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Table S1. Number of small molecule compounds within the three datasets, including amino acids, 

cyclic olefins, epoxides, hydroxy carboxylic acids, lactams, lactones, poly carboxylic acids and acid 

halides, polyamines, polycarboxylic acid anhydrides, polyisocyanates, polyols and thiols, and 

vinylidenes. 

Monomers Count (GDB-13) Count (GDB-17) Count (PubChem) 

Amino acid 4662 0 9253 

Cyclic olefin 180414699 10357888 17133014 

Epoxide 188757121 61644 4701127 

Hydroxy carboxylic acid 194381403 6041868 4239342 

Lactam 11465098 1129110 679436 

Lactone 1898490 392362 1937567 

Poly carboxylic acid and acid 

halide 

9001267 1024466 1073964 

Polyamine 6940 3095 542024 

Polycarboxilic acid anhydride 14268280 13653 256271 

Polyisocyanate 9606974 911417 1115284 

Polyol and thiol 3961429 524249 2773404 

Vinylidene 0 0 17634 
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Table S2. Number of small molecule compounds with certain functional groups in the PubChem 

dataset. 

Functional group Count 

phenol, aliphatic prim- and sec-alcohol 1073964  

prim-amine (aliphatic and aromatic) 401107 

prim- and sec-amine (aliphatic and aromatic) 17133014 

phenol, aliphatic prim- and sec-alcohol 2331368 

aliphatic prim- and sec-carboxylic acid, aromatic carboxylic acid 542024 

epoxide (poly) 56730 

hindered phenol and thiophenol 50107 

amino acid 2773404 

hydroxy carboxilic acid 1937567 

lactam 1115284 

lactone except gamma-butyrolactone 679436 

cyclic olefin 4239342 

epoxide（mono and poly） 256271  

vinyl (terminal olefin) include acrylate 4701127 

 

Table S3. Number of small molecule compounds with certain functional groups in the GDB-13 

dataset. 

Functional group Count 

phenol, aliphatic prim- and sec-alcohol 9001267 

prim-amine (aliphatic and aromatic) 20194525 

prim- and sec-amine (aliphatic and aromatic) 180414699  

phenol, aliphatic prim- and sec-alcohol 10994073  

aliphatic prim- and sec-carboxylic acid, aromatic carboxylic acid 6940 

epoxide (poly) 662909 

hindered phenol and thiophenol 5950 

amino acid 3961429  

hydroxy carboxilic acid 1898490  

lactam 9606974  

lactone except gamma-butyrolactone 11465098  

cyclic olefin 194381403  

epoxide（mono and poly） 14268280  

vinyl (terminal olefin) include acrylate 188757121 
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Table S4. Number of small molecule compounds with certain functional groups in the GDB-17 

dataset. 

Functional group Count 

phenol, aliphatic prim- and sec-alcohol 1024466 

prim-amine (aliphatic and aromatic) 2018364 

prim- and sec-amine (aliphatic and aromatic) 10357888 

phenol, aliphatic prim- and sec-alcohol 1368370 

aliphatic prim- and sec-carboxylic acid, aromatic carboxylic acid 3095 

epoxide (poly) 13653 

hindered phenol and thiophenol 827 

amino acid 524249 

hydroxy carboxilic acid 392362 

lactam 911417 

lactone except gamma-butyrolactone 1129100 

cyclic olefin 6041868 

epoxide（mono and poly） 320173 

vinyl (terminal olefin) include acrylate 61644 

 

 

Figure S1. Univariate distribution plots for Tg, Tm, and Td. 

      

 

Figure S2. Parity plot of FNN models for Tg, Tm, and Td. 
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Figure S3. Univariate distribution plots for E, 𝜎𝑦, and 𝜎𝑏. 

     

 

Figure S4. Parity plot of FNN models for E, 𝜎𝑦, and 𝜎𝑏. 
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Figure S5. The substructure importance plot for    displays the most significant substructures in 

descending order, with each dot representing the impact from a specific sample in the training 

set. The plot highlights the 12 most important substructures associated with    according to SHAP 

values. In the plot, the central atom of each substructure is marked in blue, aromatic atoms are 

highlighted in yellow, and the connectivity of the atoms is shown in light gray. Below this, the 

individual SHAP value plot for the promising hypothetical polyimide structure is presented. Red 

and blue arrows indicate the positive and negative contributions of each substructure, 

respectively. The feature value of a substructure can be “0,” indicating its absence in the polymer 

structure, but its feature importance remains valid as indicated by the length of the arrow. The 

top substructures in this polyimide are highlighted in different colors. 
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Figure S6. The substructure importance plot for 𝐸 displays the most significant substructures in 

descending order, with each dot representing the impact from a specific sample in the training 

set. The plot highlights the 12 most important substructures associated with 𝐸 according to SHAP 

values. In the plot, the central atom of each substructure is marked in blue, aromatic atoms are 

highlighted in yellow, and the connectivity of the atoms is shown in light gray. Below this, the 

individual SHAP value plot for the promising hypothetical polyimide structure is presented. Red 

and blue arrows indicate the positive and negative contributions of each substructure, 

respectively. The feature value of a substructure can be “0,” indicating its absence in the polymer, 

but its feature importance remains valid as indicated by the length of the arrow. The top 

substructures in this polyimide are highlighted in different colors. 
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Figure S7. The substructure importance plot for 𝜎𝑦 displays the most significant substructures in 

descending order, with each dot representing the impact from a specific sample in the training 

set. The plot highlights the 12 most important substructures associated with 𝜎𝑦   according to 

SHAP values. In the plot, the central atom of each substructure is marked in blue, aromatic atoms 

are highlighted in yellow, and the connectivity of the atoms is shown in light gray. Below this, the 

individual SHAP value plot for the promising hypothetical polyimide structure is presented. Red 

and blue arrows indicate the positive and negative contributions of each substructure, 

respectively. The feature value of a substructure can be “0,” indicating its absence in the polymer, 

but its feature importance remains valid as indicated by the length of the arrow. The top 

substructures in this polyimide are highlighted in different colors. 

 

Details of Network Training and Dataset 

The largest database, PoLyInfo1, contains over 18,000 reported polymers, including 12,854 

homopolymers with their chemical structures and around 100 types of properties. This 

homopolymer dataset is suitable for training neural networks in our study. Within this dataset, 

6,906 homopolymers have reported values for   , 3,633 for   , 5,237 for   , 923 for 𝐸, 230 for 

𝜎𝑦 , and 983 for 𝜎𝑏 . Using these reported property values and the corresponding monomer 
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structures, machine learning models can be trained to establish a composition-property mapping 

for polymers. 

For the gas permeability models training, the dataset includes 778 homopolymers (representing 

353 unique polymer chemistries), each associated with at least one reported gas permeability 

value for He, H2, O2, N2, CO2, and CH4. 

The model for    was trained using 90% of the data points with reported experimental values, 

with the remaining 10% used as a test set. The model achieved an 𝑅² of 0.96 for training and 0.89 

for validation. For   , 90% of the data points were pseudorandomly selected for the training set, 

and the remaining 10% were used for testing. Using the same training process as the tensile 

modulus model, it achieved an 𝑅² of 0.99 for training and 0.75 for validation. Similarly, for   , 90% 

of the data points were pseudorandomly selected for training, and the other 10% were used for 

testing. The model obtained an 𝑅² of 1.00 for training and 0.84 for validation. 

The model for 𝐸 was trained using 95% of the data points with reported experimental values, 

while the remaining 5% were used as a test set. The model achieved an 𝑅² of 0.96 for training 

and 0.84 for validation. For 𝜎𝑦, 90% of the data points were pseudorandomly selected for the 

training set, and the remaining 10% were used for testing. Following the same training process as 

for the tensile modulus model, the model achieved an 𝑅²  of 0.95 for training and 0.80 for 

validation. Similarly, for 𝜎𝑏, 90% of the data points were selected pseudorandomly for training, 

and the other 10% were used for testing. Using the same training process, the model achieved an 

𝑅² of 0.93 for training and 0.72 for validation. 

For the gas permeability models training, the metric of interest is the 𝑅² correlation between the 

predicted and actual permeabilities on both the training and test sets. The data was split randomly, 

with 80% used for training and the remaining 20% reserved for testing, as summarized in Table 

S5. 

Table S5. Summary of the performances of supervised ML models as scored by the 𝑅2  value 

between the predicted and actual permeabilities. 

He H2 O2 N2 CO2 CH4 

Train Test Train Test Train Test Train Test Train Test Train Test 

0.88 0.91 0.88 0.90 0.90 0.92 0.90 0.91 0.89 0.90 0.89 0.88 

 

Details of molecular dynamics verification 

To validate the performance of the ML model, we conducted all-atom molecular dynamics 

simulations on nine hypothetical polymer structures randomly selected from the PolyUniverse 

database. The SMILES representations of their repeat units are shown in Table S6.  
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Table S6. SMILES of repeat units for nine hypothetical polymers used for MD simulations 

Model SMILES 

1 *Nc1oncc1C1(C)CCC=C1C(*)=O 

2 *NCC1CC(=NO)CC1(C)NCCC(*)=O 

3 *NC(C=O)CCC1(C)CCCC1CC(*)=O 

4 *OCCC1(C(*)=O)C=CC(CC)CC1 

5 *CCCNCCCC1=Nc2ccc(-c3ccc4c(c3)N=C(*)[N]4)cc2[N]1 

6 *CCCCC(C)CC1=Nc2ccc(-c3ccc4c(c3)N=C(*)[N]4)cc2[N]1 

7 *CC(O)c1ccccc1C(O)CCNCC1c2oncc2C(C)CN1CCN* 

8 *CC(O)CCOCCCCC(O)COC(=O)C1CC2(C)CC1C2C(=O)O* 

9 *CC(O)CCCCCCCC(O)COC(=O)C1C2CC(C2C)C1C(=O)O* 

 

We selected    as the target property and conducted all-atomic MD simulations to validate the 

ML-predicted    of these selected polymers. Among the properties used to validate ML models, 

   is often chosen, as all-atom MD simulations can, in most cases, provide reasonable estimates 

of Tg for crystalline, semi-crystalline, and amorphous polymers by analyzing simulated density vs. 

temperature curves. 

Each polymer model contains approximately 40,000 atoms, with a box side length of about 75 Å, 

as shown in Table S7. Periodic boundary conditions were applied in all three dimensions. The 

polymer consistent force field (PCFF) was used to define interatomic interactions. PCFF, a second-

generation force field, is parameterized for organic compounds containing H, C, N, O, S, P, 

halogens, and ions.2-5 It offers broad coverage for calculating cohesive energies, mechanical 

properties, compressibilities, heat capacities, and elastic constants of organic polymers. The 

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) package was used for the 

MD simulations. Prior to simulating the properties, these polymers were equilibrated using a 21-

step MD equilibration protocol, as employed in our previous work.6  

Table S7. Initial configuration of nine selected polymers for molecular dynamics simulation 

 
#1 42680 atoms 

40chains 

 
#2 39760 atoms 

40chains 

 
#3 39520 atoms 
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75.25Å×75.25Å×75.25Å 72.83Å×72.83Å×72.83Å 

 

40chains 

72.56Å×72.56Å×72.56Å 

 
#4 39520 atoms 

40chains 

70.9Å×70.9Å×70.9Å 

 
#5 39760 atoms 

40chains 

73.05Å×73.05Å×73.05Å 

 

 
#6 37880 atoms 

40chains 

701.9Å×71.9Å×71.9Å 

 
#7 37600 atoms 

40chains 

74.28Å×74.28Å×74.28Å 

 

 
#8 38480 atoms 

40chains 

71.72Å×71.72Å×71.72Å 

 
#9 39760 atoms 

40chains 

72.59Å×72.59Å×72.59Å 

 

To obtain the    of the system, we carry out a cooling process simulation by gradually decreasing 

the temperature from 1000 K to 100 K. The simulated density vs. temperature curves is shown in 
Figure S8. A comparison of the calibrated MD results and the corresponding ML predictions can be found 

in Table S8 and Figure S9. It is worth noting that the timescale of MD simulation is in the 

nanosecond range, resulting in a much faster cooling rate than in experiments. In our previous 

work6, we compared these results with experimental data, demonstrating that this MD simulation 

workflow reasonably agrees with experimental values. Therefore, we believe the Tg results from 

our MD simulations can be used to validate the ML-predicted Tg. Our results show that the ML 

predictions reasonably agree with the MD results, confirming that our model reliably predicts Tg 

across different polymers in the dataset. 
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Figure S8. Glass transition temperature for the nine selected polymers based on MD simulations.  

Table S8. Comparison of ML predictions and MD simulations of the nine selected polymers 

Model 
Tg (K) 

MD ML Errora 

#1 473.56 411.1933 15.18% 

#2 428.92 403.0879 6.41% 

#3 408.16 383.5832 6.41% 

#4 397.97 374.0717 6.39% 

#5 414.01 429.9912 3.72% 

#6 396.87 418.2139 5.10% 

#7 429.38 384.8127 11.58% 

#8 316.93 293.2459 8.08% 

#9 330.05 314.2498 5.03% 
a: Error=(ML-MD/MD)×100% 
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Figure S9. Glass transition temperature for nine hypothetical polymers based on MD simulations. 

Furthermore, we conducted additional simulations on both the real polymer #R1 and the 

hypothetical polymer #ML1. The simulated specific volume vs. temperature curves is shown in 

Figure S9. A comparison of the calibrated MD results and the corresponding ML predictions can 

be found in Table S9. The MD results for three sets of the real polymer compared with the 

experimental    values show that the MD-predicted    values are close to the experimental ones, 

with errors of 4.85%, 6.79%, and 3.65%. This demonstrates that MD can serve as a reliable 

reference for the ML-predicted    values. For the #ML1 hypothetical polymer, the MD-predicted 

Tg values show reasonable agreement with our ML predictions, with errors of 0.66%, 2.52%, and 

7.66%. This suggests that the #ML1 hypothetical polymer indeed may exhibit a relatively high Tg. 
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Figure S9. Glass transition temperature for the real and hypothetical polymers based on MD simulations.  

Table S9. Comparison of ML predictions and MD simulations of the real and hypothetical polymers. 

Model Repeat Unit Exp Tg (K) ML Tg (K) MD Tg (K) Error 

#R1  645.15 - 

613.87 4.85% 

601.33 6.79% 

621.58 3.65% 

#ML1  - 796.15 

790.87 0.66% 

816.18 2.52% 

735.18 7.66% 

a: Error=|(ML-MD)/MD)|×100% or Error=|(MD-Exp)/Exp)|×100%  
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