 ± 0.097 1.35E-04
Toxicity 8153 0.961 ± 0.018 1.18E-04 1.70E+06 0.937 ± 0.175 5.51E-07 8153 0.689 ± 0.273 8.45E-05

Antibody Affinity 4000 0.9456 ± 0.134 2.36E-04 1.70E+06 0.958 ± 0.088 5.64E-07 4000 0.928 ± 0.171 2.32E-04
Protein-Protein Interaction 1368 0.852 ± 0.025 6.23E-04 1.70E+06 0.852 ± 0.113 5.01E-07 1368 0.433 ± 0.261 3.2E-04

Table S19: R2DL (out-of-domain pretraining) versus Pretraining (in-domain pretraining) performance. In-domain
pretraining leverages learned specific features from the protein sequences. Out-of-domain pretraining (R2DL) leverages
biologically relevant grammar, which boosts performance when applied on a downstream task. R2DL results here are
reported with the source model that resulted in the highest downstream task accuracy. Pretraining performance is reported
with the highest accuracy pretrained model, finetuned on the in-domain training samples available for each protein task.
The details on the choice of source model and protein language model are described in Appendix 7. In-domain samples
are the total number of amino acid sequences used in training (including pretraining, supervised training, or finetuning
processes). Data efficiency is defined as the ratio of the downstream protein task accuracy to the number of in-domain
training samples.
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Pretrained
English
Model

(Source Model)

Model
Parameters

R2DL Accuracy for Downstream Protein Task

Source
Model

R2DL
Secondary
Structure

Stability Homology Solubility Antimicrobial Toxicity
Antibody
Affinity

Protein-Protein
Interaction

BERT 110M 96M 0.841 0.849 0.241 0.943 0.900 0.961 0.9456 0.852
roBERTa 123M 96M 0.899 0.826 0.210 0.899 0.879 0.978 0.893 0.793
T5 220M 96M 0.879 0.724 0.315 0.9467 0.832 0.941 0.934 0.818
PubMedBERT 110M 96M 0.821 0.651 0.218 0.823 0.841 0.892 0.794 0.724

Table S20: R2DL prediction accuracy by protein downstream task. We report the performance of each instance of R2DL,
when reprogramming a different source models.

Protein Language Model
Pretraining
Corpus Size

Model Parameters
Downstream Protein Task Prediction Accuracy

Secondary
Structure

Stability Homology Solubility Antimicrobial Toxicity
Antibody
Affinity

Protein-Protein
Interaction

LSTM (TAPE) 31M 38M 84.1 84.9 24.1 94.3 — — — —
ESM1-b 250M 650M 71.6 — — — — — — —
ProtBERT 45M 420M — — — — — — — —
PepWAE — 1.7M — — — — 88.0 93.7 — —
EDLMPPI — — — — — — — — — 0.858
ProtT5 45M 3B — 0.81 — — 0.91 — — 0.852
EmiPareto — — — — — — — — 0.93 —

Table S21: Protein Downstream Task Baselines, as reported in47. For the protein language models we consider as
baselines, where publicly reported, we report the size of the pretraining corpus (number of amino acids), the number of
model parameters, and the prediction accuracy for each downstream task as reported by the individual models. Where
some protein language models are not benchmarked (reported) for certain protein tasks, we leave out the accuracy and
mark the result as “–” (which means not available).

Method
Downstream Protein Task Prediction Accuracy

Secondary
Structure

Stability Homology Solubility Antimicrobial Toxicity
Antibody
Affinity

PPI

R2DL 0.841 0.849 0.241 0.943 0.900 0.961 0.9456 0.852
Partial Finetuning 0.825 0.782 0.263 0.768 0.872 0.765 0.826 0.791
Linear Head 0.673 0.673 0.192 0.521 0.851 0.723 0.457 0.823

Table S22: Comparison to conventional finetuning alternatives. We show the results of a standardized instance of R2DL,
where BERT is the source model that is reprogrammed for the downstream protein tasks. We report the performance for
partial finetuning on BERT, where the last layer 4 layers are finetuned on the in-domain data set for the downstream
protein task. We also report the prediction accuracy for a linear head trained on BERT embeddings. We demonstrate that
R2DL outperforms both alternatives to conventional finetuning across all downstream protein prediction tasks.

20 | 1–23Journal Name, [year], [vol.],


	Model and Data Differences between Finetuning and Reprogramming
	R2DL Performance vs. In-domain Pretraining Performance in Low Data Settings
	Baseline Model Reported Performance
	R2DL Performance with k-SVD
	R2DL Performance in Low Resource Settings
	Classification Analysis
	Additional Results of R2DL



