
Supplementary Information

Pellet dispensomixer and pellet distributor: Open hardware for nanocomposite space explo-
ration via automated material compounding

Authors
Miguel Hernández-del-Valle,a,b Jorge Ilarraza-Zuazo,a,b Enrique Dios-Lázaro,a,b Javier Rubio,a Joris Audoux,a,c

and Maciej Haranczyk∗a

Affiliations
a IMDEA Materials Institute, c/Eric Kandel, 2, 28906 Getafe, Madrid, Spain.
b Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain.
c Université de Limoges, 87032 Limoges, France.

Corresponding author’s email address
maciej.haranczyk@imdea.org

1

Supplementary Information (SI) for Digital Discovery.
This journal is © The Royal Society of Chemistry 2024

1. Pellet dispensomixer

1.1 Design files summary

Design filename Number
of
copies

Number of copies

StructureBase 2 Base that stores the different electronic components of the dispenser, in-
cluding motor connections, cables, resistors and the Arduino board

StructureTop 2 Covers the StructureBase, protecting the connections and the plate, in ad-
dition this part is attached to the DispenserBase with holes for a better
position with respect to the electronics

StructureUnion 8 Piece that serves as a union between the two halves of the StructureBase,
providing support and rigidity

DispenserBase 8 Support for each of the dispensers

DispenserTop 8 Part that regulates the output of the pellets from the dispenser

RotorSmall /
RotorLarge /
RotorXL

8* The rotors are the only moving parts of the entire dispenser. It is available
in three designs with different hole sizes, so for each dispenser it can be
chosen depending on the sizes of the pellets that it is goint to contain

Funnel 8 helps the filling of the dispensers

IonizerSupport 1 Part designed to include a ionizer to eliminate static charge in the pellets
that can delay the dispensing process. The airflow of a single ionizer is
distributed towards the eight dispensers.

2

1.2 Bill of materials

Item Quantity Unit
Price
(€)

Link

PLA Filament spool 2 20,61 https://tienda.sicnova3d.com/consumibles-sicnova/13041-
4090-filamento-para-impresoras-3d-pla-sicnova-750gr-
285mm#/170-diametro bobina sicnova-bobina 285 mm/
175-color sicnova-azul

Arduino Mega 2560
Rev 3

1 49,55 https://es.rs-online.com/web/p/arduino/7154084?gb=s

Breadboards 3 5.57 https://es.rs-online.com/web/p/placas-de-prueba/1892277

24BYJ48 stepper
motor

8 6.23 https://es.rs-online.com/web/p/kits-de-desarrollo-de-
alimentacion-motores-y-robots/1793741

A4988 driver 8 2.84 https://www.electronicaembajadores.com/es/Productos/
Detalle/LCMM038/modulos-electronicos/drivers-de-
motor/controlador-motor-paso-a-paso-con-a4988-2-0-a/

100µF capacitor 8 0.082 https://es.rs-online.com/web/p/condensadores-de-
aluminio/7111396

Ball bearing (Ø int.
8mm, Ø ext. 24mm,
width 8mm)

8 4.31 https://es.rs-online.com/web/p/rodamientos-de-
bola/2078240

Wall power source
12V

1 13.82 https://es.rs-online.com/web/p/adaptadores-ac-dc/1391779

Ionizer 1 571.87 https://es.rs-online.com/web/p/ionizadores/1260265?gb=s

Transparent PVC
pipe (Ø int. 40mm,
Ø ext. 50mm)

8x15cm 12* -

Cables and board
bridges

Assorted
box

10* -

M6x25mm screws
with M6 nuts

4 0.31* -

M5x16mm screws
with M5 nuts

16 0.25* -

M4x10mm screws
with M4 nuts

16 0.17* -

M3x25mm screws
with M3 nuts

32 0.12* -

*Estimated prices

3

https://tienda.sicnova3d.com/consumibles-sicnova/13041-4090-filamento-para-impresoras-3d-pla-sicnova-750gr-285mm##/170-diametro_bobina_sicnova-bobina_285_mm/175-color_sicnova-azul
https://tienda.sicnova3d.com/consumibles-sicnova/13041-4090-filamento-para-impresoras-3d-pla-sicnova-750gr-285mm##/170-diametro_bobina_sicnova-bobina_285_mm/175-color_sicnova-azul
https://tienda.sicnova3d.com/consumibles-sicnova/13041-4090-filamento-para-impresoras-3d-pla-sicnova-750gr-285mm##/170-diametro_bobina_sicnova-bobina_285_mm/175-color_sicnova-azul
https://tienda.sicnova3d.com/consumibles-sicnova/13041-4090-filamento-para-impresoras-3d-pla-sicnova-750gr-285mm##/170-diametro_bobina_sicnova-bobina_285_mm/175-color_sicnova-azul
https://es.rs-online.com/web/p/arduino/7154084?gb=s
https://es.rs-online.com/web/p/placas-de-prueba/1892277
https://es.rs-online.com/web/p/kits-de-desarrollo-de-alimentacion-motores-y-robots/1793741
https://es.rs-online.com/web/p/kits-de-desarrollo-de-alimentacion-motores-y-robots/1793741
https://www.electronicaembajadores.com/es/Productos/Detalle/LCMM038/modulos-electronicos/drivers-de-motor/controlador-motor-paso-a-paso-con-a4988-2-0-a/
https://www.electronicaembajadores.com/es/Productos/Detalle/LCMM038/modulos-electronicos/drivers-de-motor/controlador-motor-paso-a-paso-con-a4988-2-0-a/
https://www.electronicaembajadores.com/es/Productos/Detalle/LCMM038/modulos-electronicos/drivers-de-motor/controlador-motor-paso-a-paso-con-a4988-2-0-a/
https://es.rs-online.com/web/p/condensadores-de-aluminio/7111396
https://es.rs-online.com/web/p/condensadores-de-aluminio/7111396
https://es.rs-online.com/web/p/rodamientos-de-bola/2078240
https://es.rs-online.com/web/p/rodamientos-de-bola/2078240
https://es.rs-online.com/web/p/adaptadores-ac-dc/1391779
https://es.rs-online.com/web/p/ionizadores/1260265?gb=s

1.3 Build instructions

A B

C D

E

Figure S1: First steps for building the dispensomixer. Two copies of StructureBase are brought together (A)
and secured using eight copies of StructureUnion, each of them joint with two M5 screws and nuts (B). Then,
the breadboards are distributed along the circumference and the Arduino Mega board is placed in the cavity(C).
The circuit should then be assembled, as described in subsection 1.4. After that, StructureTop is placed (D) to
protect the circuit. Lastly, DispenserBase is placed (E) and secured with M6 screw and nut.

4

Figure S2: Steps to be repeated for each of the eight dispensers: Introduce one of the 24BYJ-48 stepper motors
in the slits of DispenserTop (A) and secure with two M4 screws (B). The DispenserTop is placed and fixed on
top of the DispenserBase using four M3 screws (C). Next, a ball bearing is attached to the rotor shaft and the
rotor is introduced (D), aligned with the motor shaft. There are three available models for the rotor, depending
on the size of the pellets. Finally, we add a transparent PVC pipe to serve as deposit (E). F and G show the
schematics of the rotor and base, respectively, to help get an idea of the dimensions.

5

A B

C D

Figure S3: Steps to place the ionizer: IonizerSupport is placed so it can distribute the air to the eight dispensers
(A). Then, Funnels are placed on top of each dispenser to facilitate the material filling (B). Ionizer can then be
placed and secured with M3 screws (C). The dispenser is now ready to be operated (D).

6

1.4 Circuit assembly

12V
2A

A4988 Driver 24BYJ48
Stepper
Motor

100 µF Capacitor

Figure S4: Schematics of the circuit for each of the motors. This circuit should be repeated for as many motors
as needed, so in our case we use Arduino MEGA instead of UNO to have more pins. The external power source
provides the > 8V needed for the A4988 driver, in this case using a 12V wall power source. It’s essential that
it has common ground with the Arduino. It is necessary to adjust the current in the driver by using the screw
and a multimeter† . Warning: don’t power the circuit before ensuring that everything is properly connected,
and don’t modify connections if the circuit is powered.

1.5 Operation instructions

1.5.1 Example using pellet dispenser

This notebook contains an example of how to run the code for using the dispensomixer. Most cells can be run
without any modification if the dispenser has been built without design modifications.

1 # Import Libraries
2 import serial
3 import numpy as np
4 import time
5 import serial .tools. list_ports
6 import os
7 import sys
8 sys.path. append (’src ’)
9 from DispenserSetup import SetupDispenser , Compositions

0† https://ardufocus.com/howto/a4988-motor-current-tuning/

7

https://ardufocus.com/howto/a4988-motor-current-tuning/

In this cell, we define the port name for the Arduino and the balance. We do it by listing the con-
nected ports and selecting the ones whose device serial is the corresponding to our device. You should find
the serial of your devices and change it accordingly. You can do it by inspecting the devices detected by
serial.tools.list ports.comports(). In case of doubt, try disconnecting and connecting to see which ports
are affected.

1 ports = serial .tools. list_ports . comports ()
2

3 # ##
4

5 arduino_serial = " write_here_your_arduino_serial "
6 balance_serial = " write_here_your_balance_serial "
7

8 # ##
9

10 for port in ports:
11 if port. serial_number == arduino_serial :
12 arduino_port = port. device
13 elif port. serial_number == balance_serial :
14 balance_port = port. device
15

16 ### Serial initialization
17 ## Arduino
18 arduino = serial . Serial (arduino_port , 9600)
19 ## Balance
20 balance = serial . Serial (port= balance_port , baudrate =9600 , bytesize = serial .SEVENBITS ,
21 parity = serial . PARITY_EVEN , stopbits = serial . STOPBITS_ONE)

In the next cell, we use the Arduino Command Line Interface (arduino-cli) to compile and upload the
arduino script. If you prefer to do it using the Graphical User Interface, skip this cell. For using it, update the
location of your arduino-cli

1 # ##
2

3 os. system ("PATH/arduino -cli compile --fqbn arduino :avr:mega 8 noIRnew_NOshaketimer_new /8
noIRnew_NOshaketimer_new .ino")

4 os. system ("PATH/arduino -cli upload -p "+ arduino_port +" --fqbn arduino :avr:mega 8
noIRnew_NOshaketimer_new /8 noIRnew_NOshaketimer_new .ino")

5

6 # ##

The next step is to define the materials and their concentrations in each of the dispensers. For that we will
use the SetupDispenser function from /src/DispenserSetup. It will require a .csv file detailing the compositions,
that can be built following the example available in the help of the function:

1 help(SetupDispenser)

1 # ##
2 D, M, A = SetupDispenser ("data/ dispenser_setup .csv", "PLA")
3 # ##

Next, we read the file that contains the compositions using the Compositions function. It’s working is
detailed in the documentation:

1 help(Compositions)

1 # ##
2 compositions = Compositions ("./ data/ compositions_to_dispense .csv", D, M, A, "PLA")
3 # ##
4 print(compositions)

For the rest of the notebook we will use only the first of the compositions available in the .csv file. in
your application you can easily loop over all of them, just remember to change the cup in the balance between
compositions.

8

1 C = compositions [0]

It is convenient now to establish a ratio between materials: in this way, instead of dispensing all the amount
of one material and then of another, we can alternate small quantities and thus have a better mixing. We do
this by selecting the one with lower amount and expressing the others as a ratio with respect to this one. In
every step we will dispense 1 g of the smaller one and the corresponding grams of the rest.

1 tol = 1e-3
2 minC = np.min ([c for c in C if c>tol])
3 ratios = C/minC
4 print(’The ratios for pellet dispensing will be: ’, ratios)

The next cell establish commands to tare, calibrate and measure weight from the balance. You may need
to edit them if your balance uses a different protocol.

1 # ##
2 def tare(balance):
3 # Set the balance measurement to 0.0 g
4 try:
5 balance .write(b’T\r\n’)
6 except :
7 balance = serial . Serial (port= balance_port , baudrate =9600 , bytesize = serial .SEVENBITS ,
8 parity = serial . PARITY_EVEN , stopbits = serial . STOPBITS_ONE)
9 balance .write(b’T\r\n’)

10

11

12 def calib(balance):
13 # Calibrate the balance automatically
14 try:
15 balance .write(b’C\r\n’)
16 except :
17 balance = serial . Serial (port= balance_port , baudrate =9600 , bytesize = serial .SEVENBITS ,
18 parity = serial . PARITY_EVEN , stopbits = serial . STOPBITS_ONE)
19 balance .write(b’C\r\n’)
20

21 def measure (balance):
22 try:
23 trash = balance . read_all ()
24 balance .write(b’B\r\n’)
25 reading = balance . readline ()
26 weight = float(reading [:10])
27 except :
28 balance = serial . Serial (port= balance_port , baudrate =9600 , bytesize = serial .SEVENBITS ,
29 parity = serial . PARITY_EVEN , stopbits = serial . STOPBITS_ONE)
30 trash = balance . read_all ()
31 balance .write(b’B\r\n’)
32 reading = balance . readline ()
33 weight = float(reading [:10])
34 return weight
35 # ##

Select the total amount of material that you want to dispense
1 # ##
2 mass_target = 100 # g
3 # ##

Now, we define some variables and arrays that we will need in the dispensing loop
1 measureAll = True
2 massAll = 0
3 mass = 0
4 masses = [[0] for _ in range (8)]
5 i = 0
6 times = [[0] for _ in range (8)]
7

9

8

9 dispenser_switch = {0 : b’0’, 1 : b’1’, 2 : b’2’, 3 : b’3’,
10 4 : b’4’, 5 : b’5’, 6 : b’6’, 7 : b’7’, ’stop ’ : b’8’}

The next cell runs the dispensers until the desired quantity is reached. As pointed above, it will alternate
dispensers keeping the ratios between materials.

1 start = time.time ()
2

3 while measureAll == True:
4 for j in range(len(C)):
5 if C[j] > tol:
6 if masses [j][i] < ratios [j]*(i+1):
7 measureNow = True
8 tare(balance)
9 time.sleep (2)

10 arduino .write(dispenser_switch [j])
11 while measureNow == True:
12 mass = measure (balance)
13 if mass + masses [j][i] >= ratios [j]*(i+1):
14 arduino .write(dispenser_switch [’stop ’])
15 time.sleep (4)
16 mass = measure (balance)
17 measureNow = False
18 massAll = massAll + mass
19 masses [j]. append (masses [j][i]+ mass)
20 times[j]. append (time.time ()-start)
21 time.sleep (0.1)
22 elif masses [j][i] >= ratios [j]*(i+1):
23 arduino .write(dispenser_switch [’stop ’])
24 print(" Dispenser ", j, "| iteration : ", i+1, "| t = ", times[j][i+1], "s | ", "

mass : ", masses [j][i+1])
25 if massAll > mass_target :
26 measureAll = False
27 arduino .write(dispenser_switch [’stop ’])
28 i = i + 1
29

30 arduino .write(dispenser_switch [’stop ’])

We can now plot the dispensing progress, comparing the amount that was actually dispensed and the one
asked by the code

1 import matplotlib . pyplot as plt
2

3 colors = ["C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7"]
4

5 for key in D.keys ():
6 plt.plot(times[D[key]-1], masses [D[key]-1], label=key , c= colors [D[key] -1])
7 plt.plot(times[D[key]-1], np. arange (len(times[D[key] -1]))* ratios [D[key]-1], ’--’,c= colors

[D[key] -1])
8 plt.plot (0,0,’--’,c = ’gray ’,label = " Expected amounts ")
9 plt.title(" Progression of Sample ")

10 plt. xlabel ("Time [s]")
11 plt. ylabel ("Mass [g]")
12 plt. legend ()
13 plt.show ()

Finally, we present a measure for accuracy consistent of the total error committed divided by the total
amount dispensed:

1 final_masses = [mass [-1] for mass in masses [:]]
2 accuracy = (1-np.sum(abs(final_masses -C* mass_target))/np.sum(final_masses))*100
3 print(" Accuracy : ", accuracy , "%")

10

1.6 Estimation of the Workflow Acceleration

For a sample composition of PLA with 1% MMT + 1% CLO, the dispenser achieved an average mass flow rate
of 7.57 g/min. The same task performed by a human, who usually can’t dedicate more than 3 hours a day to
composition preparation, recorded a mean MFR of 3.75 g/min. The acceleration factor is, therefore, estimated
as it follows, with the result indicating an automated process which is more than twice as fast as the traditional.

AF =
(

MFRauto

MFRmanual
− 1

)
· 100 ≈ 101.2 (1)

In terms of time investment, the logistics of switching from a traditional to automated method must be
considered as well. For this reason, an estimate of the amortization period was also calculated. With the
instructions provided, a period of 1 day is enough to assemble the device, an initial time investment which,
thanks to the acceleration factor, pays off in less than two days as shown in the Figure 1.6 A. This gain in
time resources usage is also indicated as a Sankey diagram (Figure 1.6 B), where transition from traditional
to automated procedure saves up 36.7% of the time. This time can then be allocated to more important tasks
which do require an operator.

Figure S5: Comparison of output from dispensing manually or by using the automated dispenser. A: Mass
produced by each method. The automated version includes in the calculation the assembly time, so it is
possible to estimate that the amortization takes place in less than two days. B: Sankey diagram showing how
the automated procedure can save around 36.7% of production time.

11

2. Pellet distributor

2.1 Design files summary

Design filename Number of copies
HalfClamp 4

NemaMount 2
TopFunnel 1

IdlerLink 1
1mmPinion 1
1mmIdler 1
IdlerCap 1

Cover 1
CircuitCase 1
Elbow1 1
Elbow2 1
Elbow3 1
ValvePinion 1
JointPinion 1
Handle 1
Gear 1
BallStop 1

Shaft 1
MotorLink 1
ValveHousing 1

Pin 1
Disc 1
Nozzle 1
Tray 1

12

2.2 Bill of materials

Item Quantity Unit
Price
(€)

Link

PLA Filament spool 2 20.61 https://tienda.sicnova3d.com/consumibles-sicnova/13041-
4090-filamento-para-impresoras-3d-pla-sicnova-750gr-
285mm#/170-diametro bobina sicnova-bobina 285 mm/
175-color sicnova-azul

Arduino UNO 2560
Rev 3

1 28.98 https://es.rs-online.com/web/p/arduino/7154081?gb=s

Breadboards 1 5.57 https://es.rs-online.com/web/p/placas-de-prueba/1892277

24BYJ48 stepper
motor

2 6.23 https://es.rs-online.com/web/p/kits-de-desarrollo-de-
alimentacion-motores-y-robots/1793741

Nema17 stepper
motor 12V 200
steps MMPP04

1 12.09 https://www.electronicaembajadores.com/es/Productos/
Detalle/MMPP004/motores-servomotores-actuadores-
lineales/motores-paso-a-paso/nema-17-motor-paso-a-paso-
12-vcc-angulo-1-8-200-pasos-0-45n-m-42bygh40-1704a/

A4988 driver 3 2.84 https://www.electronicaembajadores.com/es/Productos/
Detalle/LCMM038/modulos-electronicos/drivers-de-
motor/controlador-motor-paso-a-paso-con-a4988-2-0-a/

100µF capacitor 3 0.082 https://es.rs-online.com/web/p/condensadores-de-
aluminio/7111396

Wall power source
12V

1 13.82 https://es.rs-online.com/web/p/adaptadores-ac-dc/1391779

Ionizer 1 571.87 https://es.rs-online.com/web/p/ionizadores/1260265?gb=s

Balance 1 284.63 https://es.rs-online.com/web/p/balanzas/1231737

Ball bearing (Ø int.
8mm, Ø ext. 24mm,
width 8mm)

2 4.31 https://es.rs-online.com/web/p/rodamientos-de-
bola/2078240

PVC pipe (Ø int.
45mm, Ø ext.
50mm)

10cm +
6cm

10* -

Cables and board
bridges

Assorted
box

10* -

M3x10mm screws
with M3 nuts

10 0.12* -

M3x25mm screws
with M3 nuts

8 0.14* -

M4x16mm screws
with M4 nuts

8 0.17* -

*Estimated prices

13

https://tienda.sicnova3d.com/consumibles-sicnova/13041-4090-filamento-para-impresoras-3d-pla-sicnova-750gr-285mm##/170-diametro_bobina_sicnova-bobina_285_mm/175-color_sicnova-azul
https://tienda.sicnova3d.com/consumibles-sicnova/13041-4090-filamento-para-impresoras-3d-pla-sicnova-750gr-285mm##/170-diametro_bobina_sicnova-bobina_285_mm/175-color_sicnova-azul
https://tienda.sicnova3d.com/consumibles-sicnova/13041-4090-filamento-para-impresoras-3d-pla-sicnova-750gr-285mm##/170-diametro_bobina_sicnova-bobina_285_mm/175-color_sicnova-azul
https://tienda.sicnova3d.com/consumibles-sicnova/13041-4090-filamento-para-impresoras-3d-pla-sicnova-750gr-285mm##/170-diametro_bobina_sicnova-bobina_285_mm/175-color_sicnova-azul
https://es.rs-online.com/web/p/arduino/7154081?gb=s
https://es.rs-online.com/web/p/placas-de-prueba/1892277
https://es.rs-online.com/web/p/kits-de-desarrollo-de-alimentacion-motores-y-robots/1793741
https://es.rs-online.com/web/p/kits-de-desarrollo-de-alimentacion-motores-y-robots/1793741
https://www.electronicaembajadores.com/es/Productos/Detalle/MMPP004/motores-servomotores-actuadores-lineales/motores-paso-a-paso/nema-17-motor-paso-a-paso-12-vcc-angulo-1-8-200-pasos-0-45n-m-42bygh40-1704a/
https://www.electronicaembajadores.com/es/Productos/Detalle/MMPP004/motores-servomotores-actuadores-lineales/motores-paso-a-paso/nema-17-motor-paso-a-paso-12-vcc-angulo-1-8-200-pasos-0-45n-m-42bygh40-1704a/
https://www.electronicaembajadores.com/es/Productos/Detalle/MMPP004/motores-servomotores-actuadores-lineales/motores-paso-a-paso/nema-17-motor-paso-a-paso-12-vcc-angulo-1-8-200-pasos-0-45n-m-42bygh40-1704a/
https://www.electronicaembajadores.com/es/Productos/Detalle/MMPP004/motores-servomotores-actuadores-lineales/motores-paso-a-paso/nema-17-motor-paso-a-paso-12-vcc-angulo-1-8-200-pasos-0-45n-m-42bygh40-1704a/
https://www.electronicaembajadores.com/es/Productos/Detalle/LCMM038/modulos-electronicos/drivers-de-motor/controlador-motor-paso-a-paso-con-a4988-2-0-a/
https://www.electronicaembajadores.com/es/Productos/Detalle/LCMM038/modulos-electronicos/drivers-de-motor/controlador-motor-paso-a-paso-con-a4988-2-0-a/
https://www.electronicaembajadores.com/es/Productos/Detalle/LCMM038/modulos-electronicos/drivers-de-motor/controlador-motor-paso-a-paso-con-a4988-2-0-a/
https://es.rs-online.com/web/p/condensadores-de-aluminio/7111396
https://es.rs-online.com/web/p/condensadores-de-aluminio/7111396
https://es.rs-online.com/web/p/adaptadores-ac-dc/1391779
https://es.rs-online.com/web/p/ionizadores/1260265?gb=s
https://es.rs-online.com/web/p/balanzas/1231737
https://es.rs-online.com/web/p/rodamientos-de-bola/2078240
https://es.rs-online.com/web/p/rodamientos-de-bola/2078240

2.3 Build instructions

The parts, designed in FreeCAD, are 3D printed in PLA material, together with 50mm diameter PVC pipe
sections, and nuts and bolts for fastening. The robotized distributor arm, measuring 552x497x236mm, uses
two stepper motors for positioning, one on its base and another closer to the end of the arm, allowing it to
effectively sweep a truncated circular sector below the pelletizer that covers the entire area of a tray. A third
stepper actuates the opening and closing of a butterfly valve. The whole assembly is suspended beneath the
pelletizer by two arms on the top funnel/hopper, inserted into aluminum railings just under where the pellets
exit. These make their way through the first joint, the valve (if open), and through the second joint, before
reaching the nozzle and dropping into a cup or being discarded. The tray holding the cups is set up on a scale,
which enables the control of fill levels of cups, as well as determining the material yield.

A B C

Simple union
Union by bolt and nut

Figure S6: Assembly of the lower joint: A) Insert the motor shaft into the JointPinion, then fasten the motor
to the linking part of Elbow2 using 2 M3x10mm screws. B) Align Elbow2 and Elbow3 so that they touch and
the gears engage, then assemble two HalfClamp parts with 4 M3x25mm screws. C) Transparency view of the
full lower joint assembly.

14

2

1

A B C D

E F G H

Simple union
Union by bolt and nut

Figure S7: Assembly of the valve: A) Insert the Pin into the bearing. B) Place the Disk inside the ValveHousing,
then pass the Pin through the Disc, pressure-fitting the bottom bearing into the housing. C) View of the
current state of the assembly. D) Insert the ValvePinion into the motor shaft, then mount the MotorLink using
2 M3x10mm screws. E) Mount the motor assembly to the housing using 2 M3x10mm screws. F) Assemble the
valve shaft by fitting the bearing into the Shaft, then the BallStop, the Gear and the Handle. G) Insert the
shaft assembly into the housing and the disc, pressure fitting the bearing. H) Transparency view of the full
valve assembly.

15

Simple union
Union by bolt and nut

A B C

D E

Figure S8: Assembly of the upper joint. A) Place the two NemaMount parts around the Nema17 motor. Then,
secure the IdlerLink using 4 M3x10mm screws. After that, introduce the 1mmPinion in the motor shaft and
the 1mmIdler in the IdlerLink shaft. Lastly, Introduce the IdlerCap. B) The motor assembly can then be joint
to the TopFunnel using 4 M4x16mm screws. C) Use two HalfClamps to join the TopFunnel with Elbow1 using
4 M3x25mm screws. D) The CircuitCase and its Cover can be joined to Elbow1 using 4 M4x16mm screws. E)
Full upper joint assembly.

16

Nozzle

Pipe

Pipe

Lower joint

Valve

Top joint

Figure S9: Final steps. On the left, all the previously assembled parts are combined. On the right, image of
the full assembly mounted on the pelletizer (green) to fill the cups from the Tray (blue) that is set over the
balance (brown).

17

Figure S10: In the case that static charge is observed, the TopFunnel part can be exchanged for the TopFun-
nelIonizer version, that has a slot to add the ionizer included in the Bill of Materials.

2.4 Circuit assembly

The motors are controlled by A4988 drivers and an Arduino Uno R3 board, which is in turn managed by a
Python script on a computer. The communication between these is established through a serial protocol, hence
the Arduino must be plugged in by USB during operation, in addition to the power cable for the motors. The
scale is also connected by its own serial port to the script. This Python code makes use of the Inverse Kinematics
Python library (IKPy), through which the number of steps that each motor needs to take can be calculated in
order for the robot to move its nozzle to a desired position. This versatility in the code, together with the fact
that the arm should be able to reach any point within the swept region defined above, implies that the design
is theoretically adaptable to any tray and cup arrangement, as long as these fit within said area.

18

Figure S11: Schematics of the circuit. The external power source provides the > 8V needed for the A4988
driver, in this case using a 12V wall power source. It’s essential that it has common ground with the Arduino.
Warning: don’t power the circuit before ensuring that everything is properly connected, and don’t modify
connections if the circuit is powered.

2.5 Operation instructions

The device operates as follows: 1. Initial Setup: The robotized distributor arm must be positioned straight
and perpendicular to the face of the pelletizer. The 9-hole square tray, aligned with the axis of rotation of the
bottom joint, is placed on the scale. 2. Running the Python Script: Once the initial setup is complete, the
Python script available in the project repository 31 is executed. The scale is automatically tared before the
arm begins its operation. 3. Pellet Dispensing Process: The arm rotates to the coordinates of the first cup.
The valve opens, allowing pellets to flow into the cup. When the predetermined weight capacity of the cup
is reached, as measured by the scale, the valve closes. The arm then moves to the next cup. 4. Sequential
Filling: This process continues, rotating through all 8 external cups on the tray sequentially, and finally filling
the center cup. 5. Completion: After the center cup is filled, the arm returns to its initial position.

The following subsection reproduces the tutorial notebook available in the github repository.

2.5.1 Example using pellet distributor

This notebook contains an example of how to run the code for distributing the material. Most cells can be run
without any modification if the distributor has been built without design modifications.

1 # Import Libraries
2 import serial
3 import numpy as np
4 import time
5 import os
6 import serial .tools. list_ports

In this cell, we define the port name for the Arduino and the balance. We do it by listing the con-
nected ports and selecting the ones whose device serial is the corresponding to our device. You should find
the serial of your devices and change it accordingly. You can do it by inspecting the devices detected by
serial.tools.list ports.comports(). In case of doubt, try disconnecting and connecting to see which ports
are affected.

1 ports = serial .tools. list_ports . comports ()
2

3 # ##

19

4

5 arduino_serial = " write_here_your_arduino_serial "
6 balance_serial = " write_here_your_balance_serial "
7

8 # ##
9 for port in ports:

10 if port. serial_number == arduino_serial :
11 arduino_port = port. device
12 elif port. serial_number == balance_serial :
13 balance_port = port. device
14

15 ### Serial initialization
16 ## Arduino
17 arduino = serial . Serial (arduino_port , 9600)
18 ## Balance
19 balance = serial . Serial (balance_port , 9600)

We import the functions from the pellet distributor.py script. Note: you need to install the ikpy library
1 import pellet_distributor as ps

Define the capacity of the cup in kg
1 # ###
2 cup_capacity = 0.16
3 # ###

The next cell defines a series of parameters needed for the calculations. They don’t have to be modified
unless you have modified something in the design.

1 ### Initializations
2

3 n_joints = 2
4 distributor_parameters = [{’steps_in_rotation ’:0,’gear_ratio ’:0,’length_mm ’:0,’bound_rad ’:0,

’cartesian ’:[0 ,0]} for k in range(n_joints)]
5 ## Top
6 distributor_parameters [0][’steps_in_rotation ’] = np.round (200*1.1) # Calibrate

multiplicative factor to compensate lost steps if necessary
7 distributor_parameters [0][’gear_ratio ’] = 6
8 distributor_parameters [0][’length_mm ’] = 180.5
9 distributor_parameters [0][’bound_rad ’] = np. deg2rad (35) # np. deg2rad (35) # IK Rotation

bound in either direction , not total
10 distributor_parameters [0][’cartesian ’] = [distributor_parameters [0]. get(’length_mm ’), 0]
11 ## Bot
12 distributor_parameters [1][’steps_in_rotation ’] = 812
13 distributor_parameters [1][’gear_ratio ’] = 2.4
14 distributor_parameters [1][’length_mm ’] = np.sqrt (32.7**2 + 79.2**2) # 84.4
15 distributor_parameters [1][’bound_rad ’] = np. deg2rad (10*360)
16 distributor_parameters [1][’cartesian ’] = [distributor_parameters [1]. get(’length_mm ’), 0]
17

18

19

20

21

22 # Positions of the cups in the tray
23

24 tray_1 = ps.Tray(’1’, [distributor_parameters [0][’length_mm ’], 0], [
25 ps.Slot ([79.2 ,32.7]) ,
26 ps.Slot ([32.7 ,79.2]) ,
27 ps.Slot ([-32.7 ,79.2]) ,
28 ps.Slot ([-79.2 ,32.7]) ,
29 ps.Slot ([-79.2 , -32.7]) ,
30 ps.Slot ([-32.7 , -79.2]) ,
31 ps.Slot ([32.7 , -79.2]) ,
32 ps.Slot ([79.2 , -32.7]) ,
33 ps.Slot ([0 ,0]) ,

20

34])
35

36 tray_1 . fill_all_slots_ez (0, cup_capacity)
37 tray_1 . set_all_material (’PLA #### ’)

In the next cell, we use the Arduino Command Line Interface (arduino-cli) to compile and upload the
arduino script. If you prefer to do it using the Graphical User Interface, skip this cell. For using it, update the
location of your arduino-cli

1 # ##
2

3 os. system ("/PATH/arduino -cli compile --fqbn arduino :avr:uno ../../ Arduino /
Pellet_distributor_v2 / Pellet_distributor_v2 .ino")

4 os. system ("/PATH/arduino -cli upload -p "+ arduino_port +" --fqbn arduino :avr:uno ../../ Arduino /
Pellet_distributor_v2 / Pellet_distributor_v2 .ino")

5

6 # ##

The fill_tray function will run all the process. It uses the objects defined in the previous steps. The three
parameters that allow interesting customization are:

:param seq: List with the order of filling of the cups. If None, they will all be filled
in default order

:param purge slot: Number of the slot used for purging. This slot can be left without cup
so the material is discarded. Used when changing material. If None, no purging will be done.

:param purge time: Time for purge in minutes. Default: 0
If seq = None and purge slot = None, the cups will be filled sequentially (from 0 to 8) without any

purging.
If purge slot is not None, like purge slot = 0 for example, that hole will be used for purging. That hole

should be left empty (without cup), and the tray should be in some kind of box or container so the pellets are
not spilled everywhere. In that case, if seq is None the purging will be made after each cup, so the cup 1 will
be filled, then purge, then cup 2, then purge, etc.

For more detailed control, you can use seq. For example, if you want cups 1 and 2 filled with one material
and cups 3 and 4 with another, you can use purge slot = 0 and seq = [1,2,0,3,4,0]. In this way, after
filling cups 1 and 2 with the same material it will make a purge in slot 0, and the fill cups 3 and 4.

1 # ###
2

3 ps. fill_tray (tray_1 , distributor_parameters , arduino , balance , seq = None , purge_slot = 0,
purge_time = 1)

4

5 # ###

NOTE: As an alternative, you can use fill tray SIMULATED to check if the filling order is the desired
1

2 ps. fill_tray_SIMULATED (tray_1 , distributor_parameters , seq = None , purge_slot = 7, purge_time
= 1)

21

	Pellet dispensomixer
	Design files summary
	Bill of materials
	Build instructions
	Circuit assembly
	Operation instructions
	Example using pellet dispenser

	Estimation of the Workflow Acceleration

	Pellet distributor
	Design files summary
	Bill of materials
	Build instructions
	Circuit assembly
	Operation instructions
	Example using pellet distributor

