
Supporting Information:

PolyCL: Contrastive Learning for Polymer

Representation Learning via Explicit and Implicit

Augmentations

Jiajun Zhou,† Yijie Yang,† Austin M. Mroz,†,‡ and Kim E. Jelfs∗,†

†Department of Chemistry, Molecular Sciences Research Hub, Imperial College London,

White City Campus, Wood Lane, London, W12 0BZ, U.K.

‡I-X Centre for AI in Science, Imperial College London, White City Campus, Wood Lane,

London, W12 0BZ, U.K.

E-mail: k.jelfs@imperial.ac.uk

S-1

Supplementary Information (SI) for Digital Discovery.
This journal is © The Royal Society of Chemistry 2024

k.jelfs@imperial.ac.uk

Contents

S1 Downstream Datasets S-3

S2 Detailed Neural Network Modules S-4

S3 Transfer Learning Performance S-5

S4 Fine-Tune Performance of Self-Supervised Learning Models S-6

S5 Pre-trained Model Comparison S-7

S6 Results of TSNE on Downstream Datasets S-8

S7 Training Details of Supervised Models S-9

S7.1 Random Forest with ECFP . S-9

S7.2 XGBoost with ECFP . S-9

S7.3 Neural Network with ECFP . S-9

S7.4 Gaussian Process and Neural Network with Polymer Genome S-10

S7.5 Graph Convolutional Network . S-10

References S-11

S-2

S1 Downstream Datasets

Table S1: Downstream datasets sourced from Xu et al.S1

Dataset Property Size Unit
Egc bandgap(chain) 3380 eV
Egb bandgap(bulk) 561 eV
Eea electron affinity 368 eV
Ei ionisation energy 370 eV
Xc crystallisation tendency 432 %

EPS dielectric constant 382 -
Nc refractive index 382 -

S-3

S2 Detailed Neural Network Modules

Figure S1: Detailed neural network modules of PolyCL

S-4

S3 Transfer Learning Performance

Here, we report the average root mean square error of the transfer learning task, where only

the prediction head was fine-tuned and the pre-training model was frozen.

Table S2: The average root mean square error on the unseen validation datasets with Five-
Fold Cross-Validation. #Params is the parameter count in the model.

Model information Datasets
Model #Params Eea Egb Egc Ei EPS Nc Xc

RFECFP - 0.4295 0.7163 0.5623 0.4978 0.6220 0.1181 17.7347
XGBECFP - 0.4342 0.7184 0.5674 0.5151 0.6336 0.1173 18.5263
NNECFP 264K 0.4095 0.6989 0.5324 0.4835 0.5543 0.1046 18.2696
GPPG

S2 - 0.32 0.55 0.48 0.42 0.53 0.10 24.42
NNPG

S2 - 0.32 0.57 0.49 0.45 0.54 0.10 20.74
GCN 70K 0.4146 0.8605 0.7009 0.5040 0.6472 0.1655 19.3743
GIN 218K 0.3717 0.7854 0.6663 0.4590 0.6197 0.1456 18.5009

TransPolymerS1 82.1M 0.3446 0.6266 0.5498 0.4450 0.5475 0.1033 17.4086
PolyBERTS3 25.2M 0.3272 0.6636 0.5448 0.4672 0.5326 0.1063 17.6989

PolyCL 25.2M 0.3265 0.6458 0.5329 0.4180 0.5111 0.0933 18.1747

S-5

S4 Fine-Tune Performance of Self-Supervised Learn-

ing Models

Here, the average R2 values and root mean square errors of the fine-tuning task are shown,

where both the pre-trained model and prediction head were fine-tuned.

Table S3: The average of R2 on the unseen validation datasets with Five-Fold Cross-
Validation on self-supervised models. #Params is the parameter count in the model. The
boldings indicate the best results.

Model information Datasets
Model #Params Eea Egb Egc Ei EPS Nc Xc Avg.R2

TransPolymerS1 82.1M 0.9179 0.9365 0.9177 0.8278 0.7966 0.8674 0.4500 0.8163
PolyBERTS3 25.2M 0.9365 0.9243 0.9163 0.8359 0.8081 0.8653 0.4428 0.8185

PolyCL 25.2M 0.9317 0.9273 0.9186 0.8491 0.8038 0.8699 0.4250 0.8179

Table S4: The average root mean square error on the unseen validation datasets with Five-
Fold Cross-Validation. #Params is the parameter count in the model.

Model information Datasets
Model #Params Eea Egb Egc Ei EPS Nc Xc

TransPolymerS1 82.1M 0.3031 0.4901 0.4480 0.4052 0.5014 0.0859 17.3788
PolyBERTS3 25.2M 0.2659 0.5304 0.4517 0.3972 0.4850 0.0875 17.6082

PolyCL 25.2M 0.2757 0.5243 0.4457 0.3799 0.4923 0.0858 17.8229

S-6

S5 Pre-trained Model Comparison

Table S5: Comparison of pre-trained Polymer Foundation Models

Model Training Set Size Training Strategy #Params
TransPolymer 5M MLM 82.1M

PolyBERT 80M MLM 25.2M
PolyCL 80M + 1M[1] Contrastive Learning 25.2M

[1] PolyCL has PolyBERT as its pre-trained prior. PolyCL is trained with 1M datapoints.
MLM indicates masked language modelling. #Params is the parameter count for each

model.

S-7

S6 Results of TSNE on Downstream Datasets

Figure S2: t-SNE dimensional reduction analysis of the polymer representation space learnt
by PolyCL. Visualisation of the continuous representation of polymer repeating units. Each
figure on the downstream dataset is coloured by the corresponding value of the property
in the downstream dataset. (a) Eea dataset coloured by electron affinity. (b) Egb dataset
coloured by bandgap (bulk). (c) Ei dataset coloured by ionisation energy (d) EPS dataset
coloured by dielectric constant (e) Nc dataset coloured by refractive index (f) Xc dataset
coloured by crystallisation tendency

S-8

S7 Training Details of Supervised Models

A five-fold cross-validation process was applied to each algorithm. The fold average of all

R2 and RMSE values on each unseen validation set were taken to evaluate the model

performance.

S7.1 Random Forest with ECFP

We used RDKitS4 to transfer the polymer-SMILES to 512-bit ECFP fingerprints. The scikit-

learn packageS5 was used to construct the random forest regressor and hyperparameters were

tuned manually. The final random forest model we used is:

sklearn.ensemble.RandomForestRegressor

(bootstrap=False,max_features=‘sqrt’,random_state=72)

where all other parameters in the above implementation remain the default parameters.

S7.2 XGBoost with ECFP

We constructed 512-bit ECFP fingerprints as shown in Section S7.1. The XGBoostS6 package

was used to construct our xgboost model. After tuning, the final model is:

xgboost.XGBRegressor

(max_depth=6,min_child_weight=3,colsample_bytree=0.8,random_state=72)

where all other parameters in the above implementation remain the default parameters.

S7.3 Neural Network with ECFP

We obtained the same ECFP fingerprints as shown in Section S7.1. We employed a simple

two-layered MLP with a dropout ratio of 0.1. As an early stopping mechanism, a patience

value of 100 was used with the epoch size set to a large value. During training, the batch

size was set to 16 and the learning rate was 0.001.

S-9

S7.4 Gaussian Process and Neural Network with Polymer Genome

The performances are directly taken from the originally reported results by Kuenneth et

al.S2

S7.5 Graph Convolutional Network

We abstracted polymers to two-dimensional undirected molecular graphs. We follow the fea-

turisation method used by Hu et al.S7 to encode nodes and edges to the graph representation

using feature sets. Features are extracted using RDKit.S4 The connecting point in polymer

data is marked as a special node indexed by 0 in the node set.

Table S6: Feature sets for nodes and edges in molecular graphs.

Component Feature Feature Set Details
Node Atomic number [0, 119]
Node Chirality unspecified, tetrahedral CW, tetrahedral CCW, other
Edge Bond type single, double, triple, aromatic
Edge Bond direction none, end-upright, end-downright

The nodes and edges were integrated by using PyTorch GeometricS8 to construct molec-

ular graphs.

A molecular graph G = (V , E) is constructed by collections of nodes V and edges V ,

where the node features are denoted by Xv for v ∈ V . GNN layers learn to create em-

beddings hv at the node level, by aggregating the features Xv from neighbouring nodes.

Consequently, the node embedding after k-th layers encompasses the information within its

k-hop neighbourhood. The k-th layer of a GNN can be described by:

a(k)
v = AGGREGATE(k)

({
h(k−1)

u : u ∈ N (v)
})

h(k)
v = COMBINE(k)

(
h(k−1)

v , a(k)
v

) (1)

In practice here, we used two different architectures of AGGREGATE(k) to construct

GNNs to process polymer graphs. In graph convolutional networks (GCN), element-wise

S-10

mean pooling is proposed.S9 Therefore, the update rule can be summarised as:

h(k)
v = ReLU

(
W (k) · MEAN

(
{h(k−1)

u : u ∈ N (v) ∪ {v}}
))

(2)

Alternatively, graph isomorphism networks (GIN)S10 use a sum aggregation function and

non-linear transformation by an MLP:

h(k)
v = MLP(k)

(
1 + ϵ(k)

)
· h(k−1)

v +
∑

u∈N (v)
h(k−1)

u

 (3)

For the final layer node representation h(k)
v , the READOUT function is used to aggregate

node features to obtain the graph representation:

hG = READOUT (h(k)
v |v ∈ G) (4)

For both types of graph neural networks, GCN and GIN, we used the same set of hy-

perparameters except for the aggregation process inherently defined differently as shown in

Equation 2 and 3. We used 3 layered GNN with a dropout rate of 0.1. The node and edge

attributes were embedded in 128-dimensional space. The supervised training process was

set to last for 100 epochs. An early stopping mechanism was implemented with a patience

value of 50 epochs.

References

(S1) Xu, C.; Wang, Y.; Barati Farimani, A. TransPolymer: a Transformer-based language

model for polymer property predictions. npj Comput. Mater. 2023, 9, 64.

(S2) Kuenneth, C.; Rajan, A. C.; Tran, H.; Chen, L.; Kim, C.; Ramprasad, R. Polymer

informatics with multi-task learning. Patterns 2021, 2, 100238.

S-11

(S3) Kuenneth, C.; Ramprasad, R. polyBERT: a chemical language model to enable fully

machine-driven ultrafast polymer informatics. Nat. Commun. 2023, 14, 4099.

(S4) Landrum, G. Rdkit documentation. Release 2013, 1, 4.

(S5) Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blon-

del, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cour-

napeau, D.; Brucher, M.; Perrot, M.; Duchesnay, E. Scikit-learn: Machine Learning

in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

(S6) Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. Proceedings of

the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. New York, NY, USA, 2016; pp 785–794.

(S7) Hu, W.; Liu, B.; Gomes, J.; Zitnik, M.; Liang, P.; Pande, V.; Leskovec, J. Strategies

for pre-training graph neural networks. arXiv 2019, preprint, arXiv:1905.12265.

(S8) Fey, M.; Lenssen, J. E. Fast graph representation learning with PyTorch Geometric.

arXiv 2019, preprint arXiv:1903.02428.

(S9) Kipf, T. N.; Welling, M. Semi-supervised classification with graph convolutional net-

works. arXiv 2016, preprint, arXiv:1609.02907.

(S10) Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How powerful are graph neural networks?

arXiv 2018, preprint, arXiv:1810.00826.

S-12

	Downstream Datasets
	Detailed Neural Network Modules
	Transfer Learning Performance
	Fine-Tune Performance of Self-Supervised Learning Models
	Pre-trained Model Comparison
	Results of TSNE on Downstream Datasets
	Training Details of Supervised Models
	Random Forest with ECFP
	XGBoost with ECFP
	Neural Network with ECFP
	Gaussian Process and Neural Network with Polymer Genome
	Graph Convolutional Network

	References

