Supplementary Information to "Predicting Mechanical Properties of Non-Equimolar High-Entropy Carbides using Machine Learning"

Xi Zhao^{a,b*}, Shu-guang Cheng^a, Sen Yu^b, Jiming Zheng^a, Rui-Zhi Zhang^c, Meng Guo^c

^a School of Physics, Northwest University, Xi'an 710069, China

^b Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China

^c Jinan Key Laboratory of High-Performance Industrial Software, Jinan Institute of Supercomputing Technology, Jinan, Shandong 250103, China

* Corresponding author: zhao xii@stumail.nwu.edu.cn

S1 – The crystal structures for high-throughput density functional calculations of elastic properties for 495 carbides and 123 high-entropy carbides

The crystal structure (left) used for the calculation of the elastic properties of 495 carbides is a single-phase salt rock structure with 8 atoms, and the crystal structure (right) used for the calculation of the elastic properties of 123 high-entropy carbides is a 2x1x1 single-phase salt rock structure containing 16 atoms. For all calculation structures, transition metal atoms Ta, Zr, Hf, V, Nb, Ti, Mo, W, Cr occupy the cation sites and carbon atoms occupy the anion sites.

Fig S1 Calculation structure for carbides and high entropy carbides

S2 –Detailed description of the 6 CBFV descriptors

The feature descriptors used in this work are listed on GitHub(https://github.com/ZhaoXi1209/HECs-Mechanical-Properties-prediction).

Table S1 · Description and comparison of CBFV descriptors—Jarvis, Magpie, Mat2vec, Onehot,Oliynyk, Random

Descriptor	Description	Advantages				
Jarvis	A collection of feature descriptors used to	Comprehensive description of				
	characterize elements and compounds,	material properties, suitable				
	including information such as the	for diverse machine learning				
	electronic structure, crystal structure,	tasks				
	mechanical properties, thermodynamic					
	properties, etc					
Magpie	A set of characteristic descriptors	Captures a wide range of				
	developed by Ward et al., based primarily	element properties, providing				
	on the physical and chemical properties of useful statistical info					
	elements, including atomic radius,					
	electronegativity, melting point, boiling					
	point, etc., describes materials through					
	statistical information of these properties					
	(such as mean, variance, minimum, maximum, etc.)					
Mat2vec	Based on natural language processing	Capture the contextual				
	(NLP) descriptors, word embeddings are	information and implicit				
	used to represent materials. Each material	characteristics of the				
	or element is represented as a multi-	materials, useful for tasks				
	dimensional vector, which can be used for	requiring semantic				
	various machine learning tasks.	understanding.				
Onehot	Simple encoding method that converts	easy to implement, provides				
	discrete categories (element symbols) into	unique representation for each				

	numerical vectors with a length equal to	element.		
	the number of elements.			
Oliynyk	Based on physical and chemical	Focus on more complex and		
	properties such as atomic radius, ionic	diverse material properties,		
	radius, electronegativity, melting point,	suitable for complex materials		
	similar to Magpie but with different	and sophisticated machine		
Random	feature selection and combination	learning models		
	Uses randomly generated feature vectors,	Simple to generate, useful for		
	does not rely on specific physical or	baseline comparisons and		
	chemical properties, often used for	exploratory analysis.		
	baseline comparison or exploratory			
	analysis			

S3 – The elastic properties of monocarbides

The elastic modulus of monocarbides is employed to calculate the ROM values of the elastic properties for 495 carbide systems.

Binary	Young's modulus	bulk modulus	shear modulus		
Carbide	(GPa)	(GPa)	(GPa)		
ZrC	393.59	222.63	163.27		
NbC	436.19	301.31	173.27		
HfC	452.36	254.57	187.88		
TaC	421.97	338.65	163.26		
TiC	438.54	266.74	178.85		
CrC	427.71	338.28	165.87		
VC	556.30	318.72	230.05		
MoC	436.19	301.31	173.27		
WC	424.41	381.01	161.45		

Table S2 · The elastic properties of binary carbides

S4 – The comparison of ROM results and HT-DFT calculations of bulk modulus and shear modulus for 495 carbides (contains 9 monocarbides, 108 ternary carbides, 252 quaternary carbides and 126 equimolar quaternary high entropy carbides)

Fig S2 Comparison of ROM results and HT-DFT calculations of bulk modulus for 495 carbides

Fig S3 Comparison of ROM results and HT-DFT calculations of shear modulus for 495 carbides

S5 – The machine learning predicted elastic properties of 495 carbides with five kinds of composition-based feature vector descriptors

Fig S4 Machine learning prediction results with magpie descriptors on training data Fig S5 Machine learning prediction results with onehot descriptors on training data

Fig S6 Machine learning prediction results with oliynyk descriptors on training data

Fig S7 Machine learning prediction results with random descriptors on training data

Fig S8 Machine learning prediction results with mat2vec descriptors on training data

S6 –Results of RF model predicting shear modulus

Fig S9 Comparison of DFT calculated shear modulus and predicted shear modulus for both of training (blue) and test (green) datasets with the RF model using Jarvis descriptors;

Fig S10 Comparison of DFT results and predicted shear modulus for 123 non-equimolar HECs using the well-trained RF model with Jarvis descriptors;

S7-Results of Crabnet model predicting elastic properties

Fig S11 The changes in predicted Young's modulus over the course of the optimization process against the mean absolute error

Fig S12 The changes in predicted hardness over the course of the optimization process against the mean absolute error

S8 – Comparison of Crabnet model prediction results with DFT results in Ref

Fig S13 Comparison of bulk modulus of 12 non-equimolar HECs calculated by DFT and predicted by Crabnet model

S9- Results of CrabNet model predicting shear modulus

Fig S14 Comparison of DFT calculated shear modulus and predicted shear modulus for both of training (blue) and test (green) datasets with the CrabNet model;

Fig S15 Comparison of DFT results and predicted shear modulus for 123 non-equimolar HECs using the well-trained CrabNet model.