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S1 – The crystal structures for high-throughput density functional calculations of elastic 

properties for 495 carbides and 123 high-entropy carbides

The crystal structure (left) used for the calculation of the elastic properties of 495 carbides 

is a single-phase salt rock structure with 8 atoms, and the crystal structure (right) used for the 

calculation of the elastic properties of 123 high-entropy carbides is a 2x1x1 single-phase salt 

rock structure containing 16 atoms. For all calculation structures, transition metal atoms Ta, Zr, 

Hf, V, Nb, Ti, Mo, W, Cr occupy the cation sites and carbon atoms occupy the anion sites.

Fig S1 Calculation structure for carbides and high entropy carbides
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S2 –Detailed description of the 6 CBFV descriptors

The feature descriptors used in this work are listed on 

GitHub(https://github.com/ZhaoXi1209/HECs-Mechanical-Properties-prediction).

Table S1．Description and comparison of CBFV descriptors—Jarvis, Magpie, Mat2vec, Onehot, 
Oliynyk, Random

Descriptor Description Advantages

Jarvis A collection of feature descriptors used to 

characterize elements and compounds, 

including information such as the 

electronic structure, crystal structure, 

mechanical properties, thermodynamic 

properties, etc

Comprehensive description of 

material properties, suitable 

for diverse machine learning 

tasks

Magpie A set of characteristic descriptors 

developed by Ward et al., based primarily 

on the physical and chemical properties of 

elements, including atomic radius, 

electronegativity, melting point, boiling 

point, etc., describes materials through 

statistical information of these properties 

(such as mean, variance, minimum, 

maximum, etc.)

Captures a wide range of 

element properties, providing 

useful statistical information.

Mat2vec Based on natural language processing 

(NLP) descriptors, word embeddings are 

used to represent materials. Each material 

or element is represented as a multi-

dimensional vector, which can be used for 

various machine learning tasks.

Capture the contextual 

information and implicit 

characteristics of the 

materials, useful for tasks 

requiring semantic 

understanding.

Onehot Simple encoding method that converts 

discrete categories (element symbols) into 

easy to implement, provides 

unique representation for each 
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numerical vectors with a length equal to 

the number of elements.

element.

Oliynyk Based on physical and chemical 

properties such as atomic radius, ionic 

radius, electronegativity, melting point, 

similar to Magpie but with different 

feature selection and combination

Focus on more complex and 

diverse material properties, 

suitable for complex materials 

and sophisticated machine 

learning models

Random Uses randomly generated feature vectors, 

does not rely on specific physical or 

chemical properties, often used for 

baseline comparison or exploratory 

analysis

Simple to generate, useful for 

baseline comparisons and 

exploratory analysis.

S3 – The elastic properties of monocarbides
The elastic modulus of monocarbides is employed to calculate the ROM values of the 

elastic properties for 495 carbide systems.
Table S2．The elastic properties of binary carbides

Binary 

Carbide

Young’s modulus

(GPa)

bulk modulus

(GPa)

shear modulus

(GPa)

ZrC 393.59 222.63 163.27

NbC 436.19 301.31 173.27

HfC 452.36 254.57 187.88

TaC 421.97 338.65 163.26

TiC 438.54 266.74 178.85

CrC 427.71 338.28 165.87

VC 556.30 318.72 230.05

MoC 436.19 301.31 173.27

WC 424.41 381.01 161.45



S4 – The comparison of ROM results and HT-DFT calculations of bulk modulus and 
shear modulus for 495 carbides (contains 9 monocarbides, 108 ternary carbides, 252 
quaternary carbides and 126 equimolar quaternary high entropy carbides)

Fig S2 Comparison of ROM results and HT-DFT calculations of bulk modulus for 495 carbides

Fig S3 Comparison of ROM results and HT-DFT calculations of shear modulus for 495 carbides



S5 – The machine learning predicted elastic properties of 495 carbides with five kinds of 
composition-based feature vector descriptors

Fig S4 Machine learning prediction results with magpie descriptors on training data
Fig S5 Machine learning prediction results with onehot descriptors on training data



Fig S6 Machine learning prediction results with oliynyk descriptors on training data

Fig S7 Machine learning prediction results with random descriptors on training data



Fig S8 Machine learning prediction results with mat2vec descriptors on training data

S6 –Results of RF model predicting shear modulus

Fig S9 Comparison of DFT calculated shear modulus and predicted shear modulus for both 
of training (blue) and test (green) datasets with the RF model using Jarvis descriptors;



Fig S10 Comparison of DFT results and predicted shear modulus for 123 non-equimolar 
HECs using the well-trained RF model with Jarvis descriptors;

S7–Results of Crabnet model predicting elastic properties

Fig S11 The changes in predicted Young’s modulus over the course of the optimization 
process against the mean absolute error



Fig S12 The changes in predicted hardness over the course of the optimization process 
against the mean absolute error

S8 –Comparison of Crabnet model prediction results with DFT results in Ref

Fig S13 Comparison of bulk modulus of 12 non-equimolar HECs calculated by DFT and 
predicted by Crabnet model



S9- Results of CrabNet model predicting shear modulus

Fig S14 Comparison of DFT calculated shear modulus and predicted shear modulus for both 
of training (blue) and test (green) datasets with the CrabNet model;

Fig S15 Comparison of DFT results and predicted shear modulus for 123 non-equimolar 
HECs using the well-trained CrabNet model.


