Supplementary Information (SI) for Digital Discovery.
This journal is © The Royal Society of Chemistry 2024

Supporting information for GLAS : An open-source easily expandable Git-based
Scheduling Architecture for integral Lab Automation

Jean-Charles Cousty,*" * Tanguy Cavagna,®’ Alec Schmidt,*" Edy Mariano,* Keyan Villat,* Florian de Nanteuil,®
Pascal Miéville *

a Swiss Cat+ West Hub, Ecole Polytechnique Fédérale de Lausanne EPFL, 1015 Lausanne, Switzerland

® Département Informatique et systémes de communication, Haute école du paysage, d'ingénierie et
d'architecture HEPIA,, 1202 Geneva, Switzerland

¢ DSM-Firmenich, 1217 Meyrin Switzerland

Authors contributed equally
* Communication address: jean-charles.cousty@epfl.ch

November 4, 2024

S1: N°il?oﬁ‘é‘E«Ygﬁéﬂ‘r'%oﬁxé%%%ﬁef?f’ﬂ‘f4%‘} niFire Workflow configuration example
{
"id": "benchbot", {
"name": "BenchBot", "name": "plate analysis",
"type": "BENCHBOT", "steps": [
"args": { "omni-in",
"profile": 2, "benchbot",
"ip": "192.168.1.20", "dispatchor”,
"port": "10100", "benchbot",
"timeout": 30, "omni-out"
"config-file":]
"/flash/data/omnifire.gpo" }
}
}

S2 : Multithread workflow example for the OmniFire :

def plate_to_stocking(self, src: Self, dst: Self, task_id: str, workflow:
Workflow, save: bool) ->

None:

"""Takes a plate from the Omni-in and stores it in the Stocking bay. Once
the plate

is stored, pauses the thread until a notify is received. When a notify is
received,

sleeps a second to make sure any potential incoming plate goes through
first,

thus avoiding two plates going in at the same time. Then, grabs the plate
and

put it on the Dispatcher before returning.

When a plate is stored, the node's mutex is released, allowing the FP
3400

to be used by other tasks.

Args:
src (Self): Previous node of the task's current node. Only to set it

as available if
necessary.
dst (Self): Following node of the task's current node. This node's
state is the condition
variable.
task_id (str): Id of the task running. For visual and logging
purposes.
workflow (Workflow): Workflow object used by the task running. For
visual and logging
purposes.
save (bool): Boolean activating or disabling logging. Should inherit
_execute()'s 'save'
argument.

Raises:
BenchBotException: Something went wrong ; the node state is set to
error before raising

with self.cv_dispatchor:

start = time.time()
stocking pod_id = self.store_plate(task_id, workflow.name)

if src is not None:
src.set_available()

if save:
LoggingManager.insert_data_sample(task_id, workflow.id, self.id,
start, time.time())

start = time.time()
self.mutex_unlock()

Must wait for the dispatcher to be available.
When woken up, sleep one second to give time for any plate in
the omni-in to go through first to avoid both going through.
If a plate on the omni-in went through, go back to the passive
waiting.
while True:
while not dst.is_available():
self.cv_dispatchor.wait()
time.sleep(1l) # this sleep is to allow other tasks needing the
dispatcher to go first

if dst.is_available():
break

self.mutex_lock()
if save:
LoggingManager.insert_data_sample(task_id, workflow.id, "Stocking

Bay", start,

time.time())

start = time.time()
self.pop_plate(stocking pod_id)

if save:
LoggingManager.insert_data_sample(task_id, workflow.id, self.id,
start, time.time())

dst.set_in_use()

S3 : A Custom base node implementation that does the same as its parent class BaseNode, except it does
not update the state.

import time
from typing import Self, Optional

from typing_extensions import override

from glas.database.connector import DatabaseConnector

from glas.database.node_call_record import DBNodeCallRecord
from glas.logger import LoggingManager

from glas.nodes.base import BaseNode

from glas.workflow.core import Workflow

class CustomBaseNode(BaseNode):
def __init_ (self, _id: str, name: str, emulate: bool) -> None:
self.emulate = emulate
super().__init_ (_id, name)

@override
def execute(self, db: DatabaseConnector, task_id: str, workflow: Workflow,
src: Self, dst: Self,
args: dict[str, any] = None, save: bool = True) -> tuple[int, str
| Nonel:
Override the BaseNode execute to remove the node state update. State
updates occur:\n
By the SCARA when it puts a plate on (sets as IN_USE)\n
By the SCARA when it picks a plate (sets as AVAILABLE)\n
By the Orchestrator, when the Robot Scheduler picks a plate up (sets
as AVAILABLE)\n
By the Orchestrator, when the Robot Scheduler deposits a plate (sets
as IN_USE)

start = time.time()

with self.mu:
save the access waiting time
if save:
LoggingManager.insert_data_sample(task_id, workflow.id, "w. acc.",
start,time.time())

task_logger = LoggingManager.get_logger(f"task-{task_id}")
task_logger.debug(f"Executing {self}...")

start = time.time()

self. pre_execution(task_id, workflow.name, src, dst, args)

status, message, endpoint = self. execute(src, dst, workflow, task id,
save, args)

self. post_execution(status, message, task_id, workflow.name, src,
dst, args)

if status != o:
DBNodeCallRecord.insert(db, self.id, endpoint, message,
time.time() - start, "error"
return status, message

DBNodeCallRecord.insert(db, self.id, endpoint, message, time.time() -
start, "success")

if save:
LoggingManager.insert_data_sample(task_id, workflow.id, self.id,
start, time.time())

return @, None

def _execute(self, src: Self, dst: Self, workflow: Workflow, task_id: str,
save: bool,
args: Optional[dict[str, any]] = None) -> tuple[int,
Optional[str], Optional[str]]:

Node specific implementation of its own execution logic

:param src: Source node

:param dst: Destination node
:param task_id: Caller task's id
:param args: Execution arguments
‘return:

raise NotImplementedError("_execute")

